流体力学第五章 管中流动 湍流-2
- 格式:pdf
- 大小:1.67 MB
- 文档页数:45
第五章 层流、紊流及其能量损失5—1 (1)某水管的直径d =100 mm ,通过流量Q =4 L/s ,水温T =20℃;(2)条件与以上相同,但管道中流过的是重燃油,其运动粘度6215010m /s ν-=⨯。
试判别以上两种情况下的流态。
解:(1) 200C 时,水的运动粘性系数ν=1.007×10-6m 2/s ,24Q u d π=水的雷诺数Re 为:-3-6244 4 L/s 10Re 5060020001.00710m /s 3.140.1mud Q v v d π⨯⨯====>⨯⨯⨯,紊流 (2) 石油:-3-6244 4 L/s 10Re 339.7200015010m /s 3.140.1m ud Q v v d π⨯⨯====<⨯⨯⨯,层流 5—2 温度为0℃的空气,以4 m/s 的速度在直径为l00 mm 的圆管中流动,试确定其流态(空气的运动粘度为521.3710m /s ν-=⨯)。
若管中的流体换成运动粘度为621.79210m /s ν-=⨯的水,问水在管中呈何流态?解:空气的雷诺数Re 为:-524 m/s 0.1m Re 2919720001.3710m /sud v ⨯===>⨯,紊流 水的雷诺数Re 为:-624 m/s 0.1m Re 223 21420001.79210m /sud v ⨯===>⨯,紊流 5—3 (1)一梯形断面排水沟,底宽0.5m ,边坡系数cot θ=1.5(θ为坡角),水温为20℃,水深0.4m ,流速为0.1m /s ,试判别其流态;(2)如果水温保持不变,流速减小到多大时变为层流?解:200C 时,水的运动粘性系数ν=1.007×10-6m 2/s 水力直径为(0.520.60.5)0.4/20.23m 0.50.722AR χ+⨯+⨯===+⨯ 4-620.1m/s 0.23m Re 2.24101.00710m /sR uR ν⨯===⨯⨯,42.24102000⨯>,湍流 水流为层流时Re 500uR ν≤=(明渠流),故 63Re 500 1.00710 2.210m/s 0.23u R ν--⨯⨯≤==⨯ 5—4 由若干水管组装成的冷凝器,利用水流经过水管不断散热而起到冷凝作用。
流体力学中的流体流动的湍流流动的湍流层效应湍流是流体力学中一种非线性、不稳定的流动状态,其特征是流动速度和压力的瞬时波动,并且在时间和空间上都是随机的。
湍流流动在自然界广泛存在,涉及到气体、液体以及其他可流动的物质。
在流体力学中,研究湍流流动是一项重要的课题,其中湍流层效应是湍流流动的一个重要现象。
湍流层是指在管道、河流或者空气流动等情况中,流体与固体壁面发生相互作用时,由于摩擦力的存在,使得流体流动产生的一种特殊现象。
在湍流层中,流体速度在垂直于壁面的方向上出现快速变化,并且速度强度较大;而在水平方向上,速度呈现规则的变化。
这种非均匀性的流动导致了湍流层效应的出现。
湍流层效应对流体流动产生了许多重要影响。
首先,湍流层效应增强了流体的混合和传热能力。
由于湍流层的不断变化和混乱性,使得流体中的温度和组分更容易混合,并且能够更快地传递热量。
这在很多工程和自然现象中都显得尤为重要,比如在化工过程中的反应器设计、气候系统中的空气传热等。
其次,湍流层效应增加了流体的阻力。
在湍流层中,流体与壁面之间摩擦力的存在导致了阻力的增加。
这使得流体在流动过程中需要消耗更多的能量,进而降低了流体的速度。
在水动力学和风力学中,湍流层效应对于流体在管道、水流中的输送都会产生明显的影响。
此外,湍流层效应还与声传播有关。
在湍流层中,流速的不断变化和速度梯度的存在导致了空气的扰动和噪声的产生。
这对于一些对声音敏感的场合,比如飞机起降噪声减低、建筑物噪声控制等有着重要的实际意义。
总之,湍流层效应作为流体力学中湍流流动的一个重要现象,对于流体的混合与传热、流体的阻力以及声传播等方面都产生了重要的影响。
深入研究湍流层效应对于理解和控制湍流流动具有重要的意义,能为相关领域的工程和科学研究提供更多的参考和指导。
第5章圆管流动一.学习目的和任务1.本章学习目的(1)掌握流体流动的两种状态与雷诺数之间的关系;(2)切实掌握计算阻力损失的知识,为管路计算打基础。
2.本章学习任务了解雷诺实验过程及层流、紊流的流态特点,熟练掌握流态判别标准;掌握圆管层流基本规律,了解紊流的机理和脉动、时均化以及混合长度理论;了解尼古拉兹实验和莫迪图的使用,掌握阻力系数的确定方法;理解流动阻力的两种形式,掌握管路沿程损失和局部损失的计算;了解边界层概念、边界层分离和绕流阻力。
二.重点、难点重点:雷诺数及流态判别,圆管层流运动规律,沿程阻力系数的确定,沿程损失和局部损失计算。
难点:紊流流速分布和紊流阻力分析。
由于实际流体存在黏性,流体在圆管中流动会受到阻力的作用,从而引起流体能量的损失。
本章将主要讨论实际流体在圆管内流动的情况和能量损失的计算。
5.1 雷诺(Osborne Reynolds)实验和流态判据5.1.1 雷诺实验1883年,英国科学家雷诺通过实验发现,流体在流动时存在两种不同的状态,对应的流体微团运动呈现完全不同的规律。
这就是著名的雷诺实验,它是流体力学中最重要实验之一。
105如图5-1所示为雷诺实验的装置。
其中的阀门T1保持水箱A 内的水位不变,使流动处在恒定流状态;水管B 上相距为l 处分别装有一根测压管,用来测量两处的沿程损失f h ,管末端装有一个调节流量的阀门T3,容器C 用来计量流量;容器D 盛有颜色液体,T2控制其流量。
进行实验时,先微开阀门T3,使水管中保持小速度稳定水流,然后打开颜色液体阀门T2放出连续的细流,可以观察到水管内颜色液体成一条直的流线,如图5-2(a )所示;从这一现象可以看出,在管中流速较小时,它与水流不相混和,管中的液体质点均保持直线运动,水流层与层间互不干扰,这种流动称为层流(Laminar flow )。
比如,实际中黏性较大的液体在极缓慢流动时,属层流运动。
随后,逐渐开大阀门T3,增大管中液体流速,流速达到一定速度时,管内颜色液体开始抖动,具有波形轮廓,如图5-2(b )所示。