高二(文科)双曲线基础练习题
- 格式:pdf
- 大小:27.66 KB
- 文档页数:4
高二〔文科〕双曲线练习题一、选择题1.a=3,c=5,并且焦点在x 轴上,那么双曲线的标准程是〔 〕A .116922=+y x B. 116922=-y x C. 116922=+-y x 1916.22=-y x D 2.,5,4==c b 并且焦点在y 轴上,那么双曲线的标准方程是〔 〕A .191622=-y x B. 191622=+-y x C.116922=+y x D.116922=-y x 3..双曲线191622=-y x 上P 点到左焦点的距离是6,那么P 到右焦点的距离是〔 〕 A. 12 B. 14 C. 16 D. 184..双曲线191622=-y x 的焦点坐标是 〔 〕 A. 〔5,0〕、〔-5,0〕B. 〔0,5〕、〔0,-5〕 C. 〔0,5〕、〔5,0〕 D.〔0,-5〕、〔-5,0〕5、方程6)5()5(2222=++-+-y x y x 化简得:A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 6.实轴长是6,焦距是10的双曲线的标准方程是〔 〕A ..116922=-y x 和116922=+-y x B. 116922=-y x 和191622=+-y x C. 191622=-y x 和191622=+-y x D. 1162522=-y x 和1251622=+-y x 7.过点A 〔1,0〕和B 〔)1,2的双曲线标准方程〔 〕A .1222=-y xB .122=+-y xC .122=-y x D. 1222=+-y x8.P 为双曲线191622=-y x 上一点,A 、B 为双曲线的左右焦点,且AP 垂直PB ,那么三角形PAB 的面积为〔 〕 A . 9 B . 18 C . 24 D . 369.双曲线191622=-y x 的顶点坐标是 〔 〕 A .〔4,0〕、〔-4,0〕 B .〔0,-4〕、〔0,4〕C .〔0,3〕、〔0,-3〕 D .〔3,0〕、〔-3,0〕10.双曲线21==e a ,且焦点在x 轴上,那么双曲线的标准方程是〔 〕A .1222=-y xB .122=-y xC .122=+-y x D. 1222=+-y x11.双曲线191622=-y x 的的渐近线方程是〔 〕 A . 034=±y x B .043=±y x C .0169=±y x D .0916=±y x12.双曲线的渐近线为043=±y x ,且焦距为10,那么双曲线标准方程是〔 〕A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 13.方程11122=-++ky k x 表示双曲线,那么k 的取值范围是〔 〕 A .11<<-k B .0>k C .0≥k D .1>k 或1-<k14.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,那么2ABF ∆〔F 2为右焦点〕的周长〔 〕 A .28 B .22 C .14 D .1215.方程x k y k22941--+=的曲线是双曲线,那么它的焦点坐标是 ( ) (A)(±13,0) (B)(0,±13) (C)(±13,0) (D)(0,±13)16.设双曲线2218y x -=的两个焦点为12,F F ,P 是双曲线上的一点,且12||:||=3:4PF PF ,那么△PF 1 F 2的面积等于( )二、填空题17.双曲线虚轴长10,焦距是16,那么双曲线的标准方程是________________.18.双曲线焦距是12,离心率等于2,那么双曲线的标准方程是___________________.19.16522=++-t y t x 表示焦点在y 轴的双曲线的标准方程,t 的取值范围是___________. 20.椭圆C 以双曲线122=-y x 焦点为顶点,且以双曲线的顶点作为焦点,那么椭圆的标准方程是___________________三、解答题21.求满足以下条件的标准方程(1)求以椭圆18522=+y x 的焦点为顶点,且以椭圆的顶点为焦点的双曲线的方程。
高二数学【文科】双曲线周练卷一.选择题1.(2021·长春高二检测)双曲线-=1的焦距为( )A. B.22.“mn<0”是“方程mx2+ny2=1表示焦点在x轴上的双曲线〞的( )3.假设方程-=1表示双曲线,那么实数m的取值范围是( )≠1且m≠-3 B.m>1C.m<-3或m>1D.-3<m<14.(2021·南昌高二检测)设双曲线-=1上的点P到点(4,0)的距离为10,那么点P到点(-4,0)的距离为( )A.16B.16+2C.10+2或10-25.(2021·济宁高二检测)F1,F2为双曲线C:x2-y2=1的左、右焦点,点P 在C上,∠F1PF2=60°,那么P到x轴的距离为( )A. B. C. D.6.以下曲线中离心率为的是( )A.-=1B.-=1C.-=1D.-=17.双曲线-=1的右焦点为(3,0),那么该双曲线的离心率等于A. B. C. D.8.(2021·兰州高二检测)对称轴为坐标轴的双曲线有一条渐近线平行于直线x+2y-3=0,那么该双曲线的离心率为( )A. 5或B.或C.或D. 5或9.(2021·温州高二检测)双曲线x2-y2=1的渐近线方程是( )A.x=±1B.y=±xC.y=±xD.y=±x10.