【16套精选试卷合集】江苏省苏州苏州工业园区四校联考2019-2020学年八上物理期中模拟试卷
- 格式:docx
- 大小:1.74 MB
- 文档页数:119
江苏省苏州市2019-2020学年八年级第二学期期末联考数学试题一、选择题(每题只有一个答案正确)1.如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是( ) A .6,7,8B .5,6,8C .41,4,5D .4,5,62.在平面直角坐标系中,把△ABC 先沿x 轴翻折,再向右平移3个单位,得到△A 1B 1C 1,把这两步操作规定为翻移变换,如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是(1,1),(3,1).把△ABC 经过连续3次翻移变换得到△A 3B 3C 3,则点A 的对应点A 3的坐标是( )A .(5,﹣3)B .(8,1+3)C .(11,﹣1﹣3)D .(14,1+3)3.某中学规定学生的学期体育成绩满分为100分,其中课外锻炼占20%,期中考试成绩占40%,期末考试成绩占40%。
小乐的三项成绩(百分制)依次为95,90,85,则小彤这学期的体育成绩为是( ) A .85B .89C .90D .954.一次函数y=2x –6的图象不经过第( )象限. A .一 B .二 C .三 D .四5.已知二次函数22y ax bx =--(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a ﹣b 为整数时,ab 的值为( ) A .34或1 B .14或1 C .34或12D .14或346.下列判断中,错误的是( ) A .方程是一元二次方程 B .方程是二元二次方程 C .方程是分式方程D .方程是无理方程7.下列给出的四个点中,不在直线y=2x-3上的是 ( ) A .(1, -1)B .(0, -3)C .(2, 1)D .(-1,5)8.如图,矩形ABCD 中,对角线AC ,BD 交于点O ,E ,F 分别是边BC ,AD 的中点,AB =2,BC =4,一动点P 从点B 出发,沿着B ﹣A ﹣D ﹣C 在矩形的边上运动,运动到点C 停止,点M 为图1中某一定点,设点P 运动的路程为x ,△BPM 的面积为y ,表示y 与x 的函数关系的图象大致如图2所示.则点M 的位置可能是图1中的( )A.点C B.点O C.点E D.点F9.在以下”绿色食品、响应环保、可回收物、节水“四个标志图案中,是中心对称图形的是()A.B.C.D.10.对角线相等且互相平分的四边形是()A.一般四边形B.平行四边形C.矩形D.菱形二、填空题11.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是,众数是. 12.如图,在△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= ______13.关于x的方程21111x mx x-=+++无解,则m的值为________.14.如图1,在菱形ABCD中,60BAD∠=︒,点E在AB的延长线上,在CBE∠的角平分线上取一点F (含端点B),连结AF并过点C作AF所在直线的垂线,垂足为G.设线段AF的长为x,CG的长为y,y关于x的函数图象及有关数据如图2所示,点Q为图象的端点,则3y=时,x=_____,BF=_____.15.若分式11xx+-的值为0,则x的值是_____.16.如图,已知菱形OABC的顶点O(0,0),B(2,2),则菱形的对角线交点D的坐标为(1,1),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,点D的坐标为________.17.长、宽分别为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为_____.三、解答题18.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?19.(6分)如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOD的面积.20.(6分)如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.(1)求证:四边形EFGH是平行四边形;(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:当四边形ABCD 变成平行四边形时,它的中点四边形是 ; 当四边形ABCD 变成矩形时,它的中点四边形是 ; 当四边形ABCD 变成菱形时,它的中点四边形是 ; 当四边形ABCD 变成正方形时,它的中点四边形是 ; (3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?21.(6分)如图,直线1l 的函数解析式为24y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A 、B ,直线1l 、2l 交于点C .(1)求直线2l 的函数解析式; (2)求ADC ∆的面积;(3)在直线2l 上是否存在点P ,使得ADP ∆面积是ADC ∆面积的1.5倍?如果存在,请求出P 坐标;如果不存在,请说明理由.22.(8分)暑假期间,两位家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社.经协商,甲旅行社的优惠条件是:两位家长全额收费,学生都按7折收费;乙旅行社的优惠条件是:学生、家长都按8折收费.假设这两位家长带领x 名学生去旅行,甲、乙旅行社的收费分别为y 甲,y 乙, (1)写出y 甲,y 乙与x 的函数关系式.(2)学生人数在什么情况下,选择哪个旅行社合算? 23.(8分)如图,AB 是O 的直径, 直线CD 与O 相切于点C ,且与AB 的延长线交于点E ,点C是BF 的中点 .(1) 求证:AD CD ⊥; (2) 若30CAD ∠=︒,O 的半径为 3 ,一只蚂蚁从点B 出发, 沿着BE EC CB --爬回至点B ,求蚂蚁爬过的路程( 3.14π≈,3 1.73≈, 结果保留一位小数) .24.(10分)如图,在菱形ABCD 中,∠BAD =60°,AC 与BD 交于点O ,E 为CD 延长线上的一点,且CD =DE ,连接BE 分别交AC 、AD 于点F 、G ,连接OG ,则下列结论中一定成立的是( ) ①OG =12AB ;②与△EGD 全等的三角形共有5个;③S 四边形ODGF >S △ABF ;④由点A 、B 、D 、E 构成的四边形是菱形.A .1个B .2个C .3个D .4个25.(10分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共50个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据: 摸到球的次数n 100 200 300 500 800 1000 3000 摸到白球的次数m 65124 178 302 481 599 1803 摸到白球的概率mn0.65 0.620.5930.6040.6010.5990.601(1)请估计当n 很大时,摸到白球的频率将会接近______;(精确到0.1); (2)假如随机摸一次,摸到白球的概率P (白球)=______; (3)试估算盒子里白色的球有多少个?参考答案一、选择题(每题只有一个答案正确) 1.C先求出两小边的平方和,再求出大边的平方,看看是否相等即可. 【详解】解:A 、62+72≠82,所以以6,7,8为边的三角形不是直角三角形,故本选项不符合题意; B 、52+62≠82,所以以5,6,8为边的三角形不是直角三角形,故本选项不符合题意;C 、42+52=)24,5为边的三角形是直角三角形,故本选项符合题意;D 、42+52≠62,所以以4,5,6为边的三角形不是直角三角形,故本选项不符合题意; 故选:C . 【点睛】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键. 2.C 【解析】 【分析】首先把△ABC 先沿x 轴翻折,再向右平移3个单位得到△A 3B x 、 B 3B x 、C 3B x 、得到点A 3B x 、 的坐标为),同样得出A 2 的坐标为),…由此得出A 3 的坐标为进一步选择答案即可 【详解】∵把△ABC 先沿x 轴翻折,再向右平移3个单位得到△A 1B 1C 1得到点A 1的坐标为(2+3,﹣1),同样得出A 2的坐标为(2+3+3,), …A 3的坐标为(2+3×3,﹣1,即(11,﹣1. 故选:C . 【点睛】此题考查坐标与图形变化-对称,坐标与图形变化平移和规律型:点的坐标,解题关键在于找到规律 3.B 【解析】 【分析】根据加权平均数的定义即可求解. 【详解】由题意得小彤这学期的体育成绩为是20%×95+40%×90+40%×95=89,此题主要考查加权平均数的求解,解题的关键是熟知加权平均数的定义. 4.B【解析】分析:根据一次函数图象与系数的关系的关系解答即可. 详解:∵2>0,-6<0,∴一次函数y=2x –6的图象经过一、三、四象限,不经过第二象限. 故选B.点睛:本题考查了一次函数图象与系数的关系:对于y=kx+b (k 为常数,k≠0),当k >0,b >0,y=kx+b 的图象在一、二、三象限;当k >0,b <0,y=kx+b 的图象在一、三、四象限;当k <0,b >0,y=kx+b 的图象在一、二、四象限;当k <0,b <0,y=kx+b 的图象在二、三、四象限. 5.A 【解析】 【分析】首先根据题意确定a 、b 的符号,然后进一步确定a 的取值范围,根据a ﹣b 为整数确定a 、b 的值,从而确定答案. 【详解】 依题意知a >0,2ba>0,a+b ﹣2=0, 故b >0,且b=2﹣a , a ﹣b=a ﹣(2﹣a )=2a ﹣2, 于是0<a <2, ∴﹣2<2a ﹣2<2, 又a ﹣b 为整数, ∴2a ﹣2=﹣1,0,1,故a=12,1,32, b=32,1,12, ∴ab=34或1,故选A .【点睛】根据开口和对称轴可以得到b 的范围.按照左同右异规则.当对称轴在y 轴的左侧,则a,b 符号相同,在右侧则a,b 符号相反. 6.D 【解析】可以先判断各个选项中的方程是什么方程,从而可以解答本题.【详解】解:A、x(x-1)=0是一元二次方程,故A正确;B、xy+5x=0是二元二次方程,故B正确;C、是分式方程,故C正确;D、是一元二次方程,故D错误.故选D.【点睛】本题考查了各类方程的识别.7.D【解析】只需把每个点的横坐标即x的值分别代入y=2x-3,计算出对应的y值,然后与对应的纵坐标比较即可A、当x=1时,y=-1,(1,-1)在直线y=2x-3上;B、当x=0时,y=-3,(0,-3)在直线y=2x-3上;C、当x=2时,y=1,(2,1)在直线y=2x-3上;D、当x=-1时,y=-5,(-1,5)不在直线y=2x-3上.故选D.8.B【解析】【分析】从图2中可看出当x=6时,此时△BPM的面积为0,说明点M一定在BD上,选项中只有点O在BD上,所以点M的位置可能是图1中的点O.【详解】解:∵AB=2,BC=4,四边形ABCD是矩形,∴当x=6时,点P到达D点,此时△BPM的面积为0,说明点M一定在BD上,∴从选项中可得只有O点符合,所以点M的位置可能是图1中的点O.故选:B.【点睛】本题主要考查了动点问题的函数图象,解题的关键是找出当x=6时,此时△BPM的面积为0,说明点M 一定在BD上这一信息.9.B【分析】根据中心对称图形的概念解答即可.【详解】选项A,是轴对称图形,不是中心对称图形;选项B,不是轴对称图形,是中心对称图形;选项C,不是轴对称图形,不是中心对称图形;选项D,不是轴对称图形,不是中心对称图形.故选B.【点睛】本题考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形.10.C【解析】【分析】由对角线互相平分,可得此四边形是平行四边形;又由对角线相等,可得是矩形;【详解】∵四边形的对角线互相平分,∴此四边形是平行四边形;又∵对角线相等,∴此四边形是矩形;故选B.【点睛】考查矩形的判定,常见的判定方法有:1.有一个角是直角的平行四边形是矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.二、填空题11.7 1【解析】【分析】根据中位数和众数的定义解答.