3.1.3__概率的基本性质
- 格式:ppt
- 大小:295.00 KB
- 文档页数:32
一、知识要点及方法1、基本概念:(2)若A∩B为不可能事件,即A∩B=ф,即不可能同时发生的两个事件,那么称事件A与事件B互斥;(3)若A∩B为不可能事件,A∪B为必然事件,即不能同时发生且必有一个发生的两个事件,那么称事件A与事件B互为对立事件;概率加法公式:当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A 与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A 不发生,对立事件互斥事件的特殊情形。
二、试题课时训练1.如果事件A、B互斥,记错误!、错误!分别为事件A、B的对立事件,那么()A.A∪B是必然事件B.A∪错误!是必然事件C.错误!与错误!一定互斥D.A与错误!一定不互斥2.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.至少有1个白球;都是白球B.至少有1个白球;至少有1个红球C.恰有1个白球;恰有2个白球D.至少有1个白球;都是红球3.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,由甲、乙两人下成和棋的概率为()A.60%B.30%C.10% D.50%4.掷一枚骰子的试验中,出现各点的概率均为错误!。
3.1.3 概率的基本性质教学目标:(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类比与归纳的数学思想.(2)概率的几个基本性质:①必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;②当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);③若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1-P(B).(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系,通过数学活动,了解数学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣.教学重点:概率的加法公式及其应用.教学难点:事件的关系与运算.教学方法:讲授法课时安排1课时教学过程一、导入新课:全运会中某省派两名女乒乓球运动员参加单打比赛,她们夺取冠军的概率分别是2/7和1/5,则该省夺取该次冠军的概率是2/7+1/5,对吗?为什么?为解决这个问题,我们学习概率的基本性质.二、新课讲解:Ⅰ、事件的关系与运算1、提出问题在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},C3={出现3点},C4={出现4点},C5={出现5点},C6={出现6点},D1={出现的点数不大于1},D2={出现的点数大于3},D3={出现的点数小于5},E={出现的点数小于7},F={出现的点数大于6},G={出现的点数为偶数},H={出现的点数为奇数},……类比集合与集合的关系、运算说明这些事件的关系和运算,并定义一些新的事件.(1)如果事件C1发生,则一定发生的事件有哪些?反之,成立吗?(2)如果事件C2发生或C4发生或C6发生,就意味着哪个事件发生?(3)如果事件D2与事件H同时发生,就意味着哪个事件发生?(4)事件D3与事件F能同时发生吗?(5)事件G与事件H能同时发生吗?它们两个事件有什么关系?2、活动:学生思考或交流,教师提示点拨,事件与事件的关系要判断准确.3、讨论结果:(1)如果事件C1发生,则一定发生的事件有D1,E,D3,H,反之,如果事件D1,E,D3,H分别成立,能推出事件C1发生的只有D1.(2)如果事件C2发生或C4发生或C6发生,就意味着事件G发生.(3)如果事件D2与事件H同时发生,就意味着C5事件发生.(4)事件D3与事件F不能同时发生.(5)事件G与事件H不能同时发生,但必有一个发生.4、总结:由此我们得到事件A,B的关系和运算如下:①如果事件A发生,则事件B一定发生,这时我们说事件B包含事件A(或事件A包含于事件B),记为B⊇A(或A⊆B),不可能事件记为∅,任何事件都包含不可能事件.②如果事件A发生,则事件B一定发生,反之也成立,(若B⊇A同时A⊆B),我们说这两个事件相等,即A=B.如C1=D1.③如果某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与B的并事件(或和事件),记为A∪B或A+B.④如果某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与B的交事件(或积事件),记为A∩B或AB.⑤如果A∩B为不可能事件(A∩B=∅),那么称事件A与事件B互斥,即事件A与事件B在任何一次试验中不会同时发生.⑥如果A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件,即事件A与事件B在一次试验中有且仅有一个发生.