高二(文科)双曲线周测试题
- 格式:doc
- 大小:195.50 KB
- 文档页数:4
高二〔文科〕双曲线练习题一、选择题1.a=3,c=5,并且焦点在x 轴上,那么双曲线的标准程是〔 〕A .116922=+y x B. 116922=-y x C. 116922=+-y x 1916.22=-y x D 2.,5,4==c b 并且焦点在y 轴上,那么双曲线的标准方程是〔 〕A .191622=-y x B. 191622=+-y x C.116922=+y x D.116922=-y x 3..双曲线191622=-y x 上P 点到左焦点的距离是6,那么P 到右焦点的距离是〔 〕 A. 12 B. 14 C. 16 D. 184..双曲线191622=-y x 的焦点坐标是 〔 〕 A. 〔5,0〕、〔-5,0〕B. 〔0,5〕、〔0,-5〕 C. 〔0,5〕、〔5,0〕 D.〔0,-5〕、〔-5,0〕5、方程6)5()5(2222=++-+-y x y x 化简得:A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 6.实轴长是6,焦距是10的双曲线的标准方程是〔 〕A ..116922=-y x 和116922=+-y x B. 116922=-y x 和191622=+-y x C. 191622=-y x 和191622=+-y x D. 1162522=-y x 和1251622=+-y x 7.过点A 〔1,0〕和B 〔)1,2的双曲线标准方程〔 〕A .1222=-y xB .122=+-y xC .122=-y x D. 1222=+-y x8.P 为双曲线191622=-y x 上一点,A 、B 为双曲线的左右焦点,且AP 垂直PB ,那么三角形PAB 的面积为〔 〕 A . 9 B . 18 C . 24 D . 369.双曲线191622=-y x 的顶点坐标是 〔 〕 A .〔4,0〕、〔-4,0〕 B .〔0,-4〕、〔0,4〕C .〔0,3〕、〔0,-3〕 D .〔3,0〕、〔-3,0〕10.双曲线21==e a ,且焦点在x 轴上,那么双曲线的标准方程是〔 〕A .1222=-y xB .122=-y xC .122=+-y x D. 1222=+-y x11.双曲线191622=-y x 的的渐近线方程是〔 〕 A . 034=±y x B .043=±y x C .0169=±y x D .0916=±y x12.双曲线的渐近线为043=±y x ,且焦距为10,那么双曲线标准方程是〔 〕A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 13.方程11122=-++ky k x 表示双曲线,那么k 的取值范围是〔 〕 A .11<<-k B .0>k C .0≥k D .1>k 或1-<k14.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,那么2ABF ∆〔F 2为右焦点〕的周长〔 〕 A .28 B .22 C .14 D .1215.方程x k y k22941--+=的曲线是双曲线,那么它的焦点坐标是 ( ) (A)(±13,0) (B)(0,±13) (C)(±13,0) (D)(0,±13)16.设双曲线2218y x -=的两个焦点为12,F F ,P 是双曲线上的一点,且12||:||=3:4PF PF ,那么△PF 1 F 2的面积等于( )二、填空题17.双曲线虚轴长10,焦距是16,那么双曲线的标准方程是________________.18.双曲线焦距是12,离心率等于2,那么双曲线的标准方程是___________________.19.16522=++-t y t x 表示焦点在y 轴的双曲线的标准方程,t 的取值范围是___________. 20.椭圆C 以双曲线122=-y x 焦点为顶点,且以双曲线的顶点作为焦点,那么椭圆的标准方程是___________________三、解答题21.求满足以下条件的标准方程(1)求以椭圆18522=+y x 的焦点为顶点,且以椭圆的顶点为焦点的双曲线的方程。
高二数学双曲线试题一:选择题1.双曲线()2210x y mn m n -=≠的离心率为2,有一个焦点与椭圆2211625x y +=的焦点重合,那么m 的值为〔 〕 A . B .C .D .【答案】A2.以112422-=-y x 的焦点为顶点,顶点为焦点的椭圆方程为〔 〕 A .1121622=+y x B .1161222=+y x C .141622=+y x D .116422=+y x 【答案】A3.设12F F 、分别是双曲线2213y x -=的两个焦点,P 是该双曲线上的一点,且123||4||PF PF =,那么12PF F ∆的面积等于〔 〕 〔A 〕45〔B 〕315〔C 〕53 〔D 〕210【答案】B4.双曲线的中心在坐标原点,两个焦点为F 1〔﹣,0〕,F 2〔,0〕,点P 是此双曲线上的一点,且•=0,||•||=4,该双曲线的标准方程是〔 〕A .B .C .D .