【详解】解:数据按从小到大排列:3,5,7,1,1,所以中位数是7;数据1出现2次,次数最多,所以众数是1.故填7;1.本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.12.31-【解析】如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,AB BBAC B CBC BC='⎧⎪'=''⎨⎪'='⎩,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90∘2,∴22(2)(2)+,∴BD=2×323,C′D=12×2=1,∴3 1.3−1.点睛:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.13.-1.【解析】【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母得:2x-1=x+1+m ,整理得:x=m+2,当m+2= -1,即m= -1时,方程无解.故答案为:-1.【点睛】本题考查分式方程的解,分式方程无解分为最简公分母为0的情况与分式方程转化为的整式方程无解的情况.14.8【解析】【分析】先根据Q 为图象端点,得到Q 此时与B 点重合,故得到AB=4,再根据60CBE ∠=︒,根据CG AE ⊥,得到sin 60CG BC ︒=,从而得到y x=y =x ,过点F 作FH AE ⊥于H .设BF m =,根据1302FBE EBC ∠=∠=︒,利用三角函数表示出12FH m =,BH =,故在Rt AFH 中,利用222AF AH FH =+得到方程即可求出m 的值.【详解】解∵Q 为图象端点,∴Q 与B 重合,∴4AB =.∵四边形ABCD 为菱形,60BAD ∠=︒,∴60CBE ∠=︒,此时CG AE ⊥,∵sin 60CG BC ︒=∴CG ==,即y =∴当y =8x =,即8AF =;过点F 作FH AE ⊥于H .设BF m =.∵1302FBE EBC ∠=∠=︒, ∴1sin 302FH BF m =︒=,3cos302BH BF m =︒=. 在Rt AFH 中, ∴222AF AH FH =+,即22316442m m ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭, ∴21523m =-,即21523BF =-.故答案为:8;21523-.【点睛】此题主要考查菱形的动点问题,解题的关键是熟知菱形的性质、勾股定理及解直角三角形的方法. 15.-2【解析】【分析】根据分子等于零且分母不等于零列式求解即可.【详解】解:由分式11x x +-的值为2,得 x+2=2且x ﹣2≠2.解得x =﹣2,故答案为:﹣2.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为2,②分母的值不为2,这两个条件缺一不可.16. (-1,-1)【解析】【分析】根据菱形的性质,可得D 点坐标,根据旋转的性质,可得D 点的坐标.【详解】菱形OABC的顶点O(0,0),B(2,2),得D点坐标为(1,1).每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360=7.5周,OD旋转了7周半,菱形的对角线交点D的坐标为(-1,-1),故答案为:(-1,-1).【点睛】本题考查了旋转的性质,利用旋转的性质是解题关键.17.1.【解析】【分析】由周长和面积可分别求得a+b和ab的值,再利用因式分解把所求代数式可化为ab(a+b),代入可求得答案【详解】∵长、宽分别为a、b的矩形,它的周长为14,面积为10,∴a+b=142=7,ab=10,∴a2b+ab2=ab(a+b)=10×7=1,故答案为:1.【点睛】本题主要考查因式分解的应用,把所求代数式化为ab(a+b)是解题的关键.三、解答题18.(1)饮用水和蔬菜分别为1件和2件(2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车3辆,乙车3辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元【解析】试题分析:(1)关系式为:饮用水件数+蔬菜件数=320;(2)关系式为:30×甲货车辆数+20×乙货车辆数≥1;10×甲货车辆数+20×乙货车辆数≥2;(3)分别计算出相应方案,比较即可.试题解析:(1)设饮用水有x件,则蔬菜有(x﹣80)件.x+(x﹣80)=320,解这个方程,得x=1.∴x ﹣80=2.答:饮用水和蔬菜分别为1件和2件;(2)设租用甲种货车m 辆,则租用乙种货车(8﹣m )辆.得:4020(8)200{1020(8)120m m m m +-≥+-≥, 解这个不等式组,得2≤m≤3.∵m 为正整数,∴m=2或3或3,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车3辆,乙车3辆;(3)3种方案的运费分别为:①2×300+6×360=2960(元);②3×300+5×360=3000(元);③3×300+3×360=3030(元);∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.考点:1.一元一次不等式组的应用;2.二元一次方程组的应用.19.(1)y=x+1;(2)C (0,1);(3)1【解析】试题分析:(1)首先根据正比例函数解析式求得m 的值,再进一步运用待定系数法求得一次函数的解析式;(2)根据(1)中的解析式,令x=0求得点C 的坐标;(3)根据(1)中的解析式,令y=0求得点D 的坐标,从而求得三角形的面积.试题解析:(1)∵正比例函数y=2x 的图象与一次函数y=kx+b 的图象交于点A (m ,2),∴2m=2,m=1.把(1,2)和(-2,-1)代入y=kx+b ,得221k b k b +⎧⎨-+-⎩== 解得:11k b ⎧⎨⎩==则一次函数解析式是y=x+1;(2)令x=0,则y=1,即点C(0,1);(3)令y=0,则x=-1.则△AOD的面积=1121 2⨯⨯=.【点睛】运用了待定系数法求函数解析式、直线与坐标轴的交点的求法.20.(1)相等;(2)垂直;(3)见解析.【解析】【分析】(1)连接BD.利用三角形中位线定理推出所得四边形对边平行且相等,故为平行四边形;(2)连接AC、BD.根据三角形的中位线定理,可以得到所得四边形的两组对边分别和原四边形的对角线平行,且分别等于原四边形的对角线的一半,再根据矩形、菱形、正方形的判定方法进行判定即可(3)由(2)可知,中点四边形的形状是由原四边形的对角线的关系决定的.【详解】(1)证明:连接BD.∵E、H分别是AB、AD的中点,∴EH是△ABD的中位线.∴EH=12BD,EH∥BD.同理得FG=12BD,FG∥BD.∴EH=FG,EH∥FG.∴四边形EFGH是平行四边形.(2)连接AC、BD.根据三角形的中位线定理,可以得到所得四边形的两组对边分别和原四边形的对角线平行,且分别等于原四边形的对角线的一半.若顺次连接对角线相等的四边形各边中点,则所得的四边形的四条边都相等,故所得四边形为菱形;若顺次连接对角线互相垂直的四边形各边中点,则所得的四边形的四个角都是直角,故所得四边形为矩形; 若顺次连接对角线相等且互相垂直的四边形各边中点,则综合上述两种情况,故所得的四边形为正方形; 故答案为:平行四边形,菱形,矩形,正方形;(3)中点四边形的形状是由原四边形的对角线的关系决定的.【点睛】此题综合运用了三角形的中位线定理和特殊四边形的判定定理.熟记结论:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线相等的四边形各边中点所得四边形是菱形;顺次连接对角线垂直的四边形各边中点所得四边形是矩形;顺次连接对角线相等且互相垂直的四边形各边中点所得四边形是正方形.21.(1)5y x =-;(2)3;(3)在直线2l 上存在点()23P -,或()8,3P ,使得ADP ∆面积是ADC ∆面积的1.5倍.【解析】【分析】(1)根据点A 、B 的坐标利用待定系数法即可求出直线l 2的函数解析式;(2)令y=-2x+4=0求出x 值,即可得出点D 的坐标,联立两直线解析式成方程组,解方程组即可得出点C 的坐标,再根据三角形的面积即可得出结论;(3)假设存在点P ,使得△ADP 面积是△ADC 面积的1.5倍,根据两三角形面积间的关系|y P |=1.5|y C |=3,再根据一次函数图象上点的坐标特征即可求出点P 的坐标.【详解】解:(1)设直线2l 的函数解析式为y kx b +=,将(5,0)A 、(4,1)B -代入y kx b +=,5041k b k b +=⎧⎨+=-⎩,解得:15k b =⎧⎨=-⎩, ∴直线2l 的函数解析式为5y x =-.(2)联立两直线解析式成方程组,245y x y x =-+⎧⎨=-⎩,解得:32x y =⎧⎨=-⎩, ∴点C 的坐标为3,2-().当240y x =-+=时,2x =,∴点D 的坐标为2,0().11||(52)2322ADC C S AD y ∆∴=⋅=⨯-⨯=. (3)假设存在.ADP ∆面积是ADC ∆面积的1.5倍,|| 1.53c P y y ∴==,当53y x =-=-时,2x =,此时点P 的坐标为()23-,; 当53y x =-=时,8x =,此时点P 的坐标为()8,3.综上所述:在直线2l 上存在点()23P -,或()8,3P ,使得ADP ∆面积是ADC ∆面积的1.5倍. 故答案为(1)5y x =-;(2)3;(3)在直线2l 上存在点()23P -,或()8,3P ,使得ADP ∆面积是ADC ∆面积的1.5倍.【点睛】本题考查两条直线相交或平行问题、一次函数图象上点的坐标特征以及待定系数法求一次函数解析式,根据给定点的坐标利用待定系数法求出函数解析式是解题的关键.22.(1)y 甲、y 乙与x 的函数关系式分别为:y 甲=700x+2000,y 乙=800x+1600;(2)当学生人数超过4人时,选择甲旅行社更省钱,当学生人数少于4人时,选择乙旅行社更省钱,学生人数等于4人时,选择甲、乙旅行社相等.【解析】【分析】(1)根据甲旅行社的收费=两名家长的全额费用+学生的七折费用,可得到y 1与x 的函数关系式;再根据乙旅行社的收费=两名家长的八折费用+学生的八折费用,可得到y 2与x 的函数关系式;(2)根据题意知:y 甲<y 乙时,可以确定学生人数,选择甲旅行社更省钱.【详解】试题解析:(1)由题意得:y 甲=2000+1000×0.7x=700x+2000,y 乙=2000×0.8+1000×0.8x =800x+1600; (2)当y 甲<y 甲时,即:700x+2000<800x+1600解得:x >4 ,当y 甲>y 甲时,即:700x+2000>800x+1600解得:x <4 ,当y 甲=y 甲时,即:700x+2000=800x+1600解得:x =4 , 答:当学生人数超过4人时,选择甲旅行社更省钱,当学生人数少于4人时,选择乙旅行社更省钱,学生人数等于4人时,选择甲、乙旅行社一样. 考点: 一次函数的应用.23.(1)见解析;(2)蚂蚁爬过的路程11.3.【解析】【分析】 (1) 连接OC ,根据切线的性质得到OC CD ⊥,证明//OC AD ,根据平行线的性质证明;(2) 根据圆周角定理得到60COE ∠=︒,根据勾股定理、 弧长公式计算即可 .【详解】解:(1) 连接OC ,直线CD 与O 相切,OC CD ∴⊥,点C 是BF 的中点,DAC EAC ∴∠=∠,OA OC =,OCA EAC ∴∠=∠, DAC OCA ∴∠=∠,//OC AD ∴,AD CD ∴⊥;(2) 解:30CAD ∠=︒,30CAE CAD ∴∠=∠=︒,由圆周角定理得,60COE ∠=︒,26OE OC ∴==,333EC OC ==,603180BC ππ⨯==, ∴蚂蚁爬过的路程33311.3π=+≈.【点睛】 本题考查的是切线的性质、 弧长的计算, 掌握圆的切线垂直于经过切点的半径、 弧长公式是解题的关键 .24.B【解析】【分析】由AAS 证明△ABG ≌△DEG ,得出AG=DG ,证出OG 是△ACD 的中位线,得出OG=12CD=12AB ,①正确; 先证明四边形ABDE 是平行四边形,证出△ABD 、△BCD 是等边三角形,得出AB=BD=AD ,因此OD=AG ,得出四边形ABDE 是菱形,④正确;由菱形的性质得得出△ABG ≌△BDG ≌△DEG ,由SAS 证明△ABG ≌△DCO ,得出△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,得出②不正确;证出OG 是△ABD 的中位线,得出OG ∥AB ,OG=12AB ,得出△GOD ∽△ABD ,△ABF ∽△OGF ,由相似三角形的性质和面积关系得出S 四边形ODGF =S △ABF ;③不正确;即可得出结果.