信号与系统第05章
- 格式:ppt
- 大小:181.00 KB
- 文档页数:43
第一章习题新闻来源:山东大学信息学院点击数:707 更新时间:2009-4-5 0:13 1—1 画出下列各函数的波形图。
(1)(2)(3)(4)1—2 写出图1各波形的数学表达式图1(1) (2)(3) 全波余弦整流(4) 函数1—3 求下列函数的值。
(1)(2)(3)(4)(5)1—4 已知,求,。
1—5 设,分别是连续信号的偶分量和奇分量,试证明1—6 若记,分别是因果信号的奇分量和偶分量,试证明,1—7 已知信号的波形如图2所示,试画出下列函数的波形。
(1)(2)图 21—8 以知的波形如图3所示,试画出的波形.图31—9 求下列各函数式的卷积积分。
(1),(2),1—10 已知试画出的波形并求。
1—11 给定某线性非时变连续系统,有非零初始状态。
已知当激励为时,系统的响应为时,系统的响应则为。
试求当初始状态保持不变,而激励为时的系统响1—12 设和分别为各系统的激励和响应,试根据下列的输入—输出关系,确定下列各⑴⑵(3)(4)第一章习题答案新闻来源:山东大学信息学院点击数:623 更新时间:2009-4-5 23:181-1 (1)(2)(3)(4)1-2(1)、(2)、或或(3)(4) =1-3(1)(2)(3)(4)(5)01-4 ,1-7 (1)(2)1-81-9(1)(2)1-101-111-12 (1)非线性、时不变系统。
(2)线性、时变系统。
(3)线性、时不变系统。
(4)线性、时变系统。
上一篇:没有上一篇资讯了下一篇:没有下一篇资讯了第二章习题新闻来源:山东大学信息学院点击数:412 更新时间:2009-4-9 22—1 已知给定系统的齐次方程是,分别对以下几种初始状态求解系1),2),3),2—2 已知系统的微分方程是当激励信号时,系统的全响应是,试确定系统的零输入2—3 已知系统的微分方程是该系统的初始状态为零。
1)若激励,求响应。
2)若在时再加入激励信号,使得时,,求系数。
练习题一、 单项选择题(共35题)1.下列信号中为周期信号的是【 B 】(A) t t t f πsin 2cos )(+= (B) t t t f 3cos 2sin )(+=(C) t t t f πsin 2cos 3)(+=(D))(cos )(t t t f επ=2. 积分dt t t e t ∫∞∞−−+)]()(['2δδ等于【 D 】(A) -1 (B)1 (C) 2 (D) 3 3. 卷积积分)()(t t t εε∗等于【 C 】(A) )(2t t ε (B) )(t t ε (C) )(212t t ε (D) )(2t t ε4. 卷积和)]1()([)(−−∗k k k δδε等于【 A 】(A) )(k δ (B) )1(−k δ (C) )2(−k δ (D) )(k ε5. 信号)()(2t e t f t ε−=的频谱函数)(ωj F 等于【 B 】(A)ωj 1 (B) ωj +21 (C) ωj −21 (D) ωj +−21 6. 系统的幅频特性|H (j ω)|和相频特性如图(a)(b)所示,则下列信号通过该系统时,不产生失真的是【 B 】(A) f (t ) = cos(t ) + cos(8t ) (B) f (t ) = sin(2t ) + sin(4t ) (C) f (t ) = sin(2t ) sin(4t ) (D) f (t ) = cos 2(4t )7. 象函数ses F −+=11)(的原函数)(t f 是t=0接入的有始周期信号,其第一个周期(0<t<T )的时间函数表达式=)(0t f 【 D 】(A) )(t δ (B) )1(−t δ (C) )1()(−+t t δδ (D) )1()(−−t t δδ8.函数)]()[sin()(22t t dt d t f επ=的拉普拉斯变换=)(s F 【 C 】(A) 222π+s s (B) 22ππ+s (C) 222ππ+s s (D) 22ππ+s s 9. 序列)1(2)(2)(−−+=−k k k f k k εε的双边Z 变换=)(z F 【 B 】 (A)221,)2)(12(3<<−−z z z z (B) 221,)2)(12(3<<−−−z z z z(C)21,)2)(12(3>−−−z z z z (D) 2,)2)(12(3<−−−z z z z10. 象函数)2)(1()(2−+=z z z z F 其收敛域为2>z ,则其原序列=)(k f 【 A 】(A) )(])2(32)1(31[k k k ε+− (B) )(])2(3231[k k ε+(C) )(])2(32)1(31[k k k ε−+− (D) )1(])2(32)1(31[−−+−k k k ε11. 积分dt t t )(4sin(91δπ∫−−等于【 B 】(A)22(B) 22− (C) 2 (D) 2− 12. 