解:设双曲线的方程为:﹣=1, ∵两焦点F 1〔﹣,0〕,F 2〔,0〕,且•=0,∴⊥,∴△F 1PF 2为直角三角形,∠P 为直角; ∴+===28;①又点P 是此双曲线上的一点,∴||PF1|﹣|PF2||=2a,∴+﹣2|PF1|•|PF2|=4a2,由||•||=4得|PF1|•|PF2|=4,∴+﹣8=4a2,②由①②得:a2=5,又c2==7,∴b2=c2﹣a2=2.∴双曲线的方程为:﹣=1,应选C.5.双曲线E的中心为原点,P〔3,0〕是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N〔﹣12,﹣15〕,那么E的方程式为〔〕A.B.C.D.解:由条件易得直线l的斜率为k=k FN=1,设双曲线方程为,A〔x1,y1〕,B〔x2,y2〕,那么有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,应选B.6.椭圆和双曲线有公共的焦点,那么双曲线的渐近线方程是〔〕A.x=±B.y=C.x=D.y=解:∵椭圆和双曲线有公共焦点∴3m2﹣5n2=2m2+3n2,整理得m2=8n2,∴=2双曲线的渐近线方程为y=±=±x应选D7.中心在原点,焦点在x轴上的双曲线的离心率,其焦点到渐近线的距离为1,那么此双曲线的方程为〔〕A.﹣y2=1 B.﹣=1C.﹣y2=1D.x2﹣y2=1解:设双曲线的方程为,渐近线方程为∵双曲线的离心率,其焦点到渐近线的距离为1,∴,=1∴b=1,a=∴双曲线的方程为﹣y2=1应选A.8.抛物线y 2=8x 的准线与双曲线相交于A ,B 两点,点F 是抛物线的焦点,假设双曲线的一条渐近线方程是,且△FAB 是直角三角形,那么双曲线的标准方程是〔 〕 A .B .C .D .解:依题意知抛物线的准线x=﹣2.代入双曲线方程得 y=±.双曲线的一条渐近线方程是,∴那么不妨设A 〔﹣2,〕,F 〔2,0〕∵△FAB 是等腰直角三角形, ∴=4,解得:a=,b=4∴c 2=a 2+b 2=2+16=20,∴双曲线的标准方程是应选C9..椭圆2222:1(0)x y C a b a b +=>>的离心学率为32.双曲线221x y -=的渐近线与椭圆C有四个交点,以这四个焦点为顶点的四边形的面积为16,那么椭圆C 的方程为〔A 〕22182x y += 〔B 〕221126x y += 〔C 〕221164x y += 〔D 〕221205x y += 【答案】D【解析】因为椭圆的离心率为23,所以23==a c e ,2243a c =,222243b a a c -==,所以2241a b =,即224b a =,双曲线的渐近线为x y ±=,代入椭圆得12222=+bx a x ,即1454222222==+b x b x b x ,所以b x b x 52,5422±==,2254b y =,b y 52±=,那么第一象限的交点坐标为)52,52(b b ,所以四边形的面积为16516525242==⨯⨯b b b ,所以52=b ,所以椭圆方程为152022=+y x ,选D. 10.设F 1,F 2分别是双曲线的左、右焦点.假设双曲线上存在点A ,使∠F 1AF 2=90°,且|AF 1|=3|AF 2|,那么双曲线离心率为〔 〕 A .B .C .D .解:设F 1,F 2分别是双曲线的左、右焦点.假设双曲线上存在点A ,使∠F 1AF 2=90°,且|AF 1|=3|AF 2|, 设|AF 2|=1,|AF 1|=3,双曲线中2a=|AF 1|﹣|AF 2|=2,,∴离心率,应选B .11.设双曲线的﹣个焦点为F ;虚轴的﹣个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为〔 〕 A . B . C . D .解:设双曲线方程为,那么F 〔c ,0〕,B 〔0,b 〕 直线FB :bx+cy ﹣bc=0与渐近线y=垂直,所以,即b 2=ac所以c 2﹣a 2=ac ,即e 2﹣e ﹣1=0, 所以或〔舍去〕12.双曲线221124x y -=的右焦点为F ,假设过点F 的直线与双曲线的右支有且只有一个交点,那么此直线斜率的取值围是( C )A.33()B.(3,3)-C.33[D.[3,3]-【答案】C13.如图,F 1,F 2分别是双曲线C :22221x y a b-=〔a,b >0〕的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P,Q 两点,线段PQ 的垂直平分线与x 轴交与点M ,假设|MF 2|=|F 1F 2|,那么C 的离心率是A.233 B 。
高考二轮复习文科数学周测卷卷(十二)圆锥曲线双曲线周测专练Word 版含分析1 / 7衡水万卷周测卷十二文数圆锥曲线双曲线周测专练姓名: __________班级: __________考号: __________题号 一二三总分得分一、选择题(本大题共 12 小题,每题 5 分,共 60 分。