【详解】∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,AB ∥CD ,OA=OC ,OB=OD ,AC ⊥BD ,∴∠BAG=∠EDG ,△ABO ≌△BCO ≌△CDO ≌△AOD ,∵CD=DE ,∴AB=DE ,在△ABG 和△DEG 中,BAG EDG AGB DGE AB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABG ≌△DEG (AAS ),∴AG=DG ,∴OG 是△ACD 的中位线,∴OG=12CD=12AB ,①正确; ∵AB ∥CE ,AB=DE ,∴四边形ABDE 是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD 、△BCD 是等边三角形,∴AB=BD=AD ,∠ODC=60°,∴OD=AG ,四边形ABDE 是菱形,④正确;∴AD ⊥BE ,由菱形的性质得:△ABG ≌△BDG ≌△DEG ,在△ABG 和△DCO 中,60?OD AG ODC BAG AB DC ⎧⎪∠∠︒⎨⎪⎩====, ∴△ABG ≌△DCO (SAS ),∴△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,②不正确;∵OB=OD ,AG=DG ,∴OG 是△ABD 的中位线,∴OG ∥AB ,OG=12AB , ∴△GOD ∽△ABD ,△ABF ∽△OGF , ∴△GOD 的面积=14△ABD 的面积,△ABF 的面积=△OGF 的面积的4倍,AF :OF=2:1, ∴△AFG 的面积=△OGF 的面积的2倍,又∵△GOD 的面积=△AOG 的面积=△BOG 的面积,∴S 四边形ODGF =S △ABF ;③不正确;正确的是①④.故选B .【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;本题综合性强,难度较大.25.(1)0.1;(2)0.1;(3)30个【解析】【分析】(1)根据表中的数据,估计得出摸到白球的频率.(2)根据概率与频率的关系即可求解;(3)根据摸到白球的频率即可得到白球数目.【详解】解:(1)由表中数据可知,当n 很大时,摸到白球的频率将会接近0.1,故答案为:0.1.(2))∵摸到白球的频率为0.1,∴假如你摸一次,你摸到白球的概率P(白球)=0.1,故答案为0.1;(3)盒子里白色的球有50×0.1=30(只).【点睛】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.。
2019---2020学年第二学期期末调研试卷初二英语2020.07注意事项1.本试卷分第Ⅰ卷(选择題〕和第Ⅱ卷(非选择题〕两部分。
满分100分;考试时间100分钟,2.答第I卷前,考生务必将自己的学校、班级、姓名、考试号用0.5毫米黑色签字笔写在答题卷的相应位置上,并将考试号、考试科目用2B铅笔正确填涂。
3.第Ⅰ卷选择题的答案,用2B铅笔填凃在答题卷上。
第Ⅱ卷非选择題的答案,请按題号用0.5毫米黑色签字笔在答题卷上各题目规定的答题区域内作答,不能超岀横线或方格,字体工整、笔迹凊晰,超出答题区域的答象无效;在草稿纸、试题卷上答题无效。
二、单项填空(共10小题;每小题1分,满分10分)请认真阅读下面各题,然后从A、B、C、D四个选项中,选出可以填入空白处的最佳选项,并在答题卷上将该项涂黑16.— Look at boy over there. He looks excited-Yeah, he has won first prize in the school English Reading &Writing CompetitionA. a :theB. the :aC. the :theD. a:a17.-Would you mind the seat next to you?Of course not, take it please.A. my takingB. I takeC. me takeD. me to take18 -Millie, when are you going to have an for job?On July 20th. I'm preparing for it.A instruction B. introduction C. interview D. information19.-Paul, do you know what will happen in Suzhou?Underground Line Five in a couple of monthsA. will be completedB. will completeC.was completedD. complete20. -what do you think of the situation of the illness in the USA?Really terrible. But I think they need to use the proper way to keep people separated.A. in allB. at allC. after allD. above all21 – Mr. Wu has recommended many books. Have you decided first?Yes. The Little PrinceA. how to readB. which to readC. when to readD. where to read22. -Look at this couple.-They since 2009 and how sweet they are!A were married B. married C have been married D. have married23 -I'm sorry to on you, but there are some details I don’t understandIt doesn't matterA cut down B. cut out C. cut off D. cut in24. -why did you stop smoking?Because the doctor warned me that smoking was to my healthA harmfulB hopeful C. careful D. useful25. -I stayed up late for the coming examTake it easy. You need a good rest. You can notA. practice makes perfectB. burn the candle at both endsC. put all your eggs in one basketD . do as the Romans do when in Rome三、完形填空(共10小题;每小题1分,满分10分)先通读下面的短文,掌握其大意,然后从每小题所给的A、B、C、D四个选项中,选出最佳选项,并在答题卷上将该项涂黑。
江苏省苏州工业园区四校联考2019-2020学年中考数学模拟调研试卷一、选择题1.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )A .3cm ,4cm ,8cmB .8cm ,7cm ,15cmC .13cm ,12cm ,20cmD .5cm ,5cm ,11cm2.下列计算正确的是( )A .a 4+a 3=a 7B .a 4•a 3=a 12C .(a 4)3=a 7D .a 4÷a 3=a3.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2a BC =,AC b =,再在斜边AB 上截取2a BD =.则该方程的一个正根是( )A.AC 的长B.AD 的长C.BC 的长D.CD 的长4.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是( )A. B. C. D.5.如图,不等式组的解集在数轴上表示正确的是( )A.B.C. D.6.如图,在平面直角坐标系中,Rt ABC ∆的三个顶点的坐标分别为(1,1)A ,(4,3)B ,(4,1)C ,如果将Rt ABC ∆绕点C 按顺时针方向旋转90︒得到''Rt A B C ∆,那么点A 的对应点'A 的坐标是( )A .(3,3)B .(3,4)C .(4,3)D .(4,4)7.六个大小相同的正方体搭成的几何体如图,下列选项中不是其三视图的是( )A. B. C. D.8.如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD ⊥BC 于点D ,AC =4,则OD 的长为( )A.1B.1.5C.2D.2.59.如图,△ABC 中,AB=AC ,点D 、E 分别是边AB 、AC 的中点,点G 、F 在BC 边上,四边形DEFG 是正方形.若DE=2cm ,则AC 的长为 ( )A.cmB.4cmC.cmD.cm10.如图,矩形ABCD 中,AB=2, AD=1, 分别以AB 、CD 为直径做半圆,两弧交于点E 、F,则线段EF 的长为( )A B C .32 D 11.在平面直角坐标系中,有A ()21,,B ()33,两点,现另取一点C ()1a , ,当a = ( )时,AC+BC 的值最小( )A .2B .53C .114D .312.﹣π的绝对值是( )A .﹣πB .3.14C .πD .1π二、填空题13.用配方法将二次函数2112y x x =-+-化成2()y a x h k =-+的形式,则y=______. 14.如图,菱形ABCD 的边AD ⊥y 轴,垂足为点E ,顶点A 在第二象限,顶点B 在y 轴的正半轴上,反比例函数y=k x(k≠0,x >0)的图象同时经过顶点C ,D .若点C 的横坐标为5,BE=3DE ,则k 的值为__________.15.如图,双曲线k y x =经过,A C 两点,//BC x 轴,射线OA 经过点B ,2,8OBC AB OA S ==,则k的值为__________.16.某校组织了主题为“经典诵读”的小视频征集活动,现从中随机抽取部分作品。
2019-2020学年第二学期期末调研试卷初二数学 2020.07本试卷由选择题、填空题和解答题三大题组成,共28小题,满分100分.考试时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写 在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后, 再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律 无效.一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是 符合题目要求的.请将选择题的答案用2B 铅类涂在答题卡相应位置上.1. 表示4的A.平方B.平方根C.立方根D.算术平方根2.若23x y =,且0x ≠,则x y y-的值为 A. 13 B. 13- C. 12 D. 12- 3.下列计算正确的是A. =B. 2=C. 2(2=D. 3=-4.一个不透明的袋子中装有1个红球、2个白球和3个黑球,每个球除颜色外都相同.将球摇匀后, 从中任意摸出一个球,则摸到红球是A.必然事件B.不可能事件C.确定事件D.随机事件5.下列调查方式中合适的是A.了解一批节能灯的使用寿命,采用普查方式B.了解你所在班级同学的平均身高,采用抽样调查方式C.了解苏州段运河的水质情况,采用抽样调查方式D.了解苏州市中学生每天的睡眠时间,采用普查方式6.若点1122(,),(,)A x y B x y 在函数2020y x=-上,且120x x <<,则下列结论中正确的是 A. 12y y > B. 12y y <C. 12y y =D. 12,y y 的大小关系无法确定7.如图,在ABC ∆中,点D 在AB 上,ACD B ∠=∠.若2,3AD BD ==,则AC 等于A. 5B. 6C.D.8.