Ⅱ、概率的几个基本性质1、提出以下问题:(1)概率的取值范围是多少?(2)必然事件的概率是多少?(3)不可能事件的概率是多少?(4)互斥事件的概率应怎样计算?(5)对立事件的概率应怎样计算?2、活动:学生根据试验的结果,结合自己对各种事件的理解,教师引导学生,根据概率的意义: (1)由于事件的频数总是小于或等于试验的次数,所以,频率在0—1之间,因而概率的取值范围也在0—1之间.(2)必然事件是在试验中一定要发生的事件,所以频率为1,因而概率是1.(3)不可能事件是在试验中一定不发生的事件,所以频率为0,因而概率是0.(4)当事件A与事件B互斥时,A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和.(5)事件A与事件B互为对立事件,A∩B为不可能事件,A∪B为必然事件,则A∪B的频率为1,因而概率是1,由(4)可知事件B的概率是1与事件A发生的概率的差.3、讨论结果:(1)概率的取值范围是0—1之间,即0≤P(A)≤1.(2)必然事件的概率是1.如在掷骰子试验中,E={出现的点数小于7},因此P(E)=1.(3)不可能事件的概率是0,如在掷骰子试验中,F={出现的点数大于6},因此P(F)=0. (4)当事件A与事件B互斥时,A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和,即P(A∪B)=P(A)+P(B),这就是概率的加法公式.也称互斥事件的概率的加法公式.(5)事件A与事件B互为对立事件,A∩B为不可能事件,A∪B为必然事件,P(A∪B)=1.所以1=P(A)+P(B),P(B)=1-P(A),P(A)=1-P(B).如在掷骰子试验中,事件G={出现的点数为偶数}与H={出现的点数为奇数}互为对立事件,因此P(G)=1-P(H).三、例题讲解:例:如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是41,取到方块(事件B )的概率是41,问:(1)取到红色牌(事件C )的概率是多少? (2)取到黑色牌(事件D )的概率是多少? 活动:学生先思考或交流,教师及时指导提示,事件C 是事件A 与事件B 的并,且A 与B 互斥,因此可用互斥事件的概率和公式求解,事件C 与事件D 是对立事件,因此P(D)=1-P(C). 解:(1)因为C=A∪B,且A 与B 不会同时发生,所以事件A 与事件B 互斥,根据概率的加法公式得P(C)=P(A)+P(B)=21.(2)事件C 与事件D 互斥,且C∪D 为必然事件,因此事件C 与事件D 是对立事件,P(D)=1-P(C)=21.四、课堂练习:教材第121页练习:1、2、3、4、5五、课堂小结:1.概率的基本性质是学习概率的基础.不可能事件一定不出现,因此其概率为0,必然事件一定发生,因此其概率为1.当事件A 与事件B 互斥时,A∪B 发生的概率等于A 发生的概率与B 发生的概率的和,从而有公式P (A∪B)=P (A )+P (B );对立事件是指事件A 与事件B 有且仅有一个发生.2.在利用概率的性质时,一定要注意互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形:①事件A 发生B 不发生;②事件B 发生事件A 不发生,对立事件是互斥事件的特殊情形. 六、课后作业:习题3.1A 组5,B 组1、2. 预习教材3.2.1 板书设计。
3.1.3 概率的基本性质汕头市东厦中学任课教师:林煜山教学内容:1、事件间的关系及运算2、概率的基本性质教学目标:一、知识与技能1.掌握事件的关系和运算,区分互斥和对立事件2.掌握概率的基本性质,学会应用概率的加法公式二、过程与方法1.采用实验探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学2.发挥学生的主体作用,做好探究性实验3.理论联系实际,激发学生的学习积极性4.事件和集合对应起来,使学生又一次体会类比方法三、情感态度与价值观1.通过日常生活中的大量实例,鼓励学生动手试验、理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点2.通过动手试验体会数学的奥秘与数学美,激发学生的学习兴趣教学重点:事件间的关系和运算,概率的加法公式。
教学难点:互斥事件与对立事件的区别与联系,理解概率的基本性质。
教学过程:利用课本探究以及掷骰子实际试验,使学生熟悉本节中所应用的各个事件,并引入集合论类比概率论的探究方法,利用熟悉的知识引入不熟悉的知识。
(事件的关系和运算)B A ⊆集合B 包含集合A 事件B 包含事件AB A =集合A 与集合B 相等事件A 与事件B 相等φ空集不可能事件—Ω全集 必然事件 —B A B A +⋃或集合A 与集合B 的并事件A 与事件B 的并(和)B A ⋂集合A 与集合B 的交事件A 与事件B 的交(积)特别的,“空集是任何集合的子集”这个性质如果翻译成概率论的说法,就应该是“任何事件都包含不可能事件”。