(2021·太原高二检测)双曲线的离心率为2,焦点是(-4,0),(4,0),那么双曲线方程为( )A.-=1B.-=1C.-=1D.-=111.(2021·福建高考)双曲线-y2=1的顶点到渐近线的距离等于( )A. B. C. D.12.(2021·兰州高二检测)直线y=kx+2与双曲线x2-y2=2有且只有一个交点,那么k的值是( )A.k=±1B.k=±C.k=±1或k=±D.k=±13.过点A(4,3)作直线l,如果它与双曲线-=1只有一个公共点,那么直线l的条数为( )A.1B.2C.314.(2021·重庆高二检测)双曲线x2-y2=2,过定点P(2,0)作直线l与双曲线有且只有一个交点,那么这样的直线l的条数为( )A.1B.215.过双曲线x2-=1的右焦点作直线与双曲线交于A,B两点,假设|AB|=16,这样的直线有( )16.(2021·长春高二检测)双曲线E的中心在原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB中点为N(-12,-15),那么E 的方程为( )A.-=1B.-=1C.-=1D.-=117.(2021·郑州高二检测)双曲线-=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为30°的直线交双曲线右支于M点,假设MF2⊥x轴,那么双曲线的离心率为( )A. B. C. D.18.F1,F2是双曲线-y2=1的两个焦点,过右焦点F2作倾斜角为的弦AB,那么△F1AB的面积为( )A. B.2 C. D.二、填空题19.点F1,F2分别是双曲线-=1(a>0)的左、右焦点,P是该双曲线上的一点,且|PF1|=2|PF2|=16,那么△PF1F2的周长是.20.(2021·唐山高二检测)P是双曲线-=1上一点,F1,F2是双曲线的两个焦点,假设|PF1|=17,那么|PF2|的值为.21.(2021·双鸭山高二检测)双曲线-=1(a>0,b>0)的两个焦点分别为F1(-2,0),F2(2,0),点P(3,)在双曲线上,那么双曲线方程为______________.22.(2021·黄石高二检测)F是双曲线-=1的左焦点,A(1,4),点P 是双曲线右支上的动点,那么|PF|+|PA|的最小值是.23.(2021·白山高二检测)设双曲线-=1(a>0)的渐近线方程为3x±2y=0,那么该双曲线的离心率为.24.过点A(6,1)作直线与双曲线x2-4y2=16相交于两点B,C,且A为线段BC的中点,那么直线的方程为.三、解答题25.如图,双曲线中c=2a,F1,F2为左、右焦点,P是双曲线上的点,∠F1PF2=60°,=12.求双曲线的标准方程.26.焦点在x轴上的双曲线,它的两条渐近线的夹角为,焦距为12,求此双曲线的方程及离心率.高二数学【文科】双曲线周练卷答案1.【解析】-=1,得a2=9,b2=7,所以c2=a2+b2=16,即c=4,所以焦距2c=8.2.【解析】2+ny2=1表示焦点在x轴上的双曲线,那么有m>0,n<0,故mn<0,假设m·n<0,那么m>0,n<0或m<0,n>0.应选B.3.【解析】选C.由(m-1)(m+3)>0,得m>1或m<-3.4.【解析】-=1,得a2=7,b2=9,所以c2=a2+b2=16,c=4,a=,所以F2(4,0)和F1(-4,0)为双曲线的焦点.由||PF1|-|PF2||=2a=2,故|PF1|=10+2或10-2.5.【解析】选B.因为||PF1|-|PF2||=2,所以|PF1|2-2|PF1|·|PF2|+|PF2|2=4,所以|PF1|2+|PF2|2=4+2|PF1|·|PF2|,由余弦定理知|PF1|2+|PF2|2-|F1F2|2=2|PF1|·|PF2|cos 60°,得|PF1|2+|PF2|2=|F1F2|2+|PF1|·|PF2|,又a=1,b=1,所以c==,所以|F1F2|=2c=2,所以4+2|PF1||PF2|=|PF1|·|PF2|+8,所以|PF1|·|PF2|=4.设P到x轴的距离为|y0|,=|PF1||PF2|sin 60°=|F1F2|·|y0|,所以×4×=×2|y0|,所以y0==.6.【解析】选B.选项B中,a2=4,b2=2,所以c2=a2+b2=6,所以a=2,c=,故e==.7.【解析】2+5=32,得a=2,所以e==.8.【解析】选B.因为双曲线的一条渐近线平行于直线x+2y-3=0,所以=-或=-,所以e==或.9.【解析】2-y2=1,得a2=1,b2=1,即a=1,b=1,所以渐近线方程为y=±x=±x.10.【解析】-=1(a>0,b>0),由所以a=2,又b2=c2-a2=12,所以双曲线的标准方程为-=1.11.【解析】选C.双曲线的右顶点为(2,0),渐近线方程为x-2y=0,那么顶点到渐近线的距离为=.12.【解析】选 C.联立直线y=kx+2与双曲线x2-y2=2,消元,得:(1-k2)x2-4kx-6=0,当1-k2=0时,k=±1,此时方程只有一解;当1-k2≠0时,要满足题意,Δ=16k2+24(1-k2)=0,即k=±.综上知:k的值是k=±1或k=±.13.【解析】l的条数为3.14.【解析】选B.因为点P(2,0)在双曲线含焦点的区域内,故只有当直线l与渐近线平行时才会与双曲线只有一个交点,故这样的直线只有两条.15.