将两张全等的正方形透明纸片叠放在一起,并使其中心重合,得到如图所示的图形,则该图形A.既是轴对称图形又是中心对称图形B.既不是轴对称图形也不是中心对称图形C.是轴对称图形但不是中心对称图形D.是中心对称图形但不是轴对称图形9.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m ,它的影子BC=1.5m, 木竿PQ 的影子有一部分落在了墙上,它的影子QN =1.8 m, MN =0.8 m ,木竿PQ 的长度为A. 3 mB. 3.2 mC. 3.4 mD. 3.6 m10.如图,在四边形ABCD 中,90ABC ∠=︒,3,4,10,55AB BC CD AD ====,则BD 等 于A .13B . 241 C. 82 D. 65二、填空题:本大题共8小题,每小题2分,共16分.把答案直接填在答题卡相应位置上.11.计算: 2= . 12.若分式2x x -有意义,则x 应满足的条件是 . 13.给出下列3个分式:2123,,ab a b abc ,它们的最简公分母为 . 14.转动如图所示的转盘(转盘中各个扇形的面积都相等),当转盘停止转动时,指针落在阴影 区域的概率为 .15.如图,ABCD 的对角线,AC BD 相交于点,O OE BD ⊥交AD 于点E ,连接BE .若ABE ∆ 的周长为10 cm ,则ABCD 的周长为 cm.16.如图,四边形纸片ABCD 中,AB BC =, 90ABC ADC ∠=∠=︒.若该纸片的面积为10 cm 2, 则对角线BD = cm .17.如图,123////l l l ,直线,a b 与123////l l l 分别交于点,,A B C 和点,,D E F .若2BC AB =, 2,6AD CF ==,则BE = .18.如图,菱形ABCD 的边长为1, 60ABC ∠=︒.,E F 分别是,BC BD 上的动点,且CE DF =, 则AE AF +的最小值为 .三、解答题:本大题共10小题,共64分.把解答过程写在答题卡相应位置上,解答时应写出必要 的计算过程、推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔.19.(本题满分5分)计算: 128)3620.(本题满分5分)解方程:42433x x x+-=--.21.(本题满分5分)先化简,再求值: 2222()ab b a b a a a---÷,其中12,12a b ==.22.(本题满分5分)某校组织全校2 000.名学生进行了防火知识竞赛.为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数,满分为100分),并绘制了如图所示的频数分布表和频数分布直方图(不完整):根据所给信息,回答下列问题:(1) a=,b= ;(2)补全频数分布直方图;(3)学校将对成绩在90.5~100.5分之间的学生进行奖励,请你估算出全校获奖学生的人数.23.(本题满分6分)甲、乙、丙、丁四个人做“击鼓传花”游戏,游戏规则是:第一次由甲将花随机传给乙、丙、丁三人中的某一人,以后的每一次传花都是由接到花的人随机传给其他三人中的某一人.(1)甲第一次传花时,恰好传给乙的概率是;(2)求经过两次传花后,花恰好回到甲手中的概率(用画树状图或列表等方法求解).24.(本题满分6分)已知:如图,在四边形ABCD中,AB与CD不平行,,,,E F G H分别是,,,AD BC BD AC的中点.(1)求证:四边形EGFH是平行四边形;(2)①当AB与CD满足条件时,四边形EGFH是菱形;②当AB与CD满足条件时,四边形EGFH是矩形.25.(本题满分6分)甲、乙两家公司为新冠肺炎疫情防控各捐款60 000元,已知乙公司比甲公司 人均多捐40元,甲公司的人数比乙公司的人数多20%.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.26.(本题满分8分)如图,在ABC ∆中,40C ∠=︒.将ABC ∆绕点A 按逆时针方向旋转后得 ADE ∆,连接BD .当//DE AC 时,求ABD ∠的度数.27.(本题满分8分)如图,Rt AOB ∆的直角边OB 在x 轴的正半轴上,反比例函数(0)k y x x => 的图像与斜边OA 相交于点C ,与直角边AB 相交于点D ,且2AC OC =.(1)若点(2,3)C ,求点D 的坐标;(2)若8ACD S =,求k 的值.28.(本题满分10分)如图①,在矩形ABCD 中,3AB =cm, AD AB >,点E 从点A 出发,沿射 线AC 以a (cm/s)的速度匀速移动.连接DE ,过点E 作EF DE ⊥,EF 与射线BC 相交于点 F ,作矩形DEFG ,连接CG .设点E 移动的时间为t (s),CDE ∆的面积为S (cm 2), S 与t 的函 数关系如图②所示.(1) a = ;(2)求矩形DEFG 面积的最小值;(3)当CDG ∆为等腰三角形时,求t 的值.。
2019-2020学年江苏省苏州市工业园区八年级(下)期中数学模拟试卷一、选择题(本大题共10小题,每小题2分,共20分)1.正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是()A.正三角形B.正方形C.等腰直角三角形D.平行四边形2.某市有5500名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①1000名考生是总体的一个样本;②5500名考生是总体;③样本容量是1000.其中正确的说法有()A.0种B.1种 C.2种 D.3种3.下列各式:、、、3x+、、中,分式有()A.1个B.2个 C.3个 D.4个4.下列计算正确的是()A.B.C.D.5.如图,在▱ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E.则线段BE、EC的长度分别为()A.2和3 B.3和2 C.4和1 D.1和46.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为()7.如图,对折矩形纸片ABCD ,使AB 与DC 重合得到折痕EF ,将纸片展平;再一次折叠,使点D 落到EF 上点G 处,并使折痕经过点A ,展平纸片后∠DAG 的大小为( )A .30°B .45°C .60°D .75°8.如图,矩形ABCD 的边长AD=3,AB=2,E 为AB 的中点,F 在边BC 上,且BF=2FC ,AF 分别与DE 、DB 相交于点M ,N ,则MN 的长为( )A .B .C .D .9.如图,反比例函数y 1=和正比例函数y 2=nx 的图象交于A (﹣1,﹣3)、B 两点,则﹣nx ≥0的解集是( )A .﹣1<x <0B .x <﹣1或0<x <1C .x ≤﹣1或0<x ≤1D .﹣1<x <0或x ≥1 10.如图,菱形ABCD 的边长为4,过点A 、C 作对角线AC 的垂线,分别交CB 和AD 的延长线于点E 、F ,AE=3,则四边形AECF 的周长为( )二.填空题(本大题共8小题,每小题2分,共16分)11.若代数式的值为零,则x= .12.若a+3b=0,则= .13.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.14.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE= 度.15.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是.16.若关于x的分式方程﹣1=无解,则m的值.17.如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB 相交于点C,若△OBC的面积为6,则k= .18.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B 四点组成平行四边形的次数有次.三、解答题(共10题64分,解答需写出必要的文字说明或演算步骤)19.计算:(1)÷(2)÷.20.先化简代数式,然后选取一个使原式有意义的a值代入求值.21.“国际无烟日”来临之际,小敏同学就一批公众对在餐厅吸烟所持的三种态度(彻底禁烟、建立吸烟室、其他)进行了调查,并把调查结果绘制成如图所示统计图,请根据图中的信息回答下列问题:(1)被调查者中,不吸烟者中赞成“彻底禁烟”的人数有人;(2)本次抽样调查的样本容量为;(3)被调查中,希望建立吸烟室的人数有;(4)某市现有人口约30万人,根据图中的信息估计赞成在餐厅彻底禁烟的人数约有万人.22.在一个布口袋中装有只有颜色不同,其它都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中能获胜的概率.23.某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元,乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队?应付工程队费用多少元?24.如图,以△ABC的三边AB、BC、CA分别为边,在BC的同侧作等边三角形ABD,BCE,CAF,求证:四边形ADEF是平行四边形.25.如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.26.如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,4),B(4,n)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.27.(1)如图1,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,且MN=DM.设OM=a,请你利用基本活动经验直接写出点N的坐标(用含a的代数式表示);(2)如果(1)的条件去掉“且MN=DM”,加上“交∠CBE的平分线与点N”,如图2,求证:MD=MN.如何突破这种定势,获得问题的解决,请你写出你的证明过程.(3)如图3,请你继续探索:连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,请你指出正确的结论,并给出证明.2019-2020学年江苏省苏州市工业园区八年级(下)期中数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是()A.正三角形B.正方形C.等腰直角三角形D.平行四边形【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据正多边形的性质和轴对称图形与中心对称图形的定义解答.【解答】解:正三角形,等腰直角三角形是轴对称图形,平行四边形是中心对称图形,既是轴对称图形又是中心对称图形的是:正方形,故选:B.2.某市有5500名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①1000名考生是总体的一个样本;②5500名考生是总体;③样本容量是1000.其中正确的说法有()A.0种B.1种 C.2种 D.3种【考点】V3:总体、个体、样本、样本容量.【分析】根据①总体:我们把所要考察的对象的全体叫做总体;②个体:把组成总体的每一个考察对象叫做个体;③样本:从总体中取出的一部分个体叫做这个总体的一个样本;④样本容量:一个样本包括的个体数量叫做样本容量分别进行分析即可.【解答】解:抽取的1000名学生的成绩是一个样本,故①错误;5500名考生的考试成绩是总体,故②错误;因为从中抽取1000名学生的成绩,所以样本容量是1000,故③正确. 故选:B .3.下列各式:、、、3x+、、中,分式有( )A .1个B .2个C .3个D .4个 【考点】61:分式的定义.【分析】根据分式的定义,可得答案.【解答】解:,是分式,有2个,故选B .4.下列计算正确的是( )A .B .C .D .【考点】6B :分式的加减法.【分析】先通分,然后进行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解:A 、=,故A 错误;B 、=0,故B 正确;C 、,故C 错误;D 、=,故D 错误.故选B .5.如图,在▱ABCD 中,AD=5,AB=3,AE 平分∠BAD 交BC 边于点E .则线段BE 、EC 的长度分别为( )A.2和3 B.3和2 C.4和1 D.1和4【考点】L5:平行四边形的性质.