事件A 与事件B 的并和交称为事件的运算。
事件A 与事件B 的并掷骰子试验中: 51C C ⋃,G D ⋃2,31D D ⋃可以看到:上边几个例子中,虽然一样是并,构成的前提却各有不同,不过有一点是相同的,并事件总是由①属于事件A ,但不属于事件B 的一个部分,②属于事件B ,但不属于事件A 的一个部分,③同时属于事件A 和事件B 的部分,合并构成的,虽然有些题目中会缺失其中的若干部分,但是合并的规则却是绝对不变的。
《3.1.3概率的基本性质》教学设计一、创设情境,导入新课教师多媒体出示研究背景题目:在掷骰子的试验中,可以定义许多事件.例如,事件C1={出现1点},事件C2={出现2点},事件C3={出现3点},事件C4={出现4点},事件C5={出现5点},事件C6={出现6点},事件D1={出现的点数不大于1},事件D2={出现的点数大于3},事件D3={出现的点数小于5},事件D4={出现的点数不小于4},事件E={出现的点数小于7},事件F={出现的点数为偶数},事件G={出现的点数为奇数}并提出问题:(1)事件D1本质是哪个事件?(2)事件D2本质是哪些事件?它与事件C4 、事件C5 、事件C6 之间什么关系呢?(3)事件D3 与事件D4若同时发生呢?它与哪个事件是同一事件?引导学生回忆交流,教师归类,从而自然引入本节内容:事件之间的基本关系。
二、自主探究,合作学习(学生自主学习,教师予以辅助解释说明,并根据学生的理解情况适时予以发问,帮助学生深入了解概念关系。
)知识点一事件的关系与运算1.事件的包含关系发生,则事件B 一定发生,这时称事件B包含事件A(或称事件A包含于事件B) 符号B⊇A(或A⊆B)图示注意事项①不可能事件记作∅,显然C⊇∅(C为任一事件);②事件A也包含于事件A,即A⊆A;③事件B包含事件A,其含义就是事件A 发生,事件B一定发生,而事件B发生,事件A不一定发生关系我们定义为事件的相等关系。
学生予以加深理解。
2.事件的相等关系定义一般地,若B⊇A,且A⊇B,那么称事件A与事件B相等符号A=B 图示注意事项①两个相等事件总是同时发生或同时不发生;②所谓A=B,就是A,B是同一事件;③在验证两个事件是否相等时,常用到事件相等的定义3.定义若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件)符号A∪B(或A+B)图示注意事项①A∪B=B∪A;②例如,在掷骰子试验中,事件C2,C4分别表示出现2点,4点这两个事件,则C2∪C4={出现2点或4点}这一块类比集合的关系,我们又该如何定义呢?学生踊跃发言,生生之间互相补充完善,最后多媒体展示准确定义事件的交。
第三章概率3.1.3 概率的基本性质一、选择题1.下列说法合理的是A.抛掷一枚质地均匀的骰子,点数为6的概率是16,意即每掷6次就有一次掷得点数6.B.抛掷一枚硬币,试验200次出现正面的频率不一定比100次得到的频率更接近概率.C.某地气象局预报说,明天本地下雨的概率为80%,是指明天本地有80%的区域下雨.D.随机事件A,B中至少有一个发生的概率一定比A,B中恰有一个发生的概率大.【答案】B2.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.7【答案】B【解析】某群体中的成员只用现金支付,既用现金支付也用非现金支付,不用现金支付,是互斥事件,所以不用现金支付的概率为:1–0.45–0.15=0.4.故选B.3.口袋中装有一些大小相同的红球、白球和黑球,从中摸出一个球,摸出红球的概率是0.43,摸出白球的概率是0.27,那么摸出黑球的概率是A.0.43 B.0.27 C.0.3 D.0.7【答案】C【解析】由题意,摸出黑球的概率是P=1–0.43–0.27=0.3.故选C.4.有一个人在打靶中,连续射击2次,事件“至少有1次中靶”的对立事件是A.至多有1次中靶B.2次都中靶C.2次都不中靶D.只有1次中靶【答案】C【解析】由于两个事件互为对立事件时,这两件事不能同时发生,且这两件事的和事件是一个必然事件,再由于一个人在打靶中,连续射击2次,事件“至少有1次中靶”的反面为“2次都不中靶”,故事件“至少有1次中靶”的对立事件是“2次都不中靶”,故选C.5.“弘雅苑”某班科技小组有3名男生和2名女生,从中任选2名学生参加学校科技艺术节“水火箭”比赛,那么互斥而不对立的两个事件是A.恰有1名男生和恰有2名男生B.至多有1名男生和都是女生C.至少有1名男生和都是女生D.至少有1名男生和至少有1名女生【答案】A【解析】“弘雅苑”某班科技小组有3名男生和2名女生,从中任选2名学生参加学校科技艺术节“水火箭”比赛,在A中,恰有1名男生和恰有2名男生是互斥而不对立的两个事件,故A正确;在B中,至多有1名男生和都是女生能同时发生,不是互斥事件,故B错误;在C中,至少有1名男生和都是女生是对立事件,故C错误;在D中,至少有1名男生和至少有1名女生能同时发生,不是互斥事件,故D错误.故选A.6.某小组有2名男生和2名女生,从中任选2名同学去参加演讲比赛.在下列选项中,互斥而不对立的两个事件是A.“至少有1名女生”与“都是女生”B.“至少有1名女生”与“至多1名女生”C.