【解析】选C.过右焦点且垂直于x轴的弦长为16,因为|AB|=16,所以当l与双曲线的两交点都在右支上时只有一条.又因为实轴长为2,16>2,所以当l与双曲线的两交点在左、右两支上时应该有两条,共三条.16.【解析】l的斜率k==1,设双曲线方程为-=1(a>0,b>0),A(x1,y1),B(x2,y2),那么-=1,-=1,两式相减并结合x1+x2=-24,y1+y2=-30得=,从而=1,又因为a2+b2=c2=9,故a2=4,b2=5,所以E的方程为-=1.17.【解析】选B.将x=c代入双曲线的方程得y=,即M,在△MF1F2中,tan30°=,即=,解得e==.18.【解析】-y2=1,得a2=3,b2=1,c2=a2+b2=4,所以c=2,F1(-2,0),F2(2,0),直线AB:y=x-2.由得2x2-12x+15=0.设A(x1,y1),B(x2,y2),那么x1+x2=6,x1·x2=,所以|AB|=|x1-x2|=·=2.又F1到直线AB:x-y-2=0的距离为:d==2,所以=×d×|AB|=×2×2=2.19.【解析】因为|PF1|=2|PF2|=16,所以|PF1|-|PF2|=16-8=8=2a,所以a=4.又因为b2=9,所以c2=25,所以2c=10.所以△PF1F2的周长为|PF1|+|PF2|+|F1F2|=16+8+10=34.答案:3420.【解析】由条件知a2=64,即a=8,c2=b2+a2=100,c=10,所以双曲线右支上的点到左焦点F1的最短距离a+c=18>17,故点P在双曲线左支上.所以|PF2|-|PF1|=2a=16,即|PF2|=16+|PF1|=33.答案:3321.【解析】|PF1|==4,|PF2|==2,|PF1|-|PF2|=2=2a,所以a=,又c=2,故b2=c2-a2=2,所以双曲线的方程为-=1.答案:-=122.【解析】由双曲线-=1,得c=4,所以左焦点F(-4,0),右焦点F′(4,0),由双曲线的定义得:|PF|-|PF′|=2a=4,所以|PF|+|PA|=4+|PF′|+|PA|≥4+|AF′|=4+=9,此时P为AF′与双曲线的交点,即|PF|+|PA|的最小值为9.答案:923.【解析】因为双曲线的焦点在x轴上,且渐近线方程为3x±2y=0,所以=,所以该双曲线的离心率e==.答案:24.【解析】依题意可得直线的斜率存在,设为k(k≠0),那么直线的方程为y-1=k(x-6).设B(x1,y1),C(x2,y2),因为点A(6,1)为线段BC的中点,所以x1+x2=12,y1+y2=2.因为点B,C在双曲线x2-4y2=16上,所以由②-①得:(x2-x1)(x2+x1)-4(y2-y1)(y2+y1)=0,所以k====,所以经检验,直线的方程为y-1=(x-6),即3x-2y-16=0.答案:3x-2y-16=025.【解析】由题意可知双曲线的标准方程为-=1.由于||PF1|-|PF2||=2a,在△F1PF2中,由余弦定理得cos60°==,所以|PF1|·|PF2|=4(c2-a2)=4b2,所以=|PF1|·|PF2|·sin60°=2b2·=b2,从而有b2=12,所以b2=12,c=2a,结合c2=a2+b2,得a2=4.所以双曲线的标准方程为-=1.26.【解析】由可设双曲线的方程为-=1(a>0,b>0),所以两条渐近线为y=±x.因为两条渐近线的夹角为,故分两种情况,即y=x的倾斜角为或.当y=x的倾斜角为时,所以=tan=,所以=,即a2=3b2.又2c=12,所以c=6.由c2=a2+b2,得b2=9,a2=27.所以双曲线方程为-=1,e===.当y=x的倾斜角为时,所以=tan=,所以b2=3a2.又2c=12,所以c=6.由c2=a2+b2,得a2=9,b2=27.所以双曲线方程为-=1,e===2.。
高二数学双曲线试题一:选择题1.双曲线()2210x y mn m n -=≠的离心率为2,有一个焦点与椭圆2211625x y +=的焦点重合,那么m 的值为〔 〕 A . B .C .D .【答案】A2.以112422-=-y x 的焦点为顶点,顶点为焦点的椭圆方程为〔 〕 A .1121622=+y x B .1161222=+y x C .141622=+y x D .116422=+y x 【答案】A3.设12F F 、分别是双曲线2213y x -=的两个焦点,P 是该双曲线上的一点,且123||4||PF PF =,那么12PF F ∆的面积等于〔 〕 〔A 〕45〔B 〕315〔C 〕53 〔D 〕210【答案】B4.双曲线的中心在坐标原点,两个焦点为F 1〔﹣,0〕,F 2〔,0〕,点P 是此双曲线上的一点,且•=0,||•||=4,该双曲线的标准方程是〔 〕A .B .C .D .解:设双曲线的方程为:﹣=1, ∵两焦点F 1〔﹣,0〕,F 2〔,0〕,且•=0,∴⊥,∴△F 1PF 2为直角三角形,∠P 为直角; ∴+===28;①又点P 是此双曲线上的一点,∴||PF1|﹣|PF2||=2a,∴+﹣2|PF1|•|PF2|=4a2,由||•||=4得|PF1|•|PF2|=4,∴+﹣8=4a2,②由①②得:a2=5,又c2==7,∴b2=c2﹣a2=2.∴双曲线的方程为:﹣=1,应选C.5.双曲线E的中心为原点,P〔3,0〕是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N〔﹣12,﹣15〕,那么E的方程式为〔〕A.B.C.D.