在每题给出的四个选项中,只有一个选项是切合题目要求的)1.抛物线 y 24x 的焦点到双曲线 x 2y 21的渐近线的距离是()3(A )1(B )3(C )1(D ) 3222.已知点 M ( 3,0), N (3,0), B(1,0), 动圆 C 与直线 MN 切于点 B ,过 M , N 与圆 C 相切的两直线订交于点P ,则点 P 的轨迹方程为()2y21(x1)B. x 2y21(x1)A. x88C. x 2y 21(x0)D. x 2y 2 1(x 1)8103.双曲线x 2y 2 1(mn 0) 离心率为 2,有一个焦点与抛物线 y 2 4 x 的焦点重合,则 mn 的值为()mnA. 3B. 3C. 16D.816833 4.双曲线x 2y 2 1 的渐近线与圆 (x 3)2 y 2 r 2 ( r 0) 相切,则 r 等于 ()63A.3B.2C.3D.6x 2y 21(a 0,b 0)FF5.已知双曲线a2b 2的右焦点为 ,若过点 且倾斜角为60 的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A. (1,2)B.(- 1,2)C.( 2, +∞)D. [2,)6.已知 F , A 分别为双曲线x 2 y 2的左焦点 . 右极点,点 B(0,b) 知足 FB AB0 ,则双曲线的离心率等于a 2b 21(a0,b0)( )A.2B. 313D. 15C.2222y 2 y27.已知双曲线 x2 1(a 0,b 0) 的一条渐近线方程是y 3x ,它的一个焦点在抛物线24 x 的准线上,则双曲线ab的方程为 ( )x2y 21x 2y21x2y2x 2y2A.36 108B. 927C.1081D. 2713698.设 F 1 , F 2 分别是双曲线 x 2 y 21 的左 .右焦点,若双曲线上存在点A ,使 AF 1 AF 20 ,且 AF 13 AF 2 ,则双曲线的离a 2b 2心率为( )A.5B. 10C. 15D.52222 29.已知抛物线 y 22 px( p0)与双曲线 xy 1 (a 0,b0) 有同样的焦点 F ,点 A 是a 2b 2双曲线的离心率为()A.5 1 B.21C.31D.22 12210.已知双曲线 x 2 y 2 1(a0,b0) 的左极点与抛物线y 2 2 px( p0) 的焦点的距离为a 2b 2线的准线的交点坐标为 ( 2, 1) ,则双曲线的焦距为()A. 23B. 2 5C. 4 3D. 4 511.已知点 F 1, F 2 分别是双曲线 x 2y 20) 的左 .右焦点,过 F 1 且垂直a 21(a 0,bb 2两点,若△ ABF 2 是锐角三角形,则该双曲线离心率的取值范围是()A. (1, 3)B. (3,2 2)C. (12,)x 2y 212.已知双曲线C :a 2b 21 的左、右焦点分别是F 1, F2 ,正三角形AF 1F2 的一边AF 14BF1 ,则双曲线C 的离心率的值是()3113113 1A .2B .3C .3二、填空题(本大题共 4 小题,每题 5 分,共 20 分)13.已知 F 是双曲线x 2y 2 1 的左焦点, A(1,4) 是双曲线外一点, P 是双曲线右支上的41214.已知双曲线中心在原点,一个焦点为F 1 ( 5,0) ,点 P 在双曲线上,且线段 PF 1 的线的离心率是.15.设 F 1 , F 2 是双曲线x 2 y 2 1(a>0,b>0) 的两个焦点。
高二(文科)双曲线周测试题姓名____________学号_____ 班别_______一.选择题:每小题5分,共50分1、双曲线221102x y -=的焦距为2. 双曲线2214x y k-=的离心率e ∈(1, 2),则k 的取值范围是 A .(0, 6) B . (3, 12) C . (1, 3) D . (0, 12) 3.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线 4. “ab<0”是“方程ax 2+by 2=c 表示双曲线”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.双曲线221169x y -=上的点P 到点(5, 0)的距离是15则点P 到点(-5, 0)的距离是 A.7 B.23 C.5或25 D.7或236.双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞]7 .椭圆222212x y m n +=与双曲线222212x y m n-=有公共焦点,则椭圆的离心率是AB C D8.已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e ,则双曲线方程为(A )22x a -224y a=1(B)222215x y a a -= (C)222214x y b b -= (D)222215x y b b-=9.设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为(A )1342222=-y x (B)15132222=-y x (C)1432222=-y x (D)112132222=-y x10、已知双曲线22:1916x y C -=的左右焦点分别为F 1、F 2 ,P 为C 的右支上一点,且||||212PF F F =,则△PF 1F 2 的面积等于 (A )24 (B )36 (C )48 (D )96二填空题: 每小题5分,共25分11.若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是 。