【分析】先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而求出EC的长.【解答】解:∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC﹣BE=5﹣3=2.故选B.6.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为()A.2 B.4 C.12 D.16【考点】X4:概率公式.【分析】首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.【解答】解:设黄球的个数为x个,根据题意得:=,解得:x=4.∴黄球的个数为4.故选B.7.如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为()A.30°B.45°C.60°D.75°【考点】PB:翻折变换(折叠问题).【分析】直接利用翻折变换的性质以及直角三角形的性质得出∠2=∠4,再利用平行线的性质得出∠1=∠2=∠3,进而得出答案.【解答】解:如图所示:由题意可得:∠1=∠2,AN=MN,∠MGA=90°,则NG=AM,故AN=NG,则∠2=∠4,∵EF∥AB,∴∠4=∠3,∴∠1=∠2=∠3=×90°=30°,∴∠DAG=60°.故选:C.8.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF 分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.【考点】S9:相似三角形的判定与性质;LB:矩形的性质.【分析】过F 作FH ⊥AD 于H ,交ED 于O ,于是得到FH=AB=2,根据勾股定理得到AF===2,根据平行线分线段成比例定理得到OH=AE=,由相似三角形的性质得到==,求得AM=AF=,根据相似三角形的性质得到==,求得AN=AF=,即可得到结论.【解答】解:过F 作FH ⊥AD 于H ,交ED 于O ,则FH=AB=2 ∵BF=2FC ,BC=AD=3, ∴BF=AH=2,FC=HD=1,∴AF===2,∵OH ∥AE ,∴==,∴OH=AE=,∴OF=FH ﹣OH=2﹣=, ∵AE ∥FO , ∴△AME ∽FMO ,∴==,∴AM=AF=,∵AD ∥BF ,∴△AND ∽△FNB ,∴==,∴AN=AF=,∴MN=AN ﹣AM=﹣=,故选B .9.如图,反比例函数y 1=和正比例函数y 2=nx 的图象交于A (﹣1,﹣3)、B 两点,则﹣nx ≥0的解集是( )A .﹣1<x <0B .x <﹣1或0<x <1C .x ≤﹣1或0<x ≤1D .﹣1<x <0或x ≥1 【考点】G8:反比例函数与一次函数的交点问题.【分析】求出≥nx ,求出B 的坐标,根据A 、B 的坐标结合图象得出即可.【解答】解:∵﹣nx ≥0,∴≥nx ,∵反比例函数y 1=和正比例函数y 2=nx 的图象交于A (﹣1,﹣3)、B 两点, ∴B 点的坐标是(1,3),∴﹣nx ≥0的解集是x ≤﹣1或0<x ≤1, 故选C .10.如图,菱形ABCD 的边长为4,过点A 、C 作对角线AC 的垂线,分别交CB 和AD 的延长线于点E 、F ,AE=3,则四边形AECF 的周长为( )A.22 B.18 C.14 D.11【考点】L8:菱形的性质;L7:平行四边形的判定与性质.【分析】根据菱形的对角线平分一组对角可得∠BAC=∠BCA,再根据等角的余角相等求出∠BAE=∠E,根据等角对等边可得BE=AB,然后求出EC,同理可得AF,然后判断出四边形AECF是平行四边形,再根据周长的定义列式计算即可得解.【解答】解:在菱形ABCD中,∠BAC=∠BCA,∵AE⊥AC,∴∠BAC+∠BAE=∠BCA+∠E=90°,∴∠BAE=∠E,∴BE=AB=4,∴EC=BE+BC=4+4=8,同理可得AF=8,∵AD∥BC,∴四边形AECF是平行四边形,∴四边形AECF的周长=2(AE+EC)=2(3+8)=22.故选:A.二.填空题(本大题共8小题,每小题2分,共16分)11.若代数式的值为零,则x= 2 .【考点】63:分式的值为零的条件.【分析】直接利用分式的值为零,则分子为零,且分母不为零,进而得出答案.【解答】解:由题意,得(x﹣2)(x﹣3)=0且2x﹣6≠0,解得x=2,故答案为:2.12.若a+3b=0,则= .【考点】6D:分式的化简求值.【分析】现将括号内的部分通分,再分解因式,然后将除法化为乘法后再约分,将a=﹣3b代入化简后的解析式即可正确计算.【解答】解:原式=•=•=∵a+3b=0,∴a=﹣3b,∴原式===.13.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.【考点】X4:概率公式;R5:中心对称图形.【分析】让有中心对称图案的卡片的情况数除以总情况数即为所求的概率【解答】解:根据概率的求简单事件的概率的计算及中心对称图形概念的理解;理论上抽到中心对称图案卡片的概率是中心对称图案的卡片的个数除以所有所有卡片的个数,而中心对称图案有圆、矩形、菱形、正方形,所以概率为.14.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE= 22.5 度.【考点】LB:矩形的性质.【分析】首先证明△AEO是等腰直角三角形,求出∠OAB,∠OAE即可.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAD+∠ODA=2∠OAD,∵∠EAC=2∠CAD,∴∠EAO=∠AOE,∵AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA==67.5°,∴∠BAE=∠OAB﹣∠OAE=22.5°.故答案为22.5°.15.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是8 .【考点】LA:菱形的判定与性质;LB:矩形的性质.【分析】先证明四边形CODE是平行四边形,再根据矩形的性质得出OC=OD,然后证明四边形CODE是菱形,即可求出周长.【解答】解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴OC=AC=2,OD=BD,AC=BD,∴OC=OD=2,∴四边形CODE是菱形,∴DE=CEOC=OD=2,∴四边形CODE的周长=2×4=8;故答案为:8.16.若关于x的分式方程﹣1=无解,则m的值﹣或﹣.【考点】B2:分式方程的解.【分析】根据解分式方程的步骤,可求出分式方程的解,根据分式方程无解,可得m的值.【解答】解:方程两边同乘x(x﹣3),得x(2m+x)﹣(x﹣3)x=2(x﹣3)(2m+1)x=﹣6x=﹣,当2m+1=0,方程无解,解得m=﹣.x=3时,m=﹣,x=0时,m无解.故答案为:﹣或﹣.17.如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB 相交于点C,若△OBC的面积为6,则k= 4 .【考点】G5:反比例函数系数k的几何意义.【分析】过D点作x轴的垂线交x轴于E点,可得到四边形DBAE,和三角形OBC的面积相等,通过面积转化,可求出k的值.【解答】解:过D点作x轴的垂线交x轴于E点,∵△ODE的面积和△OAC的面积相等.∴△OBC的面积和四边形DEAB的面积相等且为6.设D点的横坐标为x,纵坐标就为,∵D为OB的中点.∴EA=x,AB=,∴四边形DEAB的面积可表示为:(+)x=6k=4.故答案为:4.18.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B 四点组成平行四边形的次数有 3 次.【考点】L7:平行四边形的判定与性质.【分析】首先设经过t秒,根据平行四边形的判定可得当DP=BQ时,以点P、D、Q、B为顶点组成平行四边形,然后分情况讨论,再列出方程,求出方程的解即可.【解答】解:设经过t秒,以点P、D、Q、B为顶点组成平行四边形,∵以点P、D、Q、B为顶点组成平行四边形,∴DP=BQ,分为以下情况:①点Q的运动路线是C﹣B,方程为12﹣4t=12﹣t,此时方程t=0,此时不符合题意;②点Q的运动路线是C﹣B﹣C,方程为4t﹣12=12﹣t,解得:t=4.8;③点Q的运动路线是C﹣B﹣C﹣B,方程为12﹣(4t﹣24)=12﹣t,解得:t=8;④点Q的运动路线是C﹣B﹣C﹣B﹣C,方程为4t﹣36=12﹣t,解得:t=9.6;⑤点Q的运动路线是C﹣B﹣C﹣B﹣C﹣B,方程为12﹣(4t﹣48)=12﹣t,解得:t=16,此时P点走的路程为16>AD,此时不符合题意.∴共3次.故答案为:3.三、解答题(共10题64分,解答需写出必要的文字说明或演算步骤)19.计算:(1)÷(2)÷.【考点】6A:分式的乘除法.【分析】根据分式的运算法则即可求出答案.【解答】解:(1)原式=÷=×=(2)原式=×=﹣=﹣20.先化简代数式,然后选取一个使原式有意义的a值代入求值.【考点】6D:分式的化简求值.【分析】本题考查的化简与计算的综合运算,关键是正确进行分式的通分、约分,并准确代值计算.此题要注意的是a≠1.【解答】解:原式===,∵a﹣1≠0,∴a≠1,当a=2时,原式=2.21.“国际无烟日”来临之际,小敏同学就一批公众对在餐厅吸烟所持的三种态度(彻底禁烟、建立吸烟室、其他)进行了调查,并把调查结果绘制成如图所示统计图,请根据图中的信息回答下列问题:(1)被调查者中,不吸烟者中赞成“彻底禁烟”的人数有82 人;(2)本次抽样调查的样本容量为200 ;(3)被调查中,希望建立吸烟室的人数有56人;(4)某市现有人口约30万人,根据图中的信息估计赞成在餐厅彻底禁烟的人数约有15.9 万人.【考点】VC:条形统计图;V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图.【分析】(1)找出被调查者中,不吸烟者中赞成“彻底禁烟”的人数即可;(2)由彻底禁烟的人数除以占的百分比确定出样本容量即可;(3)由建立吸烟室的百分比除以总人数,计算即可;(4)由彻底吸烟的百分比乘以30即可得到结果.【解答】解:(1)被调查者中,不吸烟者中赞成“彻底禁烟”的人数有82人;(2)本次抽样调查的样本容量为(82+24)÷53%=200;(3)被调查中,希望建立吸烟室的人数有200×28%=56人;(4)某市现有人口约30万人,根据图中的信息估计赞成在餐厅彻底禁烟的人数约有30×53%=15.9万人,故答案为:(1)82;(2)200;(3)56人;(4)15.922.在一个布口袋中装有只有颜色不同,其它都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中能获胜的概率.【考点】X6:列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:(1)树状图如下;列表如下∴乙能取胜的概率为.23.某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元,乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队?应付工程队费用多少元?【考点】B7:分式方程的应用.【分析】应求出甲乙工程队的工效.时间明显,应根据工作总量来列等量关系.关键描述语是:甲、乙两队合作完成工程需要20天.等量关系为:甲20天的工作量+乙20天的工作量=1,然后分情况分析后比较所需费用.【解答】解:设甲队单独完成需x天,则乙队单独完成需要2x天,根据题意得,经检验,x=30是原方程的解,且x=30,2x=60都符合题意.∴应付甲队30×1000=30000(元).应付乙队30×2×550=33000(元).∵30000<33000,所以公司应选择甲工程队.答:公司应选择甲工程队,应付工程总费用30000元.24.如图,以△ABC的三边AB、BC、CA分别为边,在BC的同侧作等边三角形ABD,BCE,CAF,求证:四边形ADEF是平行四边形.【考点】L6:平行四边形的判定;KK:等边三角形的性质.【分析】由△ABD,△EBC都是等边三角形,易证得△DBE≌△ABC(SAS),则可得DE=AC,又由△ACF是等边三角形,即可得DE=AF,同理可证得AD=EF,即可判定四边形ADEF是平行四边形.【解答】证明:∵△ABD,△EBC都是等边三角形.∴AD=BD=AB,BC=BE=EC∠DBA=∠EBC=60°∴∠DBE+∠EBA=∠ABC+∠EBA.∴∠DBE=∠ABC.在△DBE和△ABC中,,∴△DBE≌△ABC(SAS).