解:由条件易得直线l的斜率为k=k FN=1,设双曲线方程为,A〔x1,y1〕,B〔x2,y2〕,那么有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,应选B.6.椭圆和双曲线有公共的焦点,那么双曲线的渐近线方程是〔〕A.x=±B.y=C.x=D.y=解:∵椭圆和双曲线有公共焦点∴3m2﹣5n2=2m2+3n2,整理得m2=8n2,∴=2双曲线的渐近线方程为y=±=±x应选D7.中心在原点,焦点在x轴上的双曲线的离心率,其焦点到渐近线的距离为1,那么此双曲线的方程为〔〕A.﹣y2=1 B.﹣=1C.﹣y2=1D.x2﹣y2=1解:设双曲线的方程为,渐近线方程为∵双曲线的离心率,其焦点到渐近线的距离为1,∴,=1∴b=1,a=∴双曲线的方程为﹣y2=1应选A.8.抛物线y 2=8x 的准线与双曲线相交于A ,B 两点,点F 是抛物线的焦点,假设双曲线的一条渐近线方程是,且△FAB 是直角三角形,那么双曲线的标准方程是〔 〕 A .B .C .D .解:依题意知抛物线的准线x=﹣2.代入双曲线方程得 y=±.双曲线的一条渐近线方程是,∴那么不妨设A 〔﹣2,〕,F 〔2,0〕∵△FAB 是等腰直角三角形, ∴=4,解得:a=,b=4∴c 2=a 2+b 2=2+16=20,∴双曲线的标准方程是应选C9..椭圆2222:1(0)x y C a b a b +=>>的离心学率为32.双曲线221x y -=的渐近线与椭圆C有四个交点,以这四个焦点为顶点的四边形的面积为16,那么椭圆C 的方程为〔A 〕22182x y += 〔B 〕221126x y += 〔C 〕221164x y += 〔D 〕221205x y += 【答案】D【解析】因为椭圆的离心率为23,所以23==a c e ,2243a c =,222243b a a c -==,所以2241a b =,即224b a =,双曲线的渐近线为x y ±=,代入椭圆得12222=+bx a x ,即1454222222==+b x b x b x ,所以b x b x 52,5422±==,2254b y =,b y 52±=,那么第一象限的交点坐标为)52,52(b b ,所以四边形的面积为16516525242==⨯⨯b b b ,所以52=b ,所以椭圆方程为152022=+y x ,选D. 10.设F 1,F 2分别是双曲线的左、右焦点.假设双曲线上存在点A ,使∠F 1AF 2=90°,且|AF 1|=3|AF 2|,那么双曲线离心率为〔 〕 A .B .C .D .解:设F 1,F 2分别是双曲线的左、右焦点.假设双曲线上存在点A ,使∠F 1AF 2=90°,且|AF 1|=3|AF 2|, 设|AF 2|=1,|AF 1|=3,双曲线中2a=|AF 1|﹣|AF 2|=2,,∴离心率,应选B .11.设双曲线的﹣个焦点为F ;虚轴的﹣个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为〔 〕 A . B . C . D .解:设双曲线方程为,那么F 〔c ,0〕,B 〔0,b 〕 直线FB :bx+cy ﹣bc=0与渐近线y=垂直,所以,即b 2=ac所以c 2﹣a 2=ac ,即e 2﹣e ﹣1=0, 所以或〔舍去〕12.双曲线221124x y -=的右焦点为F ,假设过点F 的直线与双曲线的右支有且只有一个交点,那么此直线斜率的取值围是( C )A.33()B.(3,3)-C.33[D.[3,3]-【答案】C13.如图,F 1,F 2分别是双曲线C :22221x y a b-=〔a,b >0〕的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P,Q 两点,线段PQ 的垂直平分线与x 轴交与点M ,假设|MF 2|=|F 1F 2|,那么C 的离心率是A.233 B 。
高二文科数学圆锥曲线(六)基础训练二1.2,则该双曲线的实轴长为( B )A .2B .4C .D .2.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( C ) A .1条B .2条C .3条D .4条3.若抛物线y 2=2px 的焦点与椭圆22162x y+=的右焦点重合,则p 的值为( D ) A .-2B .2C .-4D .44.抛物线2ax y =的准线方程是1=y ,则a 的值为 ( C ) A .4B .4-C .41-D .415.直线440kx y k --=与抛物线2y x =交于A 、B 两点,若||4AB =,则弦AB 的中点到直线( C )B.2D.46.若其焦点在x 轴上,则k的取值范围是( C )A.3>kB. 53<<kC.54<<kD. 43<<k试题分析:焦点在x 轴上35045k k k ∴->->∴<< 7双曲线方程为( D )ABCD8.的左顶点A 的斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,C ) ABCD试题分析:所以点B 在第一象限,由题意可知点B 的,因为点A 的坐标为(,0)a -,所以又因为222b a c =-,9.