“恰有1名女生”与“恰有2名女生”D.“至少有1名男生”与“都是女生”【答案】C【解析】A中的两个事件是包含关系,故不符合要求;B中的两个事件之间有都包含一名女的可能性,故不互斥;C中的两个事件符合要求,它们是互斥且不对立的两个事件;D中的两个事件是对立事件,故不符合要求.故选C.7.袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球C.恰有一个白球;一个白球一个黑球D.至少有一个白球;红、黑球各一个【答案】D【解析】选项A,“至少有一个白球“说明有白球,白球的个数可能是1或2,而“都是白球“说明两个全为白球,这两个事件可以同时发生,故A不互斥;选项B,当两球一个白球一个红球时,“至少有一个白球“与“至少有一个红球“均发生,故不互斥;选项C,“恰有一个白球“,表明黑球个数为0或1,这与“一个白球一个黑球“不互斥;选项D,“至少一个白球“发生时,“红,黑球各一个“不会发生,故D互斥,不对立.故选D.8.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是3 10,那么概率是710的事件是A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡【答案】A9.根据某医疗研究所的调查,某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%.现有一血液为A型病人需要输血,若在该地区任选一人,那么能为病人输血的概率为A.15% B.20% C.45% D.65%【答案】D【解析】∵某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%.现在能为A型病人输血的有O型和A型,故为病人输血的概率50%+15%=65%,故选D.10.某班学生考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%.已知一学生数学不及格,则他语文也不及格的概率是A.15B.310C.12D.35【答案】A【解析】由题意设这个班有100a 人,则数学不及格有15a 人,语文不及格有5a 人,都不及格的有3a 人,则数学不及格的人里含有3a 人语文不及格,所以已知一学生数学不及格,则他语文也不及格的概率为:P =31155=.故选A . 二、填空题11.假设向三个相邻的军火库投掷一个炸弹,炸中第一个军火库的概率为0.025,其余两个各为0.1,只要炸中一个,另两个也发生爆炸,则军火库发生爆炸的概率____________. 【答案】0.225【解析】∵向三个相邻的军火库投掷一个炸弹,炸中第一个军火库的概率为0.025,其余两个各为0.1,只要炸中一个,另两个也发生爆炸,∴军火库发生爆炸的概率p =0.025+0.1+0.1=0.225.故答案为:0.225. 12.口袋内装有一些大小相同的红球、黄球、白球,从中摸出一个球,摸出红球或白球的概率为0.65,摸出黄球或白球的概率是0.6,那么摸出白球的概率是____________. 【答案】0.25【解析】口袋内装有一些大小相同的红球、黄球、白球,设红、黄、白球各有a ,b ,c 个,∵从中摸出一个球,摸出红球或白球的概率为0.65,摸出黄球或白球的概率是0.6,∴0.650.6a ca b cb c a b c +⎧=⎪⎪++⎨+⎪=⎪++⎩,∴10.60.4a a b c =-=++,10.650.35ba b c=-=++,∴摸出白球的概率是P =1–0.4–0.35=0.25.故答案为:0.25.13.甲乙两人下棋,若甲获胜的概率为16,甲乙下成和棋的概率为13.则乙不输棋的概率为____________. 【答案】56【解析】∵甲乙两人下棋,甲获胜的概率为16,甲乙下成和棋的概率为13.∴乙不输棋的概率p =1–1566=.故答案为:56. 14.甲、乙同时炮击一架敌机,已知甲击中敌机的概率为0.3,乙击中敌机的概率为0.5,敌机被击中的概率为____________. 【答案】0.65【解析】敌机被击中的对立事件是甲、乙同时没有击中,设A 表示“甲击中”,B 表示“乙击中”,由已知得P (A )=0.3,P (B )=0.5,∴敌机被击中的概率为:p =1–P (A )P (B )=1–(1–0.3)(1–0.5)=0.65.故答案为:0.65.15.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:排队人数0 1 2 3 4 ≥5概率0.1 0.16 0.3 0.3 0.1 0.04 则该营业窗口上午9点钟时,至少有2人排队的概率是____________.【答案】0.74【解析】由表格可得至少有2人排队的概率P=0.3+0.3+0.1+0.04=0.74,故答案为:0.74.16.口袋内有一些大小相同的红球,白球和黑球,从中任摸一球摸出红球的概率是0.3,摸出黑球的概率是0.5,那么摸出白球的概率是____________.