∴DE=AC.又∵△ACF是等边三角形,∴DE=AF.同理可证:AD=EF,∴四边形ADEF是平行四边形.25.如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.【考点】L7:平行四边形的判定与性质;KF:角平分线的性质.【分析】(1)结论四边形EBGD是菱形.只要证明BE=ED=DG=GB即可.(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT △EMC中,求出EM、MC即可解决问题.【解答】解:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD和△GFB中,,∴△EFD≌△GFB,∴BE=ED=DG=GB,∴四边形EBGD是菱形.(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2,∴EM=BE=,∵DE∥BC,EM⊥BC,DN⊥BC,∴EM∥DN,EM=DN=,MN=DE=2,在RT△DNC中,∵∠DNC=90°,∠DCN=45°,∴∠NDC=∠NCD=45°,∴DN=NC=,∴MC=3,在RT△EMC中,∵∠EMC=90°,EM=.MC=3,∴EC===10.∵HG+HC=EH+HC=EC,∴HG+HC的最小值为10.26.如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,4),B(4,n)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.【考点】G8:反比例函数与一次函数的交点问题;PA:轴对称﹣最短路线问题.【分析】(1)把A(1,4)代入y=即可求出结果;(2)先把B(4,n)代入y=得到B(4,1),把A(1,4),B(4,1)代入y=kx+b求得一次函数的解析式为;(3)作点B关于x轴的对称点B′,连接AB′交x轴于P,则AB′的长度就是PA+PB的最小值,求出直线AB′与x轴的交点即为P点的坐标.【解答】解:(1)把A(1,4)代入y=得:m=4,∴反比例函数的解析式为:y=;(2)把B(4,n)代入y=得:n=1,∴B(4,1),把A(1,4),B(4,1)代入y=kx+b得,∴,∴一次函数的解析式为:y=﹣x+5;(3)作点B关于x轴的对称点B′,连接AB′交x轴于P,则AB′的长度就是PA+PB的最小值,由作图知,B′(4,﹣1),∴直线AB′的解析式为:y=﹣x+,当y=0时,x=,∴P(,0).27.(1)如图1,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,且MN=DM.设OM=a,请你利用基本活动经验直接写出点N的坐标N(2+a,a)(用含a 的代数式表示);(2)如果(1)的条件去掉“且MN=DM”,加上“交∠CBE的平分线与点N”,如图2,求证:MD=MN.如何突破这种定势,获得问题的解决,请你写出你的证明过程.(3)如图3,请你继续探索:连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,请你指出正确的结论,并给出证明.【考点】LO:四边形综合题.【分析】(1)如图1中,作NE⊥OB于E,只要证明△DMO△MNE即可解决问题.(2)如图2中,在OD上取OH=OM,连接HM,只要证明△DHM≌△MBN即可.(3)结论:MN平分∠FMB成立.如图3中,在BO延长线上取OA=CF,过M作MP⊥DN 于P,因为∠NMB+∠CDF=45°,所以只要证明∠FMN+∠CDF=45°即可解决问题.【解答】(1)解:如图1中,作NE⊥OB于E,∵∠DMN=90°,∴∠DMO+∠NME=90°,∠NME+∠MNE=90°,∴∠DMO=∠MNE,在△DMO和△MNE中,,∴△DMO△MNE,∴ME=DO=2,NE=OM=a,∴OE=OM+ME=2+a,∴点N坐标(2+a,a),故答案为N(2+a,a).(2)证明:如图2中,在OD上取OH=OM,连接HM,∵OD=OB,OH=OM,∴HD=MB,∠OHM=∠OMH,∴∠DHM=180°﹣45°=135°,∵NB平分∠CBE,∴∠NBE=45°,∴∠NBM=180°﹣45°=135°,∴∠DHM=∠NBM,∵∠DMN=90°,∴∠DMO+∠NMB=90°,∵∠HDM+∠DMO=90°,∴∠HDM=∠NMB,在△DHM和△MBN中,,∴△DHM≌△MBN(ASA),∴DM=MN.(3)结论:MN平分∠FMB成立.证明:如图3中,在BO延长线上取OA=CF,在△AOD和△FCD中,,∴△DOA≌△DCF,∴AD=DF,∠ADO=∠CDF,∵∠MDN=45°,∴∠CDF+∠ODM=45°,∴∠ADO+∠ODM=45°,∴∠ADM=∠FDM,在△DMA和△DMF中,,∴△DMA≌△DMF,∴∠DFM=∠DAM=∠DFC,过M作MP⊥DN于P,则∠FMP=∠CDF,由(2)可知∠NMF+∠FMP=∠PMN=45°,∴∠NMB=∠MDH,∠MDO+∠CDF=45°,∴∠NMB=∠NMF,即MN平分∠FMB.。
江苏省苏州苏州工业园区四校联考2019-2020学年中考数学模拟教学质量检测试题一、选择题1.如图,直线y x m =-+与()40ynx n n =+≠的交点的横坐标为2-,则关于x 的不等式40x m nx n -+>+>的整数解为( ).A .1-B .5-C .4-D .3-2.若二次函数y=ax 2+bx+c (a <0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y >0成立的x 的取值范围是( ). A.x <﹣4或x >2B.﹣4≤x≤2C.x≤﹣4或x≥2D.﹣4<x <23.如图,在Rt △ABC 中,∠C =30°,AB =4,D ,F 分别是AC ,BC 的中点,等腰直角三角形DEH 的边DE 经过点F ,EH 交BC 于点G ,且DF =2EF ,则CG 的长为( )A .B . 1C .52D 4.如图,已知等腰△ABC ,AB =BC ,D 是AC 上一点,线段BE 与BA 关于直线BD 对称,射线CE 交射线BD 于点F ,连接AE ,AF .则下列关系正确的是( )A.∠AFE+∠ABE =180°B.1AEF ABC 2∠=∠ C.∠AEC+∠ABC =180° D.∠AEB =∠ACB5.如图,传送带和地面所成斜坡AB 的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为( )A.5 米米⊥,垂足为点E,连接CO,AD,若6.如图,在O中,AB是直径,CD是弦,AB CD∠的度数是()∠=︒,则BADBOC30A.30°B.25︒C.20︒D.15︒7.如图所示的几何体,其主视图是()A. B. C. D.8.下列事件是必然事件的是A.抛掷一次硬币,正面向上B.13名同学中,至少有两名同学出生的月份相同C.射击运动员射击一次,命中9环D.买一张电影票,座位号是奇数9.如图,□ABCD中,对角线AC和BD相交于点O,如果AC=26,BD=18,AB=x,那么x的取值范围是()A.4< m <13 B.4< m <22C.9< m <13 D.4< m <910.如图,己知点A是双曲线y=kx-1(k>0)上的一个动点,连AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=mx-1(m<0)上运动,则m与k的关系是()A.m= -k B.m=C.m= -2k D.m= -3k11.如图,一个游戏转盘分成红、黄、蓝三个扇形,其中红、黄两个扇形的圆心角度数分别为90°,120°.让转盘自由转动,停止后,指针落在蓝色区域的概率是()A.14B.13C.512D.无法确定12.下列运算正确的是()A.x﹣2x=﹣1 B.2x﹣y=xyC.x2+x2=x4D.(﹣2a2b)3=﹣8a6b3二、填空题13.已知△ABC∽△A′B′C′且S△ABC:S△A′B′C′=1:2,则AB:A′B′=_____.14.肥皂泡沫的泡壁厚度大约是0.0007mm,则数据0.0007用科学记数法表示为_____.15.已知一组数据0,2,x,4,5的众数是4,那么这组数据的中位数是____.16.如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE 交AC于点E,且cosα=.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或;④0<CE≤6.4.其中正确的结论是_____.(把你认为正确结论的序号都填上)17.函数131yx=-中,自变量x的取值范围是______.18.如图所示的网格是正方形网格,△ABC是_____三角形.(填“锐角”“直角”或“钝角”)三、解答题19.已知:如图,九年一班在进行方向角模拟测量时,A同学发现B同学在他的北偏东75°方向,C同学在他的正南方向,这时,D同学与BC在一条直线上,老师觉得他们的站位很有典型性,就组织同学又测出A、B距离为80米,B、D两同学恰好在C同学的东北方向且AD=BD.求C、D两名同学与A同学的距离分别是多少米(结果保留根号).20.如图,在Rt△ABC中,CD,CE分别是斜边AB上的高,中线,BC=a,AC=b.(1)若a=3,b=4,求DE的长;(2)直接写出:CD=(用含a,b的代数式表示);(3)若b=3,tan∠DCE=13,求a的值.21.如图1,反比例函数kyx(k>0)图象经过等边△OAB的一个顶点B,点A坐标为(2,0),过点B作BM⊥x轴,垂足为M.(1)求点B的坐标和k的值;(2)若将△ABM沿直线AB翻折,得到△ABM',判断该反比例函数图象是从点M'的上方经过,还是从点M'的下方经过,又或是恰好经过点M',并说明理由;(3)如图2,在x轴上取一点A1,以AA1为边长作等边△AA1B1,恰好使点B1落在该反比例函数图象上,连接BB1,求△ABB1的面积.22.某校举行了一次古诗词朗读竞赛,满分为10分,学生得分均为整数,成绩达到6分及6分以上为合格.达到9分或10分为优秀.这次竞赛中,甲、乙两组学生成绩统计分析表和成绩分布的折线统计图如图所示.(2)小英说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察成绩统计分析表判断,小英是甲、乙哪个组的学生.(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.试写出两条支持乙组同学观点的理由.(4)从这次参加学校古诗词朗诵竞赛的甲、乙两组成绩优秀的学生中,随机抽取两名学生参加全市古诗词朗诵竞赛,恰好是乙组学生的概率是多少?(画树状图或列表求解)23.已知:如图,AB是⊙O的直径,直线DC,DA分别切⊙O于点C,点A,连结BC,OD.(1)求证:BC∥OD.(2)若∠ODC =36°,AB =6,求出BC 的长.24.如图,形如量角器的半圆O 的直径DE-12cm ,形如三角板的△ABC 中,∠ACB=90°,tan ∠ABC=BC=12cm 半圆O 以2cm/s 的速度从左向右运动,在运动过程中,点D 、E 始终在直线BC 上。