已知双曲线x 21的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则1PA ·2PF的最小值为( A ) A .-2 BC .1D .0 设()(),1P x y x ≥,()()121,0,2,0A F - ()()121,2,PA PF x y x y ∴=-----22222223345x x y x x x x x =--+=--+-=--∴当1x =时取得最小值-210.如图,过抛物线y x 42=焦点的直线依次交抛物线与圆1)1(22=-+y x 于点A 、B 、C 、D ,则CD AB ∙的值是( D )A .8B .4C .2D .1 【解析】试题分析:利用特殊值法:过焦点的直线取1y =,此时AB CD =,y x 42=中令1y =得2x =±,1)1(22=-+y x 中令1y =得1x =±,()()2,1,1,1A B ∴--,()1,0AB = 1AB CD ∴=11.一动点到y 轴的距离比到点(2,0)的距离小2,则此动点的轨迹方程为___________.【答案】28y x =或0(0)y x =≤.12.从抛物线24y x =上一点P 引抛物线准线的垂线,垂足为M ,且,设抛物线的焦点为F,则c o s MPF ∠= .13.已知以双曲线C 的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60︒,则双曲线C 的离心率为 .【14.已知21,F F 为双曲线点A 在双曲线上,点M 21F AF∆的一条中线恰好在直线AM 上,则线段AM 长度为.【解析】试题分析:由题意,M 在直线OA 上,因为点M 坐标为所以直线OA 的方程为y=xx 2=12,所以x=±当A (MAM当A (M AM15.若直线y x m =-+与曲线则m的取值范围是________.或5m =16.设21,F F 分别是椭圆的左、右焦点,P 为椭圆上任一点,点M 的坐标为)4,6(,则的最大值为 . 【答案】15由题意F 2(3,0),|MF 2|=5,由椭圆的定义可得,|PM|+|PF 1|=2a+|PM|-|PF 2|=10+|PM|-|PF 2|≤10+|MF 2|=15,当且仅当P ,F 2,M 三点共线时取等号,故答案为:15 17表示的曲线为C ,给出下列四个命题: ①曲线C 不可能是圆; ②若41<<k ,则曲线C 为椭圆;③若曲线C 为双曲线,则1<k 或4>k ;④若曲线C 表示焦点在x 轴上的椭其中正确的命题是__________.【答案】③④【解析】试题分析:①当410k k -=->,即②当41<<k 时,表示椭圆;③若曲线C 为双曲线,则()()410k k --< ∴1<k 或4>k ;④曲线C 表示焦点在x 轴上18..过椭圆焦点,且垂直于x轴;,得26a =,所以24b =,19.已知椭圆4422=+y x ,直线l :y =x +m (1)若l 与椭圆有一个公共点,求m 的值;(2)若l 与椭圆相交于P ,Q 两点,且|PQ|等于椭圆的短轴长,求m 的值.【解析】(1)联立直线与椭圆方程⎩⎨⎧+==+m x y y x 4422得:04-48522=++m mx x ,(2)设)y (x ),(2211,,Q y x P ,由(1)知:20.(12分)已知过点)0,4(-A 的动直线l 与抛物线)0(2:2>=p py x G 相交于BC 两点,当直线l AB AC 4=。
卜人入州八九几市潮王学校高二数学选修2双曲线根底训练一、选择题1.〔〕动点P 到点)0,1(M 及点)0,3(N 的间隔之差为2,那么点P 的轨迹是〔〕A .双曲线B .双曲线的一支C .两条射线D .一条射线 D 2,2PMPN MN -==而,P ∴在线段MN 的延长线上2.〔〕设双曲线的半焦距为c ,两条准线间的间隔为d ,且d c =,那么双曲线的离心率e 等于〔〕A .2B .3C .2D .3C 2222222,2,2,a c c c a e e c a===== 3.〔〕过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,假设∠21π=QPF ,那么双曲线的离心率e 等于〔〕A .12-B .2C .12+D .22+C Δ12PF F 是等腰直角三角形,21212,PF F F c PF ===4.〔〕假设直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是〔〕A .〔315,315-〕B .〔315,0〕C .〔0,315-〕D .〔1,315--〕 D 2222226,(2)6,(1)41002x y x kx k x kx y kx ⎧-=-+=---=⎨=+⎩有两个不同的正根那么221221224024040,11001k k x x k x x k ⎧∆=->⎪⎪⎪+=>⎨-⎪-⎪=>⎪-⎩得1k <<- 二、填空题 5.双曲线221txy -=的一条渐近线与直线210x y ++=垂直,那么这双曲线的离心率为___。
y =,其中一条与与直线210x y ++=11,24t ==6.双曲线的渐近线方程为20x y±=,焦距为10,这双曲线的方程为_______________。
