6概率的基本性质
- 格式:doc
- 大小:77.00 KB
- 文档页数:3
正态分布6西格玛概率解释说明以及概述1. 引言1.1 概述引言部分将对文章的主题进行概述和介绍。
在本文中,我们将探讨正态分布六西格玛概率的解释说明以及概述。
正态分布是一种重要的统计分布,它具有许多优秀的性质和应用领域。
而六西格玛原理则是基于正态分布而发展起来的一种质量管理方法,它通过计算事件发生在六个标准差之内的概率来评估过程或产品是否稳定。
1.2 文章结构本文共分为五个部分进行论述。
首先,在第二部分我们将介绍正态分布的定义与性质,同时探讨其常见应用领域以及参数估计与假设检验方法。
然后,在第三部分中,我们将回顾六西格玛原理的背景和发展历程,并详细解释其核心概念和特点。
此外,还将深入研究六西格玛在不同应用场景中的优势和实际价值。
在第四部分中,我们将系统地介绍正态分布六西格玛概率计算方法。
具体包括Z-score转化与标准化方法以及六西格玛事件发生概率计算步骤的详细介绍。
通过实例分析和案例研究,我们将进一步展示如何应用这些方法来评估潜在风险并进行决策。
最后,在结论部分,我们将总结本研究的重要成果,并对正态分布六西格玛概率在实际应用中的前景进行展望。
1.3 目的本文旨在提供关于正态分布六西格玛概率的全面说明和概述。
通过对正态分布和六西格玛原理进行深入探讨,读者将能够了解到这两个领域的基本定义、性质以及应用方法。
同时,通过具体案例和实证研究的呈现,读者还将获得运用这些方法进行质量管理、风险评估和决策制定方面的指导思路。
通过本文的阅读,读者将更加深入地理解正态分布与六西格玛原理之间的关系,并能够灵活运用相关计算方法来解决实际问题。
希望本文能为读者提供有益的信息,并促进相关领域的学术研究和实践应用。
2. 正态分布:正态分布,又称高斯分布或钟形曲线,是概率论和统计学中最为重要的连续型概率分布之一。
它的特点是对称且呈现钟形曲线状,由于具有良好的性质与广泛的应用领域,被广泛地使用于数据建模、参数估计以及假设检验等方面。
随机事件及其概率一、随机事件1、必然事件在一定条件下,必然会发生的事件叫作必然事件.2、不可能事件在一定条件下,一定不会发生的事件叫作不可能事件.3、随机事件在一定条件下,可能发生,也可能不发生的事件叫作随机事件,一般用大写字母A,B,C来表示随机事件.4、确定事件必然事件和不可能事件统称为相对于随机事件的确定事件.5、试验为了探索随机现象发生的规律,就要对随机现象进行观察或模拟,这种观察或模拟的过程就叫作试验.【注】(1)在一定条件下,某种现象可能发生,也可能不发生,事先并不能判断将出现哪种结果,这种现象就叫作随机现象. 应当注意的是,随机现象绝不是杂乱无章的现象,这里的“随机”有两方面意思:①这种现象的结果不确定,发生之前不能预言;②这种现象的结果带有偶然性. 虽然随机现象的结果不确定,带有某种偶然性,但是这种现象的各种可能结果在数量上具有一定的稳定性和规律性,我们称这种规律性为统计规律性. 统计和概率就是从量的侧面去研究和揭示随机现象的这种规律性,从而实现随机性和确定性之间矛盾的统一.(2)必然事件与不可能事件反映的是在一定条件下的确定性现象,而随机事件反映的则是在一定条件下的随机现象.(3)随机试验满足的条件:可以在相同条件下重复进行;所有结果都是明确可知的,但不止一个;每一次试验的结果是可能结果中的一个,但不确定是哪一个. 随机事件也可以简称为事件,但有时为了叙述的简洁性,也可能包含不可能事件和必然事件.二、基本事件空间1、基本事件在试验中不能再分的最简单的随机事件,而其他事件都可以用它们进行描述,这样的事件称为基本事件.2、基本事件空间所有基本事件构成的集合称为基本事件空间,常用大写字母Ω来表示,Ω中的每一个元素都是一个基本事件,并且Ω中包含了所有的基本事件.【注】基本事件是试验中所有可能发生的结果的最小单位,它不能再分,其他的事件都可以用这些基本事件来表示;在写一个试验的基本事件空间时,应注意每个基本事件是否与顺序有关系;基本事件空间包含了所有的基本事件,在写时应注意不重复、不遗漏.三、频率与概率1、频数与频率在相同条件S下进行了n次试验,观察某一事件A是否出现,则称在n次试验中事件A 出现的次数A n 为事件A 出现的频数;事件A 出现的比例()A n n f A n =为事件A 出现的频率.2、概率对于给定的随机事件A ,如果随着试验次数n 的增加,事件A 发生的频率()n f A 稳定在某个常数上,则把这个常数称为事件A 的概率,简称为A 的概率,记作()P A .3、频率与概率的关系(1)频率虽然在一定程度上可以反映事件发生的可能性的大小,但频率并不是一个完全确定的数. 随着试验次数的不同,产生的频率也可能不同,所以频率无法从根本上刻画事件发生的可能性的大小,但人们从大量的重复试验中发现:随着试验次数的无限增加,事件发生的频率会稳定在某一固定的值上,即在无限次重复试验下,频率具有某种稳定性.(2)概率是一个常数,它是频率的科学抽象. 当试验次数无限多时,所得到的频率就会近似地等于概率. 另外,概率大,并不表示事件一定会发生,只能说明事件发生的可能性大,但在一次试验中却不一定会发生.