第九章__湍流流动与换热分析
- 格式:ppt
- 大小:613.50 KB
- 文档页数:52
层流湍流对流换热系数的区别
层流和湍流是流体的两种流动状态,对流是指通过流体和固体边界之间的传热方式。
层流和湍流对流的换热系数有以下区别:
1. 层流对流:在层流状态下,流体沿着固体表面的方向顺序流动,流速均匀,流线平行且不交错。
在这种情况下,流体与固体之间的传热过程较为平稳,换热系数较低。
层流对流的换热主要依赖于流体与固体的温度差、流体的导热性质以及流体的运动速度。
2. 湍流对流:在湍流状态下,流体的流速不均匀且产生旋涡和纵横交错的流线。
湍流对流中的流体粗糙程度较高,流体与固体表面间的传热相对较强,换热系数较高。
湍流对流的换热主要依赖于流体的湍流强度、湍流的紊流特性以及流体与固体表面的热传递方式。
总体来说,湍流对流的换热系数要比层流对流的换热系数高,因为湍流的流动特性能够增强流动层与固体表面之间的热交换。
但是,在特定情况下,层流对流可能会导致更高的换热系数,比如在过冷液滴的冷凝过程中,层流对流的传热系数可以远远高于湍流对流。
一、参考书目:传热学A 《传热学》杨世铭、陶文铨,高等教育出版社,2006年二、基本要求1. 掌握热量传递的三种方式(导热、对流和辐射)的基本概念和基本定律;2. 能够对常见的导热、对流、辐射换热及传热过程进行定量的计算,并了解其物理机理和特点,进行定性分析;3. 对典型的传热现象能进行分析,建立合适的数学模型并求解;4. 能够用差分法建立导热问题的数值离散方程,并了解其计算机求解过程。
三、主要知识点第一章绪论:热量传递的三种基本方式;导热、对流和热辐射的基本概念和初步计算公式;热阻;传热过程和传热系数。
第二章导热基本定律和稳态导热:温度场、温度梯度;傅里叶定律和导热系数;导热微分方程、初始条件与边界条件;单层及多层平壁的导热;单层及多层圆筒壁的导热;通过肋端绝热的等截面直肋的导热;肋效率;一维变截面导热;有内热源的一维稳态导热。
第三章非稳态导热:非稳态导热的基本概念;集总参数法;描述非稳态导热问题的数学模型(方程和定解条件);第四章导热问题的数值解法:导热问题数值解法的基本思想;用差分法建立稳态导热问题的数值离散方程。
第五章对流换热:对流换热的主要影响因素和基本分类、牛顿冷却公式和对流换热系数的主要影响因素;速度边界层和热边界层的概念;横掠平板层流换热边界层的微分方程组;横掠平板层流换热边界层积分方程组;动量传递和热量传递比拟的概念;相似的概念及相似准则;管槽内强制对流换热特征及用实验关联式计算;绕流单管、管束对流换热特征及用实验关联式计算;大空间自然对流换热特征及对流换热特征及用实验关联式计算。
第六章凝结与沸腾换热:凝结与沸腾换热的基本概念;珠状凝结与膜状凝结特点;膜状凝结换热计算;影响膜状凝结的因素;大容器饱和沸腾曲线;影响沸腾换热的因素。
第七章热辐射基本定律及物体的辐射特性:热辐射的基本概念;黑体、白体、透明体;辐射力与光谱辐射力;定向辐射强度;黑体辐射基本定律:普朗克定律,维恩定律,斯忒藩-玻尔兹曼定律,兰贝特定律;实际固体和液体的辐射特性、黑度;灰体、基尔霍夫定律。
化工原理传热中湍流的转化
湍流是指在流体中存在的一种无规则、复杂的流动状态。
在传热过程中,湍流的转化是指流体中的动能转化为热能的过程。
湍流传热主要通过两种机制实现:对流传热和传导传热。
对流传热是指流体通过湍流流动的方式将热量传递给周围环境。
湍流流动的特点是流动速度的突然变化和旋转的涡流结构。
这些涡流结构可以将热量从热源传递到流体中,并将其分散到周围环境中,从而实现对流传热。
湍流流动越强,对流传热越高效。
传导传热是指通过物质内部的微观振动和碰撞来传递热量。
湍流流动时,流体中的颗粒会因为涡流的作用而发生剧烈的碰撞和混合,加快了物质内部的传热速度。
同时,湍流流动还会将热量从高温区域传递到低温区域,从而实现热量的平衡分布。
总的来说,湍流传热通过湍流流动的方式将热量传递给周围环境,并加速了物质内部的传热速度。