221205x y -=±设双曲线的方程为224,(0)x y λλ-=≠,焦距2210,25c c == 当0λ>时,221,25,2044x y λλλλλ-=+==;当0λ<时,221,()25,2044y x λλλλλ-=-+-==---7.假设曲线22141x y k k+=+-表示双曲线,那么k 的取值范围是。
高二数学双曲线几何性质同步练习(含答案 )双曲线方程的观察是圆锥曲线的要点知识点,以下是双曲线几何性质同步练习,请大家认真练习。
1.动点与点与点知足,则点的轨迹方程为______________2.假如双曲线的渐近线方程为,则离心率为____________3.过原点的直线与双曲线有两个交点,则直线的斜率的取值范围为 _____________4.已知双曲线的离心率为,则的范围为____________________5.已知椭圆和双曲线有公共焦点,那么双曲线的渐近线方程为 _____6.已知双曲线的中心在原点,两个焦点分别为和,点在双曲线上且,且的面积为 1,则双曲线的方程为__________________7.若双曲线的一条渐近线的倾斜角为,其离心率为.8.双曲线的两条渐近线相互垂直,则双曲线的离心率为.9.设是双曲线上一点,双曲线的一条渐近线方程为,分别是双曲线的左、右焦点,若,则的值为.10.若双曲线的两个焦点分别为,且经过点,则双曲线的标准方程为 .11.若椭圆和双曲线有同样的焦点,点是两条曲线的一个交点,则的值为.12.是双曲线左支上的一点,为其左、右焦点,且焦距为,则的内切圆圆心的横坐标为 .13.过双曲线的一个焦点且与双曲线的实轴垂直的弦叫做双曲线的通径,则双曲线- =1 的通径的长是 _______________ 14.双曲线 16x2-9y2=144 上一点 P(x0,y0)(x00 ) 到左焦点距离为 4,则 x0= .15.已知双曲线的左、右焦点分别为,为双曲线上一点,若且,求双曲线的方程.16.如图,某农场在处有一堆肥料沿道路或送到大田中去,已知,,且,,可否在大田中确立一条界限,使位于界限一侧沿送肥料较近 ?若能,请成立适合坐标系求出这条界限方程 .17.试求以椭圆+ =1 的右焦点为圆心,且与双曲线- =1 的渐近线相切的圆方程.参照答案1.2. 或 3.4.5. 6. 7. 8. 9. 7 10.11. 12. 13. 14.15。
高二(文科)双曲线周测试题姓名____________学号_____ 班别_______一.选择题:每小题5分,共50分1、双曲线221102x y -=的焦距为2. 双曲线2214x y k-=的离心率e ∈(1, 2),则k 的取值范围是 A .(0, 6) B . (3, 12) C . (1, 3) D . (0, 12) 3.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线 4. “ab<0”是“方程ax 2+by 2=c 表示双曲线”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.双曲线221169x y -=上的点P 到点(5, 0)的距离是15则点P 到点(-5, 0)的距离是 A.7 B.23 C.5或25 D.7或236.双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞]7 .椭圆222212x y m n +=与双曲线222212x y m n-=有公共焦点,则椭圆的离心率是AB C D8.已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e ,则双曲线方程为(A )22x a -224y a=1(B)222215x y a a -= (C)222214x y b b -= (D)222215x y b b-=9.设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为(A )1342222=-y x (B)15132222=-y x (C)1432222=-y x (D)112132222=-y x10、已知双曲线22:1916x y C -=的左右焦点分别为F 1、F 2 ,P 为C 的右支上一点,且||||212PF F F =,则△PF 1F 2 的面积等于 (A )24 (B )36 (C )48 (D )96二填空题: 每小题5分,共25分11.若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是 。
欢迎来主页下载---精品文档 双曲线基础练习题 、选择题 已知 a=3,c=5,并且焦点在 x 轴上,则双曲线的标准程是(x 2 9 16 巳知 b = 4 2 2 x y 2. 2 2 y =1 B. 2 —1 9 16 2 2 x y “ C. 1 9 16 2 D.x_ 2 —1 16 9 3. A. 4. A. 5、6. 8. 16 双曲线 ,c=5,并且焦点在 y 轴上, 则双曲线的标准方程是 1 B. 9 2 2 x y ’ 1 16 9 2 x C.