四、事件的关系与运算1、包含关系一般地,对于事件A 与事件B ,如果事件A 发生时,事件B 一定发生,则我们称 事件B 包含事件A (或称事件A 包含于事件B ),记作B A ⊇(或A B ⊆).2、相等关系一般地,对于事件A 与事件B ,如果事件A 发生时,事件B 一定发生,并且如果事件B 发生时,事件A 一定发生,即若B A ⊇且A B ⊇,则我们称事件A 与事件=.B相等,记作A B3、并事件如果某事件发生当且仅当事件A或事件B发生,则我们称该事件为事件A与事件⋃(或A B+).B的并事件(或和事件),记作A B4、交事件如果某事件发生当且仅当事件A发生且事件B也发生,则我们称该事件为事件A 与事件B的交事件(或积事件),记作A B⋂(或A B⋅).5、互斥事件如果事件A与事件B的交事件A B⋂=∅),则我们称事⋂为不可能事件(即A B件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中都不会同时发生.6、对立事件如果事件A与事件B的交事件A B⋂=∅),而事件A与⋂为不可能事件(即A B事件B的并事件A B⋃=Ω),则我们称事件A与事件B互⋃为必然事件(即A B为对立事件,其含义是:事件A与事件B在任何一次试验中有且仅有一个发生.【注】事件的关系与运算可以类比集合的关系与运算. 例如,事件A包含事件B 类比集合A包含集合B;事件A与事件B相等类比集合A与集合B相等;事件A 与事件B的并事件类比集合A与集合B的并集;事件A与事件B的交事件类比集合A与集合B的交集……五、互斥事件与对立事件互斥事件与对立事件是今后考察的重点,因此关于互斥事件与对立事件,我们很有必要再作进一步的说明.1、互斥事件与对立事件的关系互斥事件与对立事件都反映的是两个事件之间的关系. 互斥事件是不可能同时发生的两个事件,而对立事件除了要求这两个事件不同时发生以外,还要求这两个事件必须有一个发生. 因此,对立事件一定是互斥事件,而互斥事件不一定是对立事件. 例如,掷一枚骰子,事件:“出现的点数是1”与事件:“出现的点数是偶数”是互斥事件,但不是对立事件;而事件:“出现的点数是奇数”与事件:“出现的点数是偶数”既是互斥事件,也是对立事件.2、互斥事件的概率加法公式(1)两个互斥事件的概率之和如果事件A 与事件B 互斥,那么()()()P A B P A P B ⋃=+;(2)有限多个互斥事件的概率之和一般地,如果事件1A ,2A ,…,n A 两两互斥,那么事件“12n A A A ⋃⋃⋃发生”(指事件1A ,2A ,…,n A 中至少有一个发生)的概率等于这n 个事件分别发生的概率之和,即1212()()()()n n P A A A P A P A P A ⋃⋃⋃=+++.【注】上述这两个公式叫作互斥事件的概率加法公式. 在运用互斥事件的概率加法公式时,一定要首先确定各事件是否彼此互斥(如果这个条件不满足,则公式不适用),然后求出各事件分别发生的概率,再求和.3、对立事件的概率加法公式对于对立的两个事件A 与B 而言,由于在一次试验中,事件A 与事件B 不会同时发生,因此事件A 与事件B 互斥,并且A B ⋃=Ω,即事件A 或事件B 必有一个发生,所以对立事件A 与B 的并事件A B ⋃发生的概率等于事件A 发生的概率与事件B 发生的概率之和,且和为1,即()()()()1P P A B P A P B Ω=⋃=+=,或()1()P A P B =-.【注】上述这个公式为我们求事件A 的概率()P A 提供了一种方法,当我们直接求()P B,再运用公式P A有困难时,可以转化为先求其对立事件B的概率()P A.=-即可求出所要求的事件A的概率()()1()P A P B4、求复杂事件的概率的方法求复杂事件的概率通常有两种方法:一种是将所求事件转化为彼此互斥的事件的和,然后再运用互斥事件的概率加法公式进行求解;另一种是先求其对立事件的概率,然后再运用对立事件的概率加法公式进行求解. 如果采用方法一,一定要准确地将所求事件拆分成若干个两两互斥的事件,不能有重复和遗漏;如果采用方法二,一定要找准所求事件的对立事件,并准确求出对立事件的概率.六、概率的基本性质1、任何事件的概率都在01之间,即对于任一事件A,都有0()1≤≤.P A2、必然事件的概率为1,不可能事件的概率为0.3、若事件A与事件B互斥,则()()()⋃=+.P A B P A P B4、两个对立事件的概率之和为1,即若事件A与事件B对立,则()()1+=.P A P B。
3.1.3 概率的基本性质(第三课时)
一、教学目标:
1、知识与技能:(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;
(2)概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;
2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)
(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.