卷积积分)()(t t εε∗等于【 C 】(A) )(2t ε (B) )(t ε (C) )(t t ε (D) 1 13. 卷积和)1()1(−∗−k k δε等于【 A 】(A) )2(−k ε (B) )(k ε (C) )1(−k δ (D) )2(−k δ 14. 信号t t f 2cos )(=的频谱函数)(ωj F 等于【 D 】(A) )1()1(++−ωδωδ (B) )]1()1([++−ωδωδπ (C))2()2(++−ωδωδ (D) )]2()2([++−ωδωδπ15. 已知)()(ωj F t f ↔,则函数)()2(t f t −的频谱函数为【 C 】(A))(2)(ωωωj F d j dF − (B) )(2)(ωωωj F d j dF +(C) )(2)(ωωωj F d j dF j− (D) )(2)(ωωωj F d j dF j + 16. 信号)1()()(−−=t t t f εε的拉普拉斯变换等于【 D 】(A))1(se − (B))1(1s e s − (C) )1(se −− (D) )1(1s e s−− 17. 象函数)1(1)(2s e s s F −+=的原函数)(t f 是t=0接入的有始周期信号,其第一个周期(0<t<T )的时间函数表达式=)(0t f 【 D 】(A) )(t ε (B) )2(−t ε (C))2()(−+t t εε (D))2()(−−t t εε18. 序列)()1()(k k k f ε+=的双边Z 变换=)(z F 【 A 】(A) 1,)1(22>−z z z (B) 1,)1(22>+z z z(C) 1,)1(22<−z z z (D) 1,)1(22<+z z z 19. 象函数)2)(1()(2−+=z z z z F 其收敛域为1<z ,则其原序列=)(k f 【 D 】(A) )(])2(32)1(31[k k k ε+− (B) )(])2(32)1(31[k k k ε−−−(C))1(])2(32)1(31[−−+−k k k ε (D) )1(])2(32)1(31[−−−−−k k k ε20.)]([)1(t e dtdt t δ−−等于【 A 】 (A) )()('t t δδ+ (B) )()('t t δδ−(C) )(2)('t t δδ+ (D) )(2)('t t δδ−21.积分dt t t )1()4sin(03−−∫−δπ等于【 B 】(A) 1 (B) 0 (C)2 (D)322.)]([2t e dtdt ε−等于【 C 】(A) )()(2t et tεδ−− (B) )()(2t et tεδ−+ (C) )(2)(2t et tεδ−− (D) )(2)(2t et tεδ−+23. 积分dt t t ∫∞∞−−)('2)2(δ等于【 D 】 (A) 1 (B)2 (C) 3 (D) 424. 积分dt t t t ∫∞∞−)()2sin(δ等于【 B 】 (A) 1 (B)2 (C) 3 (D) 425. 卷积积分)]2()([)(−−∗t t t εεε等于【 D 】(A) )2()(−−t t t t εε (B) )2()(−+t t t t εε (C) )2()2()(−−+t t t t εε (D) )2()2()(−−−t t t t εε 26. 卷积积分)(')(t t δε∗等于【 C 】(A) )(2t δ (B) )(2t δ− (C) )(t δ (D) )(t δ− 27. 卷积积分)1()1(+∗−t t εε等于【 A 】(A) )(t t ε (B) )()1(t t ε− (C) )()2(t t ε− (D) )()1(t t ε+ 28. 卷积和)2()1(−∗−k k δδ等于【 D 】(A) )2(−k δ (B) )(k δ (C) )1(−k δ (D) )3(−k δ29. 已知卷积和)()1()()(k k k k εεε+=∗,则)4()3(−∗−k k εε等于【 B】(A) )6()6(−−k k ε (B) )7()6(−−k k ε (C) )6()7(−−k k ε (D) )7()7(−−k k ε 30.)]()2[cos(t t dtdε 的拉普拉斯变换等于【 C 】 (A)442+s (B) 442+−s(C)422+ss (D) 422+−ss31. 信号)()(t t t f ε=的拉普拉斯变换等于【 D 】(A)22s− (B)22s (C)21s− (D)21s32. 序列)(3)(2)(k k k f εδ+=的双边Z 变换=)(z F 【 A 】(A) 1,132>−+z z z (B) 1,132>−−z z z(C) 1,132>−+−z z z (D) 1,132>−−−z z z33. 