这种转化过程在化工原理中经常出现,对于提高传热效率和优化化工过程具有重要意义。
低速流体流动中的湍流模型引言湍流是流体力学中一个复杂而重要的现象,它经常在自然界和工程实践中出现。
湍流现象给流体的流动带来了不确定性和不稳定性,使得流动过程变得复杂且难以预测。
在高速流动中,湍流现象更加明显,但同样在低速流动中也会有一定程度的湍流出现。
因此,研究低速流动中的湍流模型对于理解与控制流体流动具有重要的理论和实际意义。
低速流体流动的特点低速流体流动是指流场中的流速较慢,流动过程中的湍流现象相对较弱。
在低速流动中,流体的速度梯度较小,粘性作用在流动量级上起主导作用。
流体粘性具有剪切阻力效应,当流体在壁面附近流动时,流体颗粒之间的相互作用会导致速度剖面的变化。
此外,低速流动通常具有较高的雷诺数(Reynolds number),所以流动在全过程中都保持在层流状态。
低速流体流动的湍流模型及评估方法湍流模型是用来描述湍流流动的数学模型。
在低速流体流动中,湍流模型主要有两种:1) 统计湍流模型,2) 湍流可压缩性模型。
统计湍流模型统计湍流模型是在统计学的框架下,通过描述湍流统计量之间的关系来描述和预测湍流流动。
最常见的统计湍流模型是基于雷诺平均(Reynolds-averaged)的Navier-Stokes方程,通过对流场的统计平均值进行建模。
这种模型适用于各类低速流动和多种流动与换热过程。
统计湍流模型根据湍流运动的不同时间尺度,又可分为:1) Eddy-Viscosity模型,2) Reynolds Stress模型。
1.Eddy-Viscosity模型是一种基于湍流粘性模型的统计湍流模型。
这种模型假设湍流运动中存在一定的等效的湍流粘性,通过引入湍流粘性系数来描述湍流现象。
Eddy-Viscosity模型在工程实践中应用广泛,因为它相对简单和高效。
2.Reynolds Stress模型是将湍流动量传输建模为湍流应力的纳维尔-斯托克斯方程。
这种模型通过对流场的湍流应力进行求解,得到湍流的分布情况。
传热学第一章、绪论1.导热:物体的各个部分之间不发生相对位移时,依靠分子,原子及自由电子等微观粒子的热运动而产生的热能传递称为热传导,简称导热。
2.热流量:单位时间内通过某一给定面积的热量称为热流量。
3.热流密度:通过单位面积的热流量称为热流密度。
4.热对流:由于流体的宏观运动而引起的流体各部分之间发生相对位移、冷热流体相互掺混所导致的热量传递过程。
5.对流传热:流体流过一个物体表面时流体与物体表面间的热量传递过程。
6.热辐射:因热的原因而发出的辐射的想象称为热辐射。
7.传热系数:传热系数树枝上等于冷热流体见温差℃1=∆t ,传热面积21m A =时的热流量值,是表征传热过程强度的标尺。
8.传热过程:我们将热量由壁面一侧流体通过壁面传递到另一侧流体的过程。
第二章、导热基本定律及稳态导热1.温度场:各个时刻物体中各点温度所组成的集合,又称为温度分布。
2.等温面:温度场中同一瞬间温度相同的各点连成的面。
3.傅里叶定律的文字表达:在导热过程中,单位时间内通过给定截面积的导热量,正比于垂直该界面方向上的温度变化率和截面面积,而热量的传递方向则与温度升高的方向相反。
4.热流线:热流线是一组与等温面处处垂直的的曲线,通过平面上人一点的热流线与改点热流密度矢量相切。
5.内热源:内热源值表示在单位时间内单位体积中产生或消耗的热量。
6.第一类边界条件:规定了边界点上的温度值。
第二类边界条件:规定了边界上的热流密度值。
.第三类边界条件:规定了边界上物体与周围流体间的表面传热系数h 及周围流体的温度ft 7.热扩散率a :ca ρλ=,a 越大,表示物体内部温度扯平的能力越大;a 越大,表示材料中温度变化传播的越迅速。
8.肋片:肋片是依附于基础表面上的扩展表面。
第三章、非稳态导热1.非稳态导热:物体的温度随时间的变化而变化的导热过程称为非稳态导热。