【答案】0.2【解析】从中任摸一球摸出红球、从中任摸一球摸出黑球、从中任摸一球摸出白球,这三个事件是彼此互斥事件,它们的概率之和等于1,故从中任摸一球摸出白球的概率为1–0.3–0.5=0.2,故答案为:0.2.三、解答题17.甲、乙、丙三位同学完成六道数学自测题,他们及格的概率依次为45、35、710,求:(1)三人中有且只有两人及格的概率;(2)三人中至少有一人不及格的概率.【解析】(1)设事件A表示“甲及格”,事件B表示“乙及格”,事件C表示“丙及格”,则P(A)=45,P(B)=35,P(C)=710,三人中有且只有2人及格的概率为:P1=P(AB C)+P(A B C)+P(ABC)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=43715510⎛⎫⨯⨯-⎪⎝⎭+43715510⎛⎫⨯-⨯⎪⎝⎭+(1–45)×37510⨯=113 250.(2)“三人中至少有一人不及格”的对立的事件为“三人都及格”,三人中至少有一人不及格的概率为:P2=1–P(ABC)=1–P(A)P(B)P(C)=1–43783 5510125⨯⨯=.18.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一个球,得到红球的概率为13,得到黑球或黄球的概率为512,得到黄球或绿球的概率也为512,试求得黑球、黄球、绿球的概率分别为多少?【解析】袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一个球,设事件A表示“取到红球”,事件B表示“取到黑球”,事件C表示“取到黄球”,事件D表示“取到绿球”,∵得到红球的概率为13,得到黑球或黄球的概率为512,得到黄球或绿球的概率也为512,∴()()()()()()()()()()()135125121P AP B C P B P CP C D P D P CP A P B P C P D⎧=⎪⎪⎪+=+=⎪⎨⎪+=+=⎪⎪⎪+++=⎩,解得()()()()13116144P AP BP CP D⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩∴取得黑球、黄球、绿球的概率分别为111 464,,.19.某射击运动员在一次射击比赛中,每次射击成绩均计整数环且不超过10环,其中射击一次命中7~10环的概率如下表所示命中环数7 8 9 10概率0.12 0.18 0.28 0.32求该射击运动员射击一次,(1)命中9环或10环的概率;(2)命中不足7环的概率.。
高中数学学习材料金戈铁骑整理制作3.1.3概率的基本性质A 组一、选择题1.下列说法正确的是( )A .互斥事件一定是对立事件,对立事件不一定是互斥事件B .互斥事件不一定是对立事件,对立事件一定是互斥事件C .事件B A 、中至少有一个发生的概率一定比B A 、中恰有一个发生的概率大D .事件B A 、同时发生的概率一定比B A 、中恰有一个发生的概率小2.从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A.至少有一个黒球与都是红球B.至少有一个黒球与都是黒球C.至少有一个黒球与至少有1个红球D.恰有1个黒球与恰有2个黒球3.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一只是正品(甲级)的概率为( )A .0.95B .0.97C .0.92D .0.084.把红,黄,蓝,白4张纸牌随机地分发给甲,乙,丙,丁四个人,每人一张,则事件"甲分得红牌"与事件"丁分得红牌"是( )A .不可能事件B .互斥但不对立事件C .对立事件D .以上答案都不对5.从集合{}543,21,,,中随机取出一个数,设事件A 为“取出的数是偶数”, 事件B 为“取出的数是奇数”,则事件A 与B ( )A .是互斥且是对立事件B .是互斥且不对立事件C .不是互斥事件D .不是对立事件6.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是( )A. A 与C 互斥B. B 与C 互斥C. 任何两个均互斥D. 任何两个均不互斥7.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是( )A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶8.掷两颗相同的均匀骰子(各个面分别标有1,2,3,4,5,6),记录朝上一面的两个数,那么互斥而不对立的两个事件是()A. “至少有一个奇数”与“都是奇数”B. “至少有一个奇数”与“至少有一个偶数”C.“至少有一个奇数”与“都是偶数”D.“恰好有一个奇数”与“恰好有两个奇数”9.出下列命题,其中正确命题的个数有()①有一大批产品,已知次品率为010,从中任取100件,必有10件次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③某事件发生的概率是随着试验次数的变化而变化的;④若()()()1P A B P A P B=+=,则,A B是对立事件。