序列)()(k k k f ε=的双边Z 变换=)(z F 【 A 】(A)1,)1(2>−z z z (B) 1,)1(2>+z z z(C) 1,)1(22>−z z z (D) 1,)1(22>+z z z 34. 象函数)3)(2(1)(−−=z z z F 其收敛域为3>z ,则其原序列=)(k f 【 C 】(A) )()32()(61k k k k εδ−− (B) )()32()(61k k k k εδ−+(C) )()32()(6111k k k k εδ−−−− (D) )()32()(6111k k k k εδ−−−+35. 序列)(])1(1[21)(k k f k ε−+=的双边Z 变换=)(z F 【 C 】(A)1,12>−z z z (B)1,12>+z z z(C) 1,122>−z z z (D) 1,122>+z z z二.填空题(共23题):1. 已知信号)(t f 的波形如图所示,画出信号)2(t f −的波形为 )2(t f −O t2. 周期信号623sin(41)324cos(211)(ππππ−+−−=t t t f 的基波角频率=Ω s rad /.12π3. 信号11)(+=jt t f 的傅里叶变换等于 . 4. 频谱函数)3cos(2)(ωω=j F 的傅里叶逆变换=)(t f .)3()3(−++t t δδ5.信号)1()]1(sin[)()sin()(−−−=t t t t t f επεπ的拉普拉斯变换=)(s F . 22)1(ππ+−−s e s 6. 已知信号)(t f 的波形如图所示,画出信号)42(−t f的波形为 )42(−t fO t7. 序列)5.0cos()43sin()(k k k f ππ+=的周期为 . 88. 信号t tt f sin )(=的傅里叶变换等于 . )(2ωπg9.信号)1()()1(−=−−t et f t ε的拉普拉斯变换=)(s F .1+−s e s10.已知信号)(t f 的波形如图所示,则)(t f 的傅里叶变换等于 . )(2)(2ωωπδSa −11.若信号)(t f 的频谱函数为)(ωj F ,则)(b at f −的频谱函数为 , 其中a 为非零常数。
信号与系统第三版郑君里课后习题答案第一章习题参考解1,判刑下列信号的类型解:()sin[()];y t A x t = 连续、模拟、周期、功率型信号 。
()()tt y t x e d τττ--∞=⎰ 连续、模拟、非周期、功率型信号。
()(2y n x n =) 离散、模拟、非周期、功率型信号。
()()y n nx n = 离散、模拟、非周期、功率型信号。
1-6,示意画出下列各信号的波形,并判断其类型。
(1) 0()sin()x t A t ωθ=+ 连续、模拟、周期、功率型(2) ()tx t Ae -= 连续、模拟、非周期、只是一个函数,不是物理量。
(3) ()cos 0t x t e t t -=≥ 连续、模拟、非周期、能量型 (4) ()2112,x t t t =+-≤≤ 连续、模拟、非周期、能量型(5) 4()(),0.5kx k k =≥ 离散、模拟、非周期、能量型 (6) 0().j kx k eΩ= 离散、模拟、周期、功率型()sin[()];()()()(2);()()tt y t A x t y t x ed y n x n y n nx n τττ--∞====⎰1-6题,1-4图。
t=-pi:1/200:pi;y1=1.5*sin(2*t+pi/6);subplot(4,1,1),plot(t,y1),title('1.5sin(2*t+pi/6)'),gridy2=2*exp(-t);subplot(4,1,2),plot(t,y2),title('2exp(-t)'),gridt1=0:1/200:2*pi;y3=10*exp(-t1).*cos(2*pi*t1);subplot(4,1,3),plot(t1,y3),title('10exp(-t1)cos(2*pi*t1)'),grid t2=-1:1/200:2;y4=2*t2+1;subplot(4,1,4),plot(t2,y4),title('2x+1'),grid习题1-6 5-6题 n=0:pi/10:2*pi; y=(0.8).^n;subplot(4,1,1),stem(n,y,'fill '),title('(0.8)^n'),grid n1=0:pi/24:2*pi;y1=cos(2*pi*n1);y2=sin(2*pi*n1);subplot(4,1,2),stem3(y1,y2,n1,'fill '),title('exp[2*pi*n1'),grid subplot(4,1,4),stem(n1,sin(2*pi*n1),'fill '),title('sin2pin1'),grid subplot(4,1,3),stem(n1,cos(2*pi*n1),'fill'),title('cos2pin1)'),grid1-8,判断下列系统的类型。