— 9 2 丄=1 16 D. 2 丄=1 9 16 x 2 2 x 2 y 16 9B. 14 2 x 2 y 双曲线12 16 9 0)、(-5, =1上P 点到左焦点的距离是 6,贝U P 到右焦点的距离是( C. 16 D. 18 =1的焦点坐标是 0) B. (0, 5)、 (5, 方程 J (X_5)2 +y 2 _¥;(x + 5)2 +y 2 2 2 — 9 16 已知实轴长是 -5) C. (0, =6化简得: 2 2 x y B. 1 C. 16 9 9 2 2 x y 1 16焦距是10的双曲线的标准方程是( 5)、( 5, 0) D. ( 0, -5)、(-5, 0) 2 x D. 16 =1 9 16 9 16 9 16 16 9 2 2 2 2 2 2 2 2 x -1 1 和x L 二 1 x 1 D. / 1和 _x y .1 16 916 9 25 16 16 25 过点 A (1, 0) 和B (21) 的双曲线标准方 '程( ) 2 x -2y 2 =1 B.- x 2 y 22 =1 C . x 2 -y 2 =1 D.- x 2 2y C. 7. A . 2 2 —1 2 2 2 —=1 上一点,A 、 2 x P 为双曲线—— 2 2 B. —1 和. 2 2 A .仝丄「和 2 =1 B 为双曲线的左右焦点,且 AP 垂直PB ,则三角形PAB 的 16 9 面积为( 18 C . 24 D . 36 9•双曲线 2 2—-—=1的顶点坐标是16 9欢迎来主页下载---精品文档A . (4, 0)、(-4, 0)B . (0, -4)、( 0, 4)C . (0, 3)、( 0, -3)D . (3, 0)、(-3, 0)10•已知双曲线a =1, e 二.2且焦点在x 轴上,则双曲线的标准方程是() 2^2, 22, 22, 2^2^A . x —2y 1B . x - y 1C .一 x y 1 D. 一 x 2y 12 211•双曲线L 一址 1的的渐近线方程是( )16 9A . 4x 士 3y=0B . 3x 士 4y=0C . 9x 士 16y=0D . 16x 士 9y=012•已知双曲线的渐近线为 3x :4y =0,且焦距为10,则双曲线标准方程是( )二、填空题10,焦距是16,则双曲线的标准方程是 _12,离心率等于2,则双曲线的标准方程是二1表示焦点在y 轴的双曲线的标准方程,t 的取值范围是 20. 椭圆C 以双曲线x 2 -y 2 =1焦点为顶点,且以双曲线的顶点作为焦点,则椭圆的标准方程是x 2V 2 21.直线y =x 1与双曲线 ______________________ 1相交于代B 两点,贝V AB =2 32 2x y .A . 1 B. 2 2 N 厶=1 16 9 2 x C.— 9 2 16 D. 2 x 16 2 「1 9 2 x13 .方程—— 1+k 1-kA . -1 :: k :::12 —=1表示双曲线,则 k 的取值范围是(C . k _0 k 1 或 k 一1 14.过双曲线16 =1左焦点F 1的弦AB 长为6,则.ABF 2 (F 2为右焦点)的周长( A . 28B . 22C . 14 12 2 、“ x15 .万程—— 9—k 4+k=1的曲线是双曲线,则它的焦点坐标是 (A)( ± 13, 0)(B)(0 ,± 13) (C)( 土,13, 0) (D)(0 , ±、13) 17 .已知双曲线虚轴长 18 .已知双曲线焦距是 2 2 - x 丄y19 .已知—— 5—t t+622 .双曲线3mx2—my2 =3的一个焦点是(0, 2),则m的值是 ________________欢迎来主页下载---精品文档三、解答题2 224. 已知双曲线C :- —— = 1,写出双曲线的实轴顶点坐标,虚轴顶点坐标,焦点坐标,渐近16 9线方程。
高二数学双曲线试题1.双曲线(,)的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为()A.B.C.D.【答案】B【解析】设,易求M坐标为,在三角形中,即,由得,答案选B.【考点】双曲线的性质2.已知双曲线的右焦点是抛物线的焦点,两曲线的一个公共点为,且,则双曲线的离心率为A.B.C.D.【答案】C【解析】由题意可得:双曲线的焦点为,且两曲线的一个公共点为在y轴右侧,因为,因此可设点,所以,所以,所以双曲线的离心率为.【考点】双曲线、抛物线的定义及性质.3.与双曲线有共同的渐近线,并且过点A(6,8)的双曲线的标准方程为__________.【答案】【解析】设所求双曲线为,把点(6,8)代入,得,解得λ=-4,∴所求的双曲线的标准方程为.故答案为:.【考点】双曲线的性质和应用.4.已知集合P={x|1≤x≤8,x∈Z},直线y=2x+1与双曲线mx2-ny2=1有且只有一个公共点,其中m、n∈P,则满足上述条件的双曲线共有__________________个.【答案】3【解析】依题意,将直线y=2x+1与双曲线mx2-ny2=1的方程联立,消去y得:(m-4n)x2-4nx-n-1=0;分①直线y=2x+1与双曲线mx2-ny2=1相切,②直线y=2x+1与双曲线mx2-ny2=1相交,讨论,分利用判别式与直线y=2x+1与双曲线mx2-ny2=1的一条渐近线y=x平行即可求得答案.【考点】直线与双曲线的位置关系.5.已知双曲线中心在原点,一个焦点为,点P在双曲线上,且线段的中点坐标为(0,2),则此双曲线的方程是________________.【答案】【解析】由题可得P(,4),∵,∴把P(,4)代入双曲线标准方程,解方程组即可.【考点】双曲线的标准方程.6.双曲线的焦距是10,则实数的值是()A.B.4C.16D.81【答案】C【解析】由双曲线的方程,可得,而,所以由可得,故选C.【考点】双曲线的定义及其标准方程.7.