高二数学双曲线试题答案及解析1.设是关于t的方程的两个不等实根,则过,两点的直线与双曲线的公共点的个数为A.3B.2C.1D.0【答案】D【解析】关于t的方程的不同的两根为0,,不妨取=0,=,直线AB 过原点,斜率为==,恰是双曲线的一条渐近线,故与该双曲线的公共点的个数为0,故选D.【考点】直线的方程,双曲线的渐近线,2.已知F1、F2分别为双曲线的左、右焦点,点P为双曲线右支上的一点,满足,且,则该双曲线离心率为.【答案】.【解析】,在中,设,则,.【考点】双曲线的离心率.3.在平面直角坐标系中,已知中心在坐标原点的双曲线经过点,且它的右焦点与抛物线的焦点相同,则该双曲线的标准方程为.【答案】.【解析】由于抛物线的焦点坐标为:,由已知得:双曲线C的右焦点F的坐标为,又因为双曲线C的中心在坐标原点,所以可设所求双曲线C的方程为:且,从而有:,故设所求双曲线C的方程为:.【考点】双曲线.4.双曲线的顶点到其渐近线的距离等于()A.B.C.1D.【答案】B.【解析】由题意可知双曲线的顶点坐标为,渐近线方程为,因此顶点到渐近线的距离为.【考点】双曲线的标准方程与渐近线方程.5.已知双曲线与抛物线有一个共同的焦点F, 点M是双曲线与抛物线的一个交点, 若, 则此双曲线的离心率等于( ).A.B.C.D.【答案】A【解析】:∵抛物线的焦点F(,0),∴由题意知双曲线的一个焦点为F(c,0),>a,(1)即p>2a.∴双曲线方程为,∵点M是双曲线与抛物线的一个交点, 若,∴p点横坐标x=,代入抛物线y2=8x得P,把P代入双曲线P,得,解得或因为p>2a.所以舍去,故(2)联立(1)(2)两式得c=2a,即e=2.故选A.【考点】抛物线的简单性质;双曲线的离心率的求法.6.已知双曲线的两条渐近线的夹角为,则双曲线的离心率的值是.【答案】【解析】根据渐近线方程有,可知其渐近线的斜率的绝对值小于1,所以两条渐近线的倾斜角分别是与,则根据,得,根据双曲线中有则离心率为.【考点】双曲线渐近线,离心率.7.双曲线的离心率为()A.B.C.D.【答案】C【解析】依题意可得,所以,所以该双曲线的离心率,故选C.【考点】双曲线的标准方程及其几何性质.8.在平面直角坐标系xOy中,已知焦点在x轴上的双曲线的渐近线方程为x±2y=0,则该双曲线的离心率为.【答案】【解析】因为焦点在x轴上的双曲线的渐近线方程为,所以【考点】双曲线渐近线方程9.若双曲线的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的渐近线方程是()A.B.C.D.【答案】C【解析】因为双曲线的一个焦点到一条渐近线的距离为所以因此因为双曲线的渐近线方程为所以该双曲线的渐近线方程是.【考点】双曲线的渐近线方程10.设、分别为双曲线的左、右焦点.若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的渐近线方程为()A.B.C.D.【答案】C【解析】因为,所以三角形为等腰三角形,因此到直线的距离等于底边上的高线长,从而因此又所以该双曲线的渐近线方程为.【考点】双曲线的渐近线11.双曲线的离心率大于的充分必要条件是()A.B.C.D.【答案】C【解析】由题可知,,,因为,所以,故选C.【考点】双曲线的离心率.12.若双曲线的渐近线方程为,则它的离心率为.【答案】.【解析】由双曲线的渐近线方程为及性质可知,两边平方得,即.【考点】双曲线的几何性质.13.已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于 .【答案】2【解析】由题意知抛物线的焦点为,∴;双曲线的焦点到其渐近线的距离.【考点】双曲线的定义、抛物线的定义.14.已知、为双曲线C:的左、右焦点,点在曲线上,∠=,则到轴的距离为()A.B.C.D.【答案】B【解析】题中唯一的条件是,为了充分利用此条件,我们设,且不妨设,则根据双曲线定义有,对利用余弦定理有,即,因此可求得,下面最简单的方法是利用面积法求得到轴的距离,,可得。