2.非正规状况阶段:温度分布主要受出事温度分布的控制,称为非稳态导热。
1.流体的概念:物质不能抵抗切向力,在切向力的作用下可以无限地变形,这种变形称为流动,这类物质称为流体,其变形的速度即流动速度与切向力的大小有关,气体和液体都属于流体。
2.什么是连续介质,在流体力学中为什么要建立连续介质这一理论模型?答:(1)连续介质是指质点毫无空隙的聚集在一起,完全充满所占空间的介质。
(2)引入连续介质模型的必要性:把流体视为连续介质后,流体运动中的物理量均可以看为空间和时间的连续函数,就可以利用数学中的连续函数分析方法来研究流体运动,实践表明采用流体的连续介质模型,解决一般工程中的流体力学问题是可以满足要求的。
3流体的主要物理性质密度;比容(比体积);相对密度;重度(会换算)4.流体的粘性在作相对运动的两流体层的接触面上,存在一对等值而反向的作用力来阻碍两相邻流体层作相对运动,流体的这种性质叫做流体的粘性,由粘性产生的作用力叫做粘性力或内摩擦力。
1) 由于分子作不规则运动时,各流体层之间互有分子迁移掺混,快层分子进入慢层时给慢层以向前的碰撞,交换能量,使慢层加速,慢层分子迁移到快层时,给快层以向后碰撞,形成阻力而使快层减速。
这就是分子不规则运动的动量交换形成的粘性阻力。
2) 当相邻流体层有相对运动时,快层分子的引力拖动慢层,而慢层分子的引力阻滞快层,这就是两层流体之间吸引力所形成的阻力。
5.牛顿粘性定律在稳定状态下,单位面积上的粘性力(粘性切应力、内摩擦应力)为τyx说明动量传输的方向(y 向)和所讨论的速度分量(x向)。
符号表示动量是从流体的高速流层传向低速流层。
动力粘度μ,单位Pa·s运动粘度η,单位m2/s6.牛顿流体和非牛顿流体凡是切应力与速度梯度的关系服从牛顿粘性定律的流体,均称为牛顿流体。
常见的牛顿流体有水、空气等,非牛顿流体有泥浆、纸浆、油漆、沥青等。
对于不符合牛顿粘性定律的流体,称之为非牛顿流体。
1.研究流体运动的方法拉格朗日(Lagrange)法及欧拉法。
流体力学中的流体流动的湍流流动的湍流湍流效应流体力学中的湍流流动的湍流湍流效应流体力学是研究流动流体行为的科学领域。
其中,湍流流动是一种复杂而普遍存在的现象,它对于许多实际问题的分析和解决具有重要意义。
湍流流动的湍流效应则是指湍流流动所带来的种种后果和影响。
一、湍流流动的定义和特征湍流流动是指在流体中发生的无规则、混乱的运动。
相对于层流流动而言,湍流流动具有以下几个明显特征:1. 随机性:湍流流动是不规则的,其速度和压力分布在空间和时间上呈现随机性。
2. 高度非线性:湍流流动是强烈的非线性运动,其中涡旋结构的产生和演化是它的主要特点。
3. 级联结构:湍流流动中存在着各种尺度的湍动结构,这些结构之间通过能量传递形成级联关系。
4. 强耗散性:湍流流动具有很强的能量耗散特性,能量在局部区域内迅速转化为内能,并以热的形式散失。
二、湍流流动的起因和机制湍流流动的产生和维持是由于流体的惯性力和粘性力之间的竞争。
当惯性力占优势时,流体会发生湍流流动。
湍流流动的机制包括雷诺应力、涡旋产生和级联耗散等过程。
1. 雷诺应力:湍流流动中的雷诺应力是湍流起因的基本力量。
它是由于流体的速度和压力的非均匀分布所引起的。
2. 涡旋产生:湍流流动中的涡旋是湍动结构的基本组成单元,它是由惯性力和粘性力相互作用所形成的扰动。
3. 级联耗散:湍流流动中的能量转化和耗散过程与涡旋的演化密切相关。
能量通过级联传递的方式,从大尺度的湍动结构向小尺度的结构转化,并最终以热的形式耗散。
三、湍流流动的湍流效应湍流流动所带来的湍流效应在许多领域都具有重要的应用价值和影响。
下面介绍一些典型的湍流效应:1. 阻力增加:相比于层流流动,湍流流动的阻力要大得多。
这是由于湍流流动的不规则性和涡旋结构所造成的。
2. 能量耗散:湍流流动具有很强的能量耗散特性,能量会在湍动结构中迅速转化,并以热的形式散失。
3. 热量传递增强:湍流流动的湍动结构可以增加热量的传递效率,提高换热和混合过程中的传质速率。