设P是双曲线上一点,该双曲线的一条渐近线方程是,分别是双曲线的左、右焦点,若,则等于 ( )A.2B.18C.2或18D.16【答案】C【解析】因为双曲线渐近线方程是,所以又因为,所以等于2或18【考点】双曲线定义,渐近线方程8.已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是()A.B.C.D.【答案】C【解析】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,∴,离心率=,∴,故选C.【考点】1、双曲线的性质;2、直线与圆锥曲线的位置关系.9.抛物线的准线与双曲线交于两点,点为抛物线的焦点,若△为直角三角形,则双曲线的离心率为()A.B.C.D.【答案】D【解析】先根据抛物线方程求得准线方程,代入双曲线方程求得,根据双曲线的对称性可知为等腰直角三角形,进而可求得或的纵坐标为,进而求得,利用和的关系求得,则双曲线的离心率可得. 解:依题意知抛物线的准线方程为,代入双曲线的方程得,不妨设,设准线与轴的交点为,∵是直角三角形,所以根据双曲线的对称性可知,为等腰直角三角形,所以即,解得,∴,所以离心率为,选D.【考点】双曲线的性质.10.若中心在原点,以坐标轴为对称轴的圆锥曲线,离心率为,且过点,则曲线的方程为________.【答案】【解析】离心率为的圆锥曲线是双曲线,而且是等轴双曲线,故可设基方程为,把点代入可求出.因此双曲线方程为.【考点】等轴双曲线的标准方程.11.过双曲线的左焦点且垂直于x轴的直线与双曲线相交于M、N两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于______.【答案】2.【解析】本题MN实质上是双曲线的通径,(可令代入双曲线方程求出的坐标,从而得出通径长),根据题意应该有,.【考点】双曲线的通径与离心率.12.已知双曲线(a>0,b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离是.(Ⅰ)求双曲线的方程及渐近线方程;(Ⅱ)若直线y=kx+5 (k≠0)与双曲线交于不同的两点C、D,且两点都在以A为圆心的同一个圆上,求k的值.【答案】(Ⅰ),;(Ⅱ)=【解析】本题主要考察双曲线的标准方程、韦达定理等基础知识,考察学生运算能力、综合分析和解决问题的能力.(Ⅰ)离心率为,∴,∴①,直线的方程为即,利用点到直线的距离公式得到:②,两式联立,可求出,∴双曲线方程为,渐近线方程为:;(Ⅱ)两点在以为圆心的同一个圆上,的中垂线过点,将直线与双曲线联立,消去,可得,设,中点为,则∴,解得=,并检验是否满足(.试题解析:(Ⅰ)直线的方程为:即又原点到直线的距离由得 3分所求双曲线方程为 4分(注:也可由面积法求得)渐近线方程为: 5分(Ⅱ)方法1:由(1)可知(0,-1),设,由得: 7分∴3+3+=3+3+,整理得:=0,∵,∴,∴,又由-10+25-3=0 (),∴y+y=, 10分2=7, 11分由△=100-4(1-3)(25-3)>0=7满足此条件,满足题设的=. 12分方法2:设,中点为,由, 7分∵,的中垂线过点 9分∵∴ 11分整理得解得=.(满足 12分【考点】1、双曲线的标准方程;2、点到直线的距离公式和直线方程;3、韦达定理.13.双曲线的焦距为()A.B.C.D.【答案】D【解析】中,所以,双曲线的焦距为2c=,故选D。
高二双曲线练习题1. 某商品的价格符合双曲线方程 y = 10/x,其中 x 表示销量,y 表示价格。
已知某一时刻的销量为 100 个单位,请计算该时刻商品的价格。
解答:代入双曲线方程 y = 10/x,将销量 x 置为 100,得到 y = 10/100 = 0.1。
因此,在销量为 100 个单位时,该商品的价格为 0.1。
2. 设点 A(-2, 3) 为双曲线 C:y = 1/x 的一个焦点,且其离心率为 e = 2/3。
求双曲线 C 的方程,并找出双曲线 C 上离该焦点最近的点的坐标。
解答:由离心率定义可得,焦点到顶点的距离除以顶点到直线的距离应等于离心率,即 c/a = e。
其中 c 为焦点到原点的距离,a 为焦点到顶点的距离。
已知离心率 e = 2/3,焦点 A(-2, 3) 到原点的距离 c,即为 A 的横坐标,c = -2。
又由于 C 的方程为 y = 1/x,离焦点 A 最近的点的坐标即为使点到对称轴距离最小的点。
由对称轴为 y = 0 可知,对称轴上离该焦点最近的点的坐标即为 (x, 0)。
设该点到焦点 A 的距离为 d,则有 d = sqrt((x+2)^2 + 3^2)。
要使 d 最小,即要使 d 的平方最小,即要使 ((x+2)^2 + 3^2) 最小。
进一步,这等价于要使 (x+2)^2 最小。
因此,离焦点 A 最近的点的坐标为 (x, 0),其中 x 为使 (x+2)^2 最小的值。
显然,当 x = -2 时,(x+2)^2 最小,因此该离焦点 A 最近的点的坐标为 (-2, 0)。
综上,双曲线 C 的方程为 y = 1/x,离焦点 A(-2, 3) 最近的点的坐标为 (-2, 0)。
3. 设双曲线 C 方程为 y = 4/x,点 P(a, b) 是双曲线 C 上的一点,且P 到 x 轴距离为 1。
求点 P 的坐标。
解答:设点 P(a, b) 到 x 轴的距离为 1,则 b = 1。