高二数学双曲线试题答案及解析1.已知抛物线()的焦点为双曲线()的一个焦点,经过两曲线交点的直线恰过点,则该双曲线的离心率为()A.B.C.D.【答案】B【解析】抛物线()的焦点,它也是双曲线()的一个焦点,所以有①,由两曲线交点的直线恰过点,可知它们在第一象限的交点为,此点也在双曲线上,故有②,由①②消去,得,即,即,因为,所以,选择B,求离心率的值关键是寻找到关于的等式,然后转化到的方程,从而解出.【考点】圆锥曲线的性质2.双曲线的渐近线方程为.【答案】【解析】由题意得:双曲线的渐近线方程为即.【考点】双曲线的渐近线方程3.过双曲线的左焦点作圆的两条切线,切点分别为、,双曲线左顶点为,若,则该双曲线的离心率为( )A.B.C.3D.2【答案】D.【解析】如图,根据对称性,,∴为等边三角形,∴,∴.【考点】双曲线离心率的计算.4.若双曲线的离心率为2,则等于()A.B.C.D.1【答案】D.【解析】由,又∵.【考点】双曲线的标准方程.5.双曲线的顶点到其渐近线的距离等于()A.B.C.1D.【答案】B.【解析】由题意可知双曲线的顶点坐标为,渐近线方程为,因此顶点到渐近线的距离为.【考点】双曲线的标准方程与渐近线方程.6.直线与曲线的交点个数为()A.0B.1C.2D.3【答案】B.【解析】根据曲线的方程可分两种情况讨论:(1)当时,联立曲线方程与直线得:,应舍去;(2)当时,联立曲线方程与直线得:.【考点】直线与曲线的综合应用.7.已知双曲线,点为其两个焦点,点P为双曲线上一点,若,则的值为__________.【答案】.【解析】根据双曲线方程为,可得焦距,因为,所以.再结合双曲线的定义,得到,最后联解、配方,可得,从而得到.故答案为:.【考点】双曲线的简单性质.8.与双曲线有共同的渐近线,并且过点A(6,8)的双曲线的标准方程为__________.【答案】【解析】设所求双曲线为,把点(6,8)代入,得,解得λ=-4,∴所求的双曲线的标准方程为.故答案为:.【考点】双曲线的性质和应用.9.如图,设有双曲线,F1,F2是其两个焦点,点M在双曲线上.(1)若∠F1MF2=90°,求△F1MF2的面积;(2)若∠F1MF2=60°,△F1MF2的面积是多少?若∠F1MF2=120°,△F1MF2的面积又是多少?(3)观察以上计算结果,你能看出随∠F1MF2的变化,△F1MF2的面积将怎样变化吗?试证明你的结论.【答案】(1) ; (2) ,; (3) θ增大时面积变小,证明过程见解析.【解析】(1) 设,, 直角三角形△F1MF2中,利用双曲线定义得,平方得,求得面积;(2) △F1MF2中由余弦定理可得,|MF1|·|MF2|,由面积公式可得面积;(3) 由双曲线定义与余弦定理,可得面积与θ的关系,所以θ增大时面积变小.解:(1)由双曲线方程知a=2,b=3,,设, ().由双曲线定义,有,两边平方得,,即,也即,求得. 4分(2)若∠F1MF2=60°,在△MF1F2中,由余弦定理得, ,所以.求得.同理可求得若∠F1MF2=120°, . 8分(3)由以上结果猜想,随着∠F1MF2的增大,△F1MF2的面积将减小.证明如下:令∠F1MF2=θ,则.由双曲线定义及余弦定理,有②-①得,所以,因为0<θ<π,,在内,是增函数,因此当θ增大时, 将减小. 12分【考点】双曲线的定义,余弦定理,三角形面积公式.10.设双曲线的两条渐近线与直线分别交于A,B两点,F为该双曲线的右焦点.若, 则该双曲线的离心率的取值范围是( )A.B.C.D.【答案】B【解析】由双曲线方程可知其渐近线方程为,将代入上式可得即。
高二数学双曲线试题答案及解析1.设双曲线的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为()A.B.5C.D.【答案】C【解析】将双曲线的渐进线方程代如抛物线方程y=x2+1中化简得,由只有一公共点可知即,所以即,答案选C.【考点】1.双曲线的渐进线方程;2.直线与抛物线的位置关系2.已知P是双曲线的右支上一点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为e,下列命题正确的是( ).A.双曲线的焦点到渐近线的距离为; B.若,则e的最大值为;C.△PF1F2的内切圆的圆心的横坐标为b ;D.若∠F1PF2的外角平分线交x轴与M, 则.【答案】D【解析】的焦点坐标为,渐近线方程为,对于选项A, 焦点到渐近线的距离,故A错;对于选项B,设,若,令所以即解得.故B错;对于选项C:如图,设切点A,由切线长定理得:,即,所以,故△PF1F2的内切圆的圆心的横坐标为a,所以选项C错.对于选项D:由外角平分线定理得:,故选D.【考点】渐近线方程;点到直线的距离公式;焦半径公式;外角平分线定理;合比定理.3.设双曲线的两条渐近线与直线分别交于A,B两点,F为该双曲线的右焦点.若, 则该双曲线的离心率的取值范围是( )A.B.C.D.【答案】B【解析】由双曲线方程可知其渐近线方程为,将代入上式可得即。
因为,由图形的对称性可知,即。
因为,所以,即。
因为,所以。
故B正确。
【考点】双曲线的简单几何性质。