2019-2020学年江苏省苏州市工业园区星港学校八年级(下)期中数学试卷一、选择题(本大题共10小题,每小题2分,共20分..)1.(2分)(2020春•工业园区校级期中)下列图标中,是中心对称图形的是()A.B.C.D.2.(2分)(2020•瑞安市模拟)若分式的值为0,则x的值为()A.0B.﹣1C.1D.23.(2分)(2001•嘉兴)已知,则的值是()A.﹣5B.5C.﹣4D.44.(2分)(2020春•工业园区校级期中)反比例函数y=的图象在第一、第三象限,则m可能取的一个值为()A.0B.1C.2D.35.(2分)(2014•泉州)正方形的对称轴的条数为()A.1B.2C.3D.46.(2分)(2014•防城港)下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形7.(2分)(2020秋•东营期中)已知点(x1,y1),(x2,y2),(x3,y3)在反比例函数的图象上,当x1<x2<0<x3时,y1,y2,y3的大小关系是()A.y1<y3<y2B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1 8.(2分)(2015•东西湖区校级模拟)如图,将△ABC绕顶点C逆时针旋转得到△A′B′C′,且点B刚好落在A′B′上,若∠A=25°,∠BCA′=45°,则∠A′BA等于()A.30°B.35°C.40°D.45°9.(2分)(2014•铁岭模拟)如图,双曲线y=(k>0,x>0)经过▱OABC的对角线的交点D,已知边OC在y轴上,且OC⊥CA于点C,若OC=3,CB=5,则k等于()A.3B.6C.12D.1510.(2分)(2020春•工业园区校级期中)如图,分别以Rt△ABC的斜边AB,直角边AC 为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD=4AG;④△DBF≌△EFA,其中正确结论的序号是()A.①②④B.①③C.②③④D.①②③④二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)(2020•百色模拟)当x时,有意义.12.(2分)(2014春•张家港市校级期末)已知关于x的分式方程=1的解是负数,则a 的取值范围是.13.(2分)(2020春•工业园区校级期中)菱形的周长为12cm,一个内角等于120°,则这个菱形的面积为cm2.14.(2分)(2020春•工业园区校级期中)点P(m,n)是函数和y=x+4图象的一个交点,则mn+n﹣m的值为.15.(2分)(2020春•工业园区校级期中)如图,在矩形ABCD中,点E在AD上,且EC 平分∠BED.若AB=2,∠EBC=45°,则BC的长为.16.(2分)(2019春•常熟市期中)如图,在平面直角坐标系中,点A是反比例函数y=的图象上的一点,AC⊥y轴,垂足为C,点B在x轴的负半轴上,则△ABC 的面积为.17.(2分)(2020秋•富平县期末)如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE⊥AB于E,OF⊥AD于F.则OE+OF=.18.(2分)(2014•济南)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为.三、解答题19.(8分)(2020春•工业园区校级期中)计算:(1);(2)﹣a﹣1.20.(4分)(2019•自贡)解方程:﹣=1.21.(5分)(2020春•工业园区校级期中)若=+,求A、B的值.22.(6分)(2012春•张家港市期中)先化简,然后请你为a在﹣2到2之间(包括﹣2和2),任意选取一个合适的整数,再求出此时原式的值.23.(5分)(2017春•天桥区期末)甲、乙两地相距360km.新修的高速公路开通后,在甲、乙两地间行驶的长途客车平均速度提高了50%,而从甲地到乙地的时间缩短了2小时.求长途客车原来的平均速度.24.(6分)(2020春•工业园区校级期中)如图,已知△ABC的三个顶点的坐标分别为A(﹣5,0),B(﹣2,3),C(﹣1,0).(1)画出△ABC关于原点O成中心对称的图形△A'B'C';(2)将△ABC绕原点O顺时针旋转90°,画出对应的△A''B''C'',并写出点B''的坐标.25.(5分)(2020春•工业园区校级期中)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠PEF=20°,求∠PFE的度数.26.(7分)(2020秋•雨花区期末)如图,菱形ABCD的对角线AC、BD相交于点O,BE ∥AC,AE∥BD,OE与AB交于点F.(1)试判断四边形AEBO的形状,并说明理由;(2)若OE=5,AC=8,求菱形ABCD的面积.27.(9分)(2014春•江都区校级期末)如图,已知直线与双曲线交于A、B两点,A点横坐标为4.(1)求k值;(2)直接写出关于x的不等式的解集;(3)若双曲线上有一点C的纵坐标为8,求△AOC的面积;(4)若在x轴上有点M,y轴上有点N,且点M、N、A、C四点恰好构成平行四边形,直接写出点M、N的坐标.28.(9分)(2020春•工业园区校级期中)如图1,四边形ABCD是菱形,AD=5,过点D 作AB的垂线DH,垂足为H,交对角线AC于M,连接BM,且AH=3.(1)求DM的长;(2)如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式;(3)在(2)的条件下,当点P在边AB上运动时,是否存在这样的t的值,使∠MPB 与∠BCD互为余角?若存在,求出t的值;若不存在,请说明理由.2019-2020学年江苏省苏州市工业园区星港学校八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分..)1.【解答】解:A、不属于中心对称图形;B、属于中心对称图形;C、不属于中心对称图形;D、不属于中心对称图形;故选:B.2.【解答】解:∵分式的值为0,∴,解得x=﹣1.故选:B.3.【解答】解:由,可得a=2b,那么==5.故选:B.4.【解答】解:∵反比例函数y=的图象在第一、第三象限,∴1﹣m>0,∴m<1,符合条件的答案只有A,故选:A.5.【解答】解:正方形有4条对称轴.故选:D.6.【解答】解:A、四个角相等的四边形是矩形,为真命题,故A选项不符合题意;B、对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;C、对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;D、对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.故选:C.7.【解答】解:∵反比例函数,∴函数图象在第一、三象限,在每个象限内,y随着x的增大而减小,又∵x1<x2<0<x3,∴y1<0,y2<0,y3>0,且y1>y2,∴y2<y1<y3,故选:B.8.【解答】解:∵∠A=25°,∠BCA′=45°,∴∠BCA′+∠A′=∠B′BC=45°+25°=70°,∵CB=CB′,∴∠BB′C=∠B′BC=70°,∴∠B′CB=40°,∴∠ACA′=40°,∵∠A=∠A′,∠A′DB=∠ADC,∴∠ACA′=∠A′BA=40°.故选:C.9.【解答】解:∵四边形OABC是平行四边形,∴CO=AB,CO∥AB,∵OC⊥CA于点C,OC=3,CB=5,∴∠CAB=90°,则AC==4,∵▱OABC的对角线的交点D,∴D点的坐标为:(3,2),故k=xy=6.故选:B.10.【解答】解:连接FC,如图.∵∠ACB=90°,F为AB的中点,∴FA=FB=FC.∵△ACE是等边三角形,∴EA=EC.∵FA=FC,EA=EC,∴点F、点E都在线段AC的垂直平分线上,∴EF垂直平分AC.∵△ABD和△ACE都是等边三角形,F为AB的中点,∴DF⊥AB即∠DFA=90°,BD=DA=AB=2AF,∠DBA=∠DAB=∠EAC=∠ACE=60°.∵∠BAC=30°,∴∠DAC=∠EAF=90°,∴∠DF A=∠EAF=90°,DA⊥AC,∴DF∥AE,DA∥EF,∴四边形ADFE为平行四边形,∴DA=EF,AF=2AG,∴BD=DA=EF,DA=AB=2AF=4AG.在△DBF和△EFA中,,∴△DBF≌△EF A.综上所述:①②③④都正确.故选:D.二、填空题(本大题共8小题,每小题2分,共16分)11.【解答】解:由题意可知:x+2≠0,∴x≠﹣2,故答案为:≠﹣212.【解答】解:分式方程去分母得:x+1=a+2,即x=a+1,根据分式方程解为负数,得到a+1<0,且a+1≠﹣1,解得:a<﹣1且a≠﹣2.故答案为:a<﹣1且a≠﹣2.13.【解答】解:作AE⊥BC于E,如图所示:∵四边形ABCD是菱形,周长为12cm,∠BCD=120°,∴AB=BC=3cm,∠B=60°,∵AE⊥BC,∴∠BAE=30°,∴BE=AB=cm,AE=BE=cm,∴菱形的面积=BC•AE=3×=(cm2);故答案为:.14.【解答】解:∵点P(m,n)是函数和y=x+4图象的一个交点,∴mn=﹣3,n=m+4,∴n﹣m=4,∴mn+n﹣m=﹣3+4=1,故答案为1.15.【解答】解:∵四边形ABCD是矩形,∴AD∥BC.∴∠DEC=∠BCE.∵EC平分∠DEB,∴∠DEC=∠BEC.∴∠BEC=∠ECB.∴BE=BC.∵四边形ABCD是矩形,∴∠A=90°.∵∠ABE=45°,∴∠ABE=AEB=45°.∴AB=AE=2.∵由勾股定理得:BE===2,∴BC=BE=2,故答案为:2.16.【解答】解:如图,连接AO,∵AC⊥y轴于点C,∴AC∥BO,∴△AOC的面积=△ABC的面积=|k|=6,故答案为:6.17.【解答】解:如图,连接AC交BD于点G,连接AO,∵四边形ABCD是菱形,∴AC⊥BD,AB=AD=10,BG=BD=8,根据勾股定理得:AG===6,=S△AOB+S△AOD,∵S△ABD即BD•AG=AB•OE+AD•OF,∴16×6=10OE+10OF,∴OE+OF=9.6.故答案为:9.6.18.【解答】解:设B点坐标为(a,b),∵△OAC和△BAD都是等腰直角三角形,∴OA=AC,AB=AD,OC=AC,AD=BD,∵OA2﹣AB2=12,∴2AC2﹣2AD2=12,即AC2﹣AD2=6,∴(AC+AD)(AC﹣AD)=6,∴(OC+BD)•CD=6,∴a•b=6,∴k=6.故答案为:6.三、解答题19.【解答】解:(1)===;(2)﹣a﹣1===.20.【解答】解:去分母得:x2﹣2x+2=x2﹣x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.21.【解答】解:∵,∴x﹣5=(A+B)x+(﹣A+B),∴,解得:A=3,B=﹣2.22.【解答】解:=×=a﹣1,当a=﹣1时,原式=﹣2.23.【解答】解:设长途客车原来的平均速度为xkm/h,由题意得:﹣=2,解得:x=60.经检验:x=60是原方程的解.答:长途客车原来的平均速度为60km/h.24.【解答】解:(1)如图,△A'B'C'为所作;(2)如图,△A''B''C''为所作,点B''的坐标为(3,2).故答案为(3,2).25.【解答】解:∵P是BD的中点,E是AB的中点,∴PE是△ABD的中位线,∴PE=AD,同理,PF=BC,∵AD=BC,∴PE=PF,∴∠PFE=∠PEF=20°.26.【解答】解:(1)四边形AEBO是矩形,理由如下:∵BE∥AC,AE∥BD∴四边形AEBO是平行四边形.又∵菱形ABCD对角线交于点O∴AC⊥BD,即∠AOB=90°.∴四边形AEBO是矩形;(2)∵四边形ABCD是菱形,∴OA=AC=4,OB=OD,AC⊥BD,∵四边形AEBO是矩形,∴AB=OE=5,∴OB===3,∴BD=2OB=6,∴菱形ABCD的面积=AC×BD=×8×6=24.27.【解答】解:(1)∵直线与双曲线交于A、B两点,A点横坐标为4,∴点A的纵坐标为:y=×4=2,∴点A(4,2),∴2=,∴k=8;(2)∵直线与双曲线交于A、B两点,∴B(﹣4,﹣2),∴关于x的不等式的解集为:﹣4≤x<0或x≥4;(3)过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,∵双曲线上有一点C的纵坐标为8,∴把y=8代入y=得:x=1,∴点C(1,8),=S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC=×(2+8)×(4﹣1)=15;∴S△AOC(4)如图,当MN∥AC,且MN=AC时,点M、N、A、C四点恰好构成平行四边形,∵点A(4,2),点C(1,8),∴根据平移的性质可得:M(3,0),N(0,6)或M′(﹣3,0),N′(0,﹣6).28.【解答】解:(1)在Rt△ADH中,AD=5,AH=3,∴DH=4,∵四边形ABCD是菱形,∴AB∥DC,∴∠BAC=∠DCA,∵DH⊥AB,∴∠AHD=∠CDH,∴△AMH∽△CDM,∴,∴,∵DH=4,∴DM=;方法二、在Rt△ADH中,AD=5,AH=3,∴DH=4,∵AC是菱形ABCD的对角线,∴∠ACD=∠ACB,CD=CB,在△DCM和△BCM中,,∴△DCM≌△BCM,∴DM=BM,在Rt△BHM中,BM=DM,HM=DH﹣DM=4﹣DM,BH=AB﹣AH=2,根据勾股定理得,DM2﹣MH2=BH2,即:DM2﹣(4﹣DM)2=4,∴DM=;(2)在△BCM和△DCM中,,∴△BCM≌△DCM,∴BM=DM=,∠CDM=∠CBM=90°①当P在AB之间时,S=(5﹣2t)×=﹣t+.②当P在BC之间时,S=(2t﹣5)×=t﹣,(3)存在,∵∠ADM+∠BAD=90°,∠BCD=∠BAD,∴∠ADM+∠BCD=90°,∵∠MPB+∠BCD=90°,∴∠MPB=∠ADM,∵四边形ABCD是菱形,∴∠DAM=∠BAM,∵AM=AM,∴△ADM≌△ABM,∴∠ADM=∠ABM,∴∠MPB=∠ABM,∵MH⊥AB,∴PH=BH=2,∴BP=2BH=4,∵AB=5,∴AP=1,∴t==.。