2、过程与方法:通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类化与归纳的数学思想。
3、情感态度与价值观:通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习 数学的情趣。
二、重点与难点:概率的加法公式及其应用,事件的关系与运算。
三、学法与教学用具:1、讨论法,师生共同讨论,从而使加深学生对概率基本性质的理解和认识;2、教学用具:投灯片
四、教学设想:
1、 创设情境:(1)集合有相等、包含关系,如{1,3}={3,1},{2,4}С{2,3,4,5}等;
(2)在掷骰子试验中,可以定义许多事件如:C 1={出现1点},C 2={出现2点},C 3={出现1点或2点},C 4={出现的点数为偶数}……
师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗?
2、 基本概念:(1)事件的包含、并事件、交事件、相等事件见课本P115;
(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;
(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;
(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B).
3、 例题分析:
例1 一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件? 事件A :命中环数大于7环; 事件B :命中环数为10环;
事件C :命中环数小于6环; 事件D :命中环数为6、7、8、9、10环. 分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生。
解:A 与C 互斥(不可能同时发生),B 与C 互斥,C 与D 互斥,C 与D 是对立事件(至少一个发生).
例2 抛掷一骰子,观察掷出的点数,设事件A 为“出现奇数点”,B 为“出现偶数点”,已知P(A)=21,P(B)=2
1,求出“出现奇数点或偶数点”.
分析:抛掷骰子,事件“出现奇数点”和“出现偶数点”是彼此互斥的,可用运用概率的加法公式求解.
解:记“出现奇数点或偶数点”为事件C,则C=A ∪B,因为A 、B 是互斥事件,所以P(C)=P(A)+ P(B)=21+2
1=1答:出现奇数点或偶数点的概率为1
例3 如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A )的概率是41,取到方块(事件B )的概率是4
1,问:(1)取到红色牌(事件C )的概率是多少?
(2)取到黑色牌(事件D )的概率是多少?
分析:事件C 是事件A 与事件B 的并,且A 与B 互斥,因此可用互斥事件的概率和公式求解,事件C 与事件D 是对立事件,因此P(D)=1—P(C).
解:(1)P(C)=P(A)+ P(B)=21(2)P(D)=1—P(C)=2
1 例4 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为31,得到黑球或黄球的概率是125,得到黄球或绿球的概率也是12
5,试求得到黑球、得到黄球、得到绿球的概率各是多少?
分析:利用方程的思想及互斥事件、对立事件的概率公式求解.
解:从袋中任取一球,记事件“摸到红球”、“摸到黑球”、“摸到黄球”、“摸到绿球”为A 、
B 、
C 、
D ,则有P(B ∪C)=P(B)+P(C)=
125;P(C ∪D)=P(C)+P(D)=12
5;P(B ∪C ∪D)=1-P(A)=1-31=32,解的P(B)=41,P(C)=61,P(D)=41答:得到黑球、得到黄球、得到绿球的概率分别是41、61、4
1. 4、课堂小结:概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);3)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。
5、自我评价与课堂练习:
1.从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件。
(1)恰好有1件次品恰好有2件次品;
(2)至少有1件次品和全是次品;
(3)至少有1件正品和至少有1件次品;
(4)至少有1件次品和全是正品;
2.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数,事件B 为出现2点,已知P (A )=21,P (B )=6
1,求出现奇数点或2点的概率之和。
3.某射手在一次射击训练中,射中10环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算该射手在一次射击中:(1)射中10环或9环的概率;
(2)少于7环的概率。
4.已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是71,从中取出2粒都是白子的概率是35
12,现从中任意取出2粒恰好是同一色的概率是多少?6、评价标准:
1.解:依据互斥事件的定义,即事件A 与事件B 在一定试验中不会同时发生知:(1)恰好有1件次品和恰好有2件次品不可能同时发生,因此它们是互斥事件,又因为它们的并不是必然事件,所以它们不是对立事件,同理可以判断:(2)中的2个事件不是互斥事件,也不是对立事件。
(3)中的2个事件既是互斥事件也是对立事件。
2.解:“出现奇数点”的概率是事件A ,“出现2点”的概率是事件B ,“出现奇数点或2点”的概率之和为P (C )=P (A )+P (B )=
21+61=3
23.解:(1)该射手射中10环与射中9环的概率是射中10环的概率与射中9环的概率的和,即为0.21+0.23=0.44。
(2)射中不少于7环的概率恰为射中10环、9环、8环、7环的概率的和,即为0.21+0.23+0.25+0.28=0.97,而射中少于7环的事件与射中不少于7环的事件为对立事件,所以射中少于7环的概率为1-0.97=0.03。
4.解:从盒子中任意取出2粒恰好是同一色的概率恰为取2粒白子的概率与2粒黑子的概率的和,即为71+3512=35
17 7、作业:根据情况安排。