4.过双曲线C:的一个焦点作圆的两条切线,切点分别为,若(是坐标原点),则双曲线C的离心率为____;【答案】【解析】,结合图形可知,为等腰直角三角形,F为焦点.可得,即.【考点】双曲线的几何性质.5.是否同时存在满足下列条件的双曲线,若存在,求出其方程,若不存在,说明理由.(1)焦点在轴上的双曲线渐近线方程为;(2)点到双曲线上动点的距离最小值为.【答案】存在双曲线的方程满足题中的两个条件.【解析】先根据(1)的条件设出双曲线的方程,再设双曲线上的动点,然后利用两点间的距离公式得出,结合,最后化简得到,根据二次函数的图像与性质确定的最小值(含),并由计算出的值,如果有解并满足即可写出双曲线的方程;如果无解,则不存在满足要求的双曲线方程.试题解析:由(1)知,设双曲线为设在双曲线上,由双曲线焦点在轴上,,在双曲线上关于的二次函数的对称轴为即所以存在双曲线的方程满足题中的两个条件.【考点】1.双曲线的标准方程及其几何性质;2.二次函数的图像与性质.6.过双曲线的一个焦点作垂直于实轴的弦,是另一焦点,若是钝角三角形,则双曲线的离心率范围是()A.B.C.D.【答案】C【解析】根据题意,△PQF1是等腰直角三角形,且被F1F2分成两个全等的等腰直角三角形.由此结合双曲线的定义,可解出a=(-1)c,即可得到该双曲线的离心率.【考点】求双曲线的离心率问题.7.已知中心在原点且焦点在x轴的双曲线C,过点P(2,)且离心率为2,则双曲线C的标准方程为____________.【答案】【解析】设此双曲线方程为,所以解得,所以此双曲线方程为。
高二数学周考(文科) 椭圆及其标准方程一、选择题(本大题共10小题,每小题4分,共40分)1.设21,F F 为定点,|21F F |=6,动点M 满足6||||21=+MF MF ,则动点M 的轨迹是 ( ) A.椭圆 B.直线 C.圆 D.线段2. 动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线3.已知椭圆的离心率为21,焦点是(-3,0),(3,0),则椭圆方程为 ( ) A .1273622=+y x B .1273622=-y x C .1362722=+y x D .1362722=-y x 4.若椭圆的离心率为21,左焦点到相应的左顶点的距离为1,则椭圆的长轴长是( ) A.4 B.3C. 2D. 325.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( ) A. 22; B. 2; C.21; D. 23;6.椭圆12222=+by a x 和2222(0)x y k k a b +=>具有 ( )A 、相同的长轴B 、相同的焦点C 、相同的顶点D 、相同的离心率7. 已知椭圆两焦点F 1(-1,0), F 2(1,0), P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,那么该椭圆方程是 ( )(A)14322=+y x ; (B) 13422=+y x ; (C) 191622=+y x ; (D) 1121622=+y x .8..椭圆171622=+y x 的左右焦点为21,F F ,一直线过1F 交椭圆于A 、B 两点,则2ABF ∆的周长为( )A.32B.16C.8D.49.椭圆192522=+y x 上一点M 到焦点1F 的距离为2,N 是1MF 的中点,则ON 等于( ) A 、2 B 、4 C 、8 D 、3210..已知F 1,F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A,B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( )A .3B .3C .2 D. 2二、填空题(本大题共4小题,每小题4分,共16分) 11.焦距为4,长轴为8的椭圆的标准方程是 12. 若曲线22141x y k k +=+-表示双曲线,则k 的取值范围是 . 13.椭圆22189x y k +=+的离心率为12,则k 的值为______________。
高二数学双曲线试题答案及解析1.已知抛物线的准线与双曲线交于A,B两点,点F为抛物线的焦点,若为直角三角形,则双曲线的离心率是A.B.C.2D.3【答案】B【解析】抛物线的准线方程,设,焦点,由于为直角三角形,,,所以得,,.【考点】双曲线的离心率.2.已知双曲线方程,则过点和双曲线只有一个交点的直线有________条.【答案】【解析】由双曲线方程可知它是焦点在轴上的等轴双曲线,直线为它的渐近线,点在两个顶点之间,过可作与渐近线平行的两条直线,它们与此双曲线都各有一个公共点,但它们与双曲线是相交关系,此外过还可以作两条与双曲线右支都相切的直线,因此过点和双曲线只有一个交点的直线共有条,要注意两条是相交,另两条是相切,关注双曲线渐近线的特殊作用.【考点】直线与双曲线的位置关系.3.已知F是双曲线的左焦点,A为右顶点,上下虚轴端点B、C,若FB交CA于D,且,则此双曲线的离心率为().A . B. C. D.【答案】B.【解析】如图,由已知可得直线FB的方程为:,直线AC的方程为:,联立前两方程可得D点坐标为:,因此有,又,所以有,整理得,又,所以有:即,故.【考点】直线方程的交点问题,两点间的距离公式(或向量的模长公式),双曲线的性质(含离心率公式).4.在平面直角坐标系中,已知中心在坐标原点的双曲线经过点,且它的右焦点与抛物线的焦点相同,则该双曲线的标准方程为.【答案】.【解析】由于抛物线的焦点坐标为:,由已知得:双曲线C的右焦点F的坐标为,又因为双曲线C的中心在坐标原点,所以可设所求双曲线C的方程为:且,从而有:,故设所求双曲线C的方程为:.【考点】双曲线.5.已知P是双曲线的右支上一点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为e,下列命题正确的是( ).A.