2019-2020学年江苏省苏州工业园区八年级(下)期末物理试卷一、选择题(每小题2分,共24分.在每小题给出的四个选项中,只有一个选项是正确的.)1.下列数据中与实际情况相符的是()A.一颗小铁钉重约10NB.一个中学生潜泳时受到浮力约500NC.一个鸡蛋的质量约100gD.一张纸对桌面的压强约为5Pa2.第一位提出“物体的运动并不需要力来维持”的物理学家是()A.伽利略B.帕斯卡C.焦耳D.阿基米德3.新型冠状病毒是以前从未在人体中发现的冠状病毒新毒株。
2020年1月12日,世界卫生组织正式将其命名为2019﹣nCoV,把它和电子、原子核、分子等粒子一起按照空间尺度由大到小排序,以下排列正确的是()A.新型冠状病毒分子原子核电子B.分子新型冠状病毒原子核电子C.分子原子核新型冠状病毒电子D.新型冠状病毒分子电子原子核4.不漏气的橡皮氢气球由地面上升过程中,球内气体的质量与密度的变化情况是()A.质量增加,密度增加B.质量不变,密度减小C.质量减小,密度减小D.质量不变,密度不变5.下列“宇宙层次结构”概念图,正确的是()A.B.C.D.6.下列事例中,不能说明分子永不停息做无规则运动的是()A.炒菜时加点盐,菜就有了咸味B.看到滴入红墨水,整杯水变红C.冠状病毒附在飞沫上随风运动D.房间里放一箱苹果,满屋飘香7.如图所示的现象中,不能运用大气压强知识解释的是()A.用纸板盖住水杯,倒置后水不流出B.吸盘能吸附在墙上C.台风能掀开屋顶的瓦D.用吸管喝饮料8.如果上课时教室内的摩擦力突然消失,下列情境中不可能发生的是()A.老师抓不住手中的粉笔B.天花板上的吸顶灯会下落C.轻轻一吹,课桌上的作业本便可飞出去D.教师和学生可以更轻松地在教室内行走9.以下是我们生活中常见到的几种现象①用力握海绵,海绵变瘪了;②一阵风把地面上的灰尘吹得漫天飞舞;③用力揉面团,面团形状发生改变;④篮球撞击在篮板上被弹回在这些现象中,物体因为受力而改变运动状态的是()A.①②B.①④C.②③D.②④10.如图所示,将乒乓球放置于吹风机出风口的正上方,球会悬在空中。
2019-2020学年八上物理期中模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个选项正确,每小题2分,共36分)1. 下列做法中,文明的是()A. 随手关灯,节约电能B. 把废旧电池投到普通垃圾箱C. 做完实验不整理仪器就离开实验室D. 半夜看电视时保持音量较大2.下列有关热的说法不正确...的是()A.晶体在熔化过程中温度不变,内能也不变B.用锯锯木头,锯条发热.这是通过做功改变物体的内能C.用水作汽车冷却液,是因为水的比热容大D.火箭用液态氢作燃料,是因为氢的热值大3. 根据卢瑟福的原子行星模型理论,在原子中不带电的是()A. 中子B. 质子C. 电子D. 原子核4. 下列五种学习用品中:①透明塑料袋②金属刀片③塑料三角尺④铅笔芯⑤橡皮擦.属于绝缘体的有()A.①②④ B.②④⑤ C.③④⑤ D.①③⑤5. 下列现象中不能..用分子热运动观点解释的是()A. 酒香不怕巷子深B. 把青菜用盐制成咸菜C. 沙尘暴起,尘土满天D. 衣橱里的樟脑球逐渐变小6. 下列关于内能的说法中正确的是()A. 内能和机械能是同一种形式的能量B. 静止的物体没有内能C. 0℃以下的物体没有内能D. 自然界中,一切物体在任何时候都具有内能7. 用丝绸摩擦过的玻璃棒去靠近甲,乙两个轻小物体,结果甲被排斥,乙被吸引,则()A.甲带正电,乙带负电B.甲带负电,乙带正电C.甲带负电,乙不带电或带正电D.甲带正电,乙不带电或带负电8. 将一瓶酒精灯的酒精用了一半,则剩余部分酒精的密度、比热容和热值()A.比热容不变,热值和密度都变为原来的一半 B.比热容,热值和密度都变为原来的一半C.比热容,热值都变为原来的一半,密度不变 D.比热容,热值和密度都不变9. 煤炭是一种重要能源。
区别煤质优劣最科学的办法是检测下列哪个物理量( )A.热值 B.密度 C.比热容 D.温度10. 如图所示是内燃机的四个冲程,其中属于做功冲程的是()11. 下列说法正确的是()A.固体、液体和气体分子间都有间隙B.扩散现象只发生在气体之间,不会发生在固体和液体之间C.建筑工地上,汽车驶过时尘土飞扬,这是一种扩散现象D.橡皮筋被拉长后,分子之间只有引力12. 运送燃油的油罐车的尾部总装有一根拖在地上的铁链条,这是因为()A.使车辆更加美观 B.增大车受到的摩擦力C.用于固定油箱 D.铁链是导体,将摩擦产生的电荷导走,避免燃油起火 +13. 在部分公交车后门两侧的扶手上,各装有一个按钮开关,想要下车的乘客只要按下任何一个按钮,装在驾驶台上的电铃都会发声,提醒司机有乘客需要下车.如下图所示的四个电路中符合设计要求的是()A B C D14. 小明实验时连接了如图所示的电路,闭合开关S1和S2后,下列分析正确的是()A. 小灯泡亮,电铃响B. 小灯泡不亮,电铃响C. 小灯泡亮,电铃不响D. 小灯泡不亮,电铃不响15. 某品牌的微型电脑吸尘器有两个开关,开关S1控制照明灯L和吸尘电动机M,开关S2只控制吸尘电动机M.下列电路图符合要求的是()A B C D16. 如图所示,在大口厚玻璃瓶内装入少量的水,并滴入几滴酒精。
塞进塞子后,用气筒往瓶内打气,当塞子跳出时,看到瓶口有白雾出现,下列关于该实验的分析错误..的是()A.往瓶内打气时,外界对瓶内气体做功B.往瓶内打气时,瓶内气体内能变小C.瓶塞跳出时,瓶内气体温度降低D.瓶塞跳出时,瓶内气体对外做功17. 水的比热容较大,下列做法中不是..利用这一特性的是()A.炎热的夏天,在室内地上洒水感到凉爽 B.用水做内燃机的冷却液C.冬天用循环热水的暖气取暖 D.沿海地区气温冬暖夏凉18. 关于温度、内能、热量和做功,下列说法中正确的是()A.0℃的冰没有内能B.做功可以改变物体的内能C.物体放出热量时,温度一定降低D.物体的内能增加,一定是从外界吸收了热量二、填空题(本题5小题,每空2分,共20分。
)19. 把碳素墨水分别滴入质量相等的清水中,一段时间后观察到的现象如图所示,这个实验演示的是______现象;比较图甲和图乙可知,______越高,分子运动越激烈。
20. 工厂里面用的冷却塔多用水作为冷却物质,是因为水的_________较大;在古代,人类学会了钻木取火的方法,这是利用______的方式改变物体的内能。
21. 太阳能是一种清洁能源,某太阳能热水器每天能使100kg的水温度升高30℃,那么这些水吸收的热量为___________ J,这些热量相当于完全燃烧__________m3的天然气放出的热量。
[天然气的热值取7×107J/m3,水的比热容C水=4.2×103J/(kg·℃)22. 如图甲所示的电路图,开关都闭合时,L1和L2两灯都亮,两个电流表的示数分别如图乙和图丙,判断A1表(图乙)的读数是第23题图23. 某同学参加兴趣小组活动时,连成了如右上图所示电路,那么,当S 1、S 2都闭合时,发光的灯泡是__________;当S 1断开、S 2闭合时,发光的是____________。
三、作图、实验与探究题(本题共4小题,第24题2分,第25题8分,第26题12分,第27题12分,共34分。
)[24.根据实物图,画出电路图;25.为了比较水和食用油的吸热能力,小明用两个相同的装置做了如图所示的实验,实验数据记录如表。
(1)从表中数据可知,水和食用油的质量________(选填“相同”或“不相同”),加热结束时,食用油的温度比水温度_______(选填“高”或“低”);(2)在此实验中,如果要使水和食用油的最后温度相同,就要给水加热更长的时间,此时,水吸收的热量_________(选填“大于”或“小于”或“等于”)食用油吸收的热量; (3)实验表明,______(选填“水”或“食用油”)吸热的能力更强。
26. 如图是“探究串联电路电流规律”的实验电路图: (1)实验中,选择两个小灯泡的规格最好是_________的(填“相同”或“不同”);(2)连接电路的时候开关要________;(3)下表中是某位同学实验中的一组数据:指出表格所记录的数据中,电流表在______位置的读数是明显错误,造成错误的原因可能是:___________________________;(4)改正错误数据后,分析实验数据得到串联电路电流规律是:_____________________;(5) 你认为这个实验的设计中的问题是:___________________________________________。
27. 在探究并联电路电流规律的实验中:(1)电流表应(选填“串联”或“并联”)在被测电路中。
若要测量干路电流,则电流表应接在甲图中的点。
(2)小明同学在测量A处的电流时,闭合开关后,发现电流表的指针偏转如图乙所示,原因是_____________;排除故障后,电流表的示数如图丙所示,则电流表的示数为A。
(3)上表是另一组的小亮同学在实验中用两盏规格相同的灯泡测出的数据,由此得出的实验结论是:在并联电路中,干路电流等于各支路电流之和,且各支路的电流相等。
请指出小亮的探究过程的两点不妥之处:①_______ __;②_______。
四、计算题(本题共2小题,每小题10分,共20分。
要求写出必要的文字说明、公式和重要的演算步骤,只写出最后答案的不能计分。
)28. 如图所示是某太阳能热水器,向其中注入50kg水,阳光照射一段时间后,水温从10℃升高到50℃。
水的比热容是4.2×103J/(kg·℃)。
试求:(1)这段时间该热水器中的水吸收的热量是多少?(3分)(2)如果这段时间该太阳能热水器接收到太阳辐射的热量是2.8×107J,则这段时间该热水器的效率是多少? (3分)(3)若用煤燃烧来提供2.8×107J的热量,需完全燃烧多少千克煤? (煤的热值约为3.5×107J/kg)(4分)29.泰安五岳专用汽车有限公司是一家大型的特种专用汽车生产基地。
该厂某型号专用车在车型测试中,在一段平直的公路上匀速行驶5600m,受到的平均阻力是3.0×103N,消耗燃油1.5×10-3m3(假设燃油完全燃烧),已知燃油的密度ρ=0.8×103kg/m3,热值q=4×107J/kg,求:(1)在该测试中专用车牵引力所做的功;(4分)(2)燃油完全燃烧放出的热量;(3分)(3)该测试中专用车的热机效率。
(3分)八年级期中考试物理学科试卷答案一、选择题(本大题共18小题,每小题2分,共36分。
每小题给出的选项中,只有一项符合题目要求)二、填空题(本小题5小题,每空2分,共20分)19. 扩散 温度; 20. 比热容 做功;21. 1.26×1070.18; 22. 1 0.5; 23. L 2 L 1、L 2三、作图、实验与探究题(本题共4小题,第24题2分,第25题8分,第26题12分,第27题12分,共34分。
) 24.25. (1)相同 高; (2)大于; (3)水 26.(1)不同 (2)断开 (3)C 读数时看错了电流表量程 (4)在串联电路中,电流处处相等(5)只有一组实验数据,实验结论具有偶然性.27. (1)串联 C (2)电流表正负接线柱接反 0.24 (3)①用的是同规格的灯泡 ②只有一组实验数据四、计算题(本题共2小题,每小题10分,共20分。
要求写出必要的文字说明、公式和重要的演算步骤,只写出最后答案的不能计分。
) 28.解:(1)这段时间该热水器中的水吸收的热量Q 吸=Cm(t -t 0)=4.2×103J/(kg·℃)×50kg×(50℃-10℃)=8.4×106J…………………3分(2)该热水器的效率是η=(Q 吸/Q 总)×100%=(8.4×106J/2.8×107J)×100%=30%………3分(3)若用煤燃烧来提供2.8×107J ,需完全燃烧的质量为m=Q/q=2.8×107J/3.5××107J/kg=0.8kg……………………………………………………4分29.(1)∵专用车匀速行驶, ∴F=f=3.0×103N ,W=Fs=3.0×103N ×5.6×103m=1.68×107J ;…………………………………………………4分(2)m=ρv=0.8×103kg/m 3×1.5×10-3m 3=1.2kg ,Q 放=mq=1.2kg ×4×107J/kg=4.8×107J ;……………………………………………………3分 (3)该专用车的热机效率:η=(W/Q 放)×100%=(1.68×107J/4.8×107J)×100%=35%…………………………………3分2019-2020学年八上物理期中模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。