双曲线的焦点到渐近线的距离为; B.若,则e的最大值为;C.△PF1F2的内切圆的圆心的横坐标为a ;D.若∠F1PF2的外角平分线交x轴与M, 则.【答案】C【解析】的焦点坐标为,渐近线方程为,对于选项A, 焦点到渐近线的距离,故A错;对于选项B,设,若,令所以即解得.故B错;对于选项C:如图,设切点A,由切线长定理得:,即,所以,故△PF1F2的内切圆的圆心的横坐标为a,所以选项C正确对于选项D:由外角平分线定理得:,故选项D错误,故选项为C..【考点】渐近线方程;点到直线的距离公式;焦半径公式;外角平分线定理;合比定理.6.若双曲线的渐近线与方程为的圆相切,则此双曲线的离心率为.【答案】【解析】先根据双曲线方程求得双曲线的渐近线,进而利用圆心到渐近线的距离为圆的半径求得和的关系,进而利用求得和的关系,则双曲线的离心率可求.【考点】双曲线的简单性质.7.若抛物线的焦点与双曲线的右焦点重合,则p的值为()A.B.C.D.【答案】C【解析】双曲线的右焦点坐标为(2,0),而抛物线的焦点坐标为(,0),∴=2,p=4.【考点】抛物线与双曲线的焦点坐标.8.若抛物线的焦点与双曲线的右焦点重合,则的值为()A.2B.4C.8D.【答案】C【解析】抛物线的焦点F为(,0),双曲线的右焦点F2(4,0),由已知得=4,∴p=8.故选C.【考点】圆锥曲线的共同特征.9.设为双曲线的两个焦点,点在双曲线上且,则的面积是【答案】1【解析】由题意可得a=1,b=2,c=,得F2(0,),F1(0,-),又F1F22=20,|PF1-PF2|=4,由勾股定理可得:F1F22=PF12+PF22=(PF1-PF2)2+2PF1•PF2=16+2PF1•PF2,∴PF1•PF2=2,所以=1.故选B..【考点】双曲线的简单性质.10.在平面直角坐标系xOy中,已知焦点在x轴上的双曲线的渐近线方程为x±2y=0,则该双曲线的离心率为.【答案】【解析】因为焦点在x轴上的双曲线的渐近线方程为,所以【考点】双曲线渐近线方程11.双曲线的焦点到它的渐近线的距离为_________________;【答案】1【解析】由双曲线方程可知,则,即,所以焦点为,渐近线为。
高二数学双曲线试题答案及解析1.双曲线的渐近线与圆相切,则双曲线离心率为(). A.B.2C.D.3【答案】B【解析】双曲线的渐近线方程是,即;因为渐近线与圆相切,所以,即,则,.【考点】双曲线的几何性质.2.已知,分别是双曲线的左、右焦点,过点且垂直于轴的直线与双曲线交于,两点,若是钝角三角形,则该双曲线离心率的取值范围是A.B.C.D.【答案】B【解析】为钝角三角形,且,,即,,,即,.【考点】双曲线的简单几何性质.3.双曲线上的一点到一个焦点的距离等于1,那么点到另一个焦点的距离为 .【答案】17.【解析】首先将已知的双曲线方程转化为标准方程,然后根据双曲线的定义知双曲线上的点到两个焦点的距离之差的绝对值为,即可求出点到另一个焦点的距离为17.【考点】双曲线的定义.4.若双曲线的左焦点在抛物线的准线上,则P的值为A.2B.3C.4D.【答案】C【解析】双曲线的左焦点坐标为:,抛物线y2=2px的准线方程为,所以,解得:p=4,故选C.【考点】双曲线和抛物线的性质.5.若原点和点分别是双曲线的中心和左焦点,点为双曲线右支上的任意一点,则的取值范围为 ( )A.B.C.D.【答案】A【解析】因为是双曲线的左焦点,所以,解得,所以双曲线的方程为,设点,则有,因为,所以,此二次函数对应的抛物线的对称轴为,而,所以当时,取得最小值,所以的取值范围为,选A.【考点】1.双曲线的标准方程及其几何性质;2.二次函数的图像与性质.6.以下四个关于圆锥曲线的命题中:①设为两个定点,为非零常数,,则动点的轨迹为双曲线;②过定圆上一定点作圆的动点弦,为坐标原点,若则动点的轨迹为圆;③,则双曲线与的离心率相同;④已知两定点和一动点,若,则点的轨迹关于原点对称.其中真命题的序号为(写出所有真命题的序号).【答案】②③④【解析】对于①,由双曲线的定义可知,动点的轨迹为双曲线的一支,所以①不正确;对于②,由,可知点为弦的中点,连结,则有即,而均为定点,所以点的轨迹是以为直径的圆,所以②正确;对于③,设的离心率分别为,则有,,所以③正确;对于④,设动点,则由可得,将代入等式左边可得,所以动点的轨迹关于原点对称,即④正确;综上可知,真命题的序号是②③④.【考点】1.双曲线的定义;2.动点的轨迹问题;3.双曲线的离心率.7.过双曲线的一个焦点作垂直于实轴的弦,是另一焦点,若是钝角三角形,则双曲线的离心率范围是()A.B.C.D.【答案】C【解析】根据题意,△PQF1是等腰直角三角形,且被F1F2分成两个全等的等腰直角三角形.由此结合双曲线的定义,可解出a=(-1)c,即可得到该双曲线的离心率.【考点】求双曲线的离心率问题.8.双曲线的离心率为_______;渐近线方程为_______.【答案】2;【解析】由于双曲线,所以,所以所以离心率.故填2.由于双曲线的焦点在x轴上,所以渐近线的方程为.故填.【考点】1.双曲线的性质.2.双曲线中三个基本量的关系.9.已知,,,则动点的轨迹是()A.双曲线B.圆C.椭圆D.抛物线【答案】D【解析】∵<=4∴由双曲线定义知点P的轨迹是双曲线.【考点】双曲线的定义.10.双曲线的渐近线方程是 .【答案】【解析】因为双曲线的渐近线方程为,所以可得所求渐近线方程为.【考点】双曲线的几何性质.11.双曲线的渐近线方程为 .【答案】【解析】因为双曲线的方程为,所以,所以该双曲线的渐近线方程为.【考点】双曲线的性质.12.抛物线的焦点F恰好是双曲线的右焦点,且它们的交点的连线过点F,则双曲线的离心率为.【答案】【解析】因为抛物线的焦点为.所以.由于双曲线与抛物线的对称性可知,要使两交点的连线过.只有一种情况该直线垂直于x轴.因此可得抛物线过点代入抛物线的方程可得离心率为.故填.【考点】1.双曲线的性质.2.抛物线的性质.3.圆锥图形的对称性.4.离心率的概念.13.设是双曲线的两个焦点,是上一点,若,且的最小内角为,则的离心率为()A.B.C.D.【答案】D【解析】不妨设是双曲线右支上的一点,根据定义可得,又,所以,又且,所以的最小内角为,根据余弦定理可得,又,即代入化简可得,故选D.【考点】1.双曲线的定义;2.用余弦定理解三角形.14.已知双曲线的两个焦点为F1(-,0)、F2(,0),M是此双曲线上的一点,且满足则该双曲线的方程是()A.B.C.D.【答案】A【解析】由题意知且,所以。
高二(文科)双曲线周测试题
姓名____________学号_____ 班别_______ 得分__________
1、双曲线
22
1102
x y -=的焦距为
2. 双曲线
22
14x y k
-=的离心率e ∈(1, 2),则k 的取值范围是 A .(0, 6) B . (3, 12) C . (1, 3) D . (0, 12) 3.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是
%
A .双曲线
B .双曲线的一支
C .两条射线
D .一条射线
4. “ab<0”是“方程ax 2+by 2=c 表示双曲线”的
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
5.双曲线
22
1169
x y -=上的点P 到点(5, 0)的距离是15则点P 到点(-5, 0)的距离是 .23 C 或25 或23
6.双曲线22
221x y a b
-=(a >0,b >0)的两个焦点为F 1、
F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双
曲线离心率的取值范围为
A.(1,3
) B.(1,3)
C.(3,+∞)
D. [3,+∞]
7 .椭圆222
212x y m n +=与双曲线22
2212
x y m n
-=有公共焦点,则椭圆的离心率是 A
2
B C D
8.已知双曲线22
221x y a b
-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e ,则双
曲线方程为
@
(A )22x a -2
24y a =1
(B)222215x y a a -= (C)222214x y b b -= (D)22
2215x y b b
-=
9.设椭圆C 1的离心率为
13
5,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为
(A )1342222=-y x (B)15132222=-y x (C)1432222=-y x (D)112
1322
22=-y x
10、已知双曲线22
:1916x y C -=的左右焦点分别为
F 1、F 2 ,P 为C 的右支上一点,且
||||212
PF F F =,则△PF 1F 2 的面积等于 (A )24 (B )36 (C )48 (D )96
二填空题: 每小题5分,共25分
11.若曲线
22
141x y k k +=+-表示双曲线,则k 的取值范围是 。
12、双曲线
2212x y m m -=与椭圆22
1530
x y +=有共同的焦点,则m = . 13.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________。
14. 若双曲线的顶点为椭圆12
2
2
=+y x 长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是 .
¥
15.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 .
三.解答题:(16题10分, 17题15分)
16.已知中心在原点的双曲线C 的一个焦点是1(30)F -,,20y -=.求双曲
线C 的方程
17.已知双曲线22
22:1(0,0)x y C a b a b
-->>的两个焦点为:(2,0),:(2,0),F F P -点,在双曲
线C 上. (Ⅰ)求双曲线C 的方程; (Ⅱ)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交
于不同的两点E 、F ,若△OEF 的面积为求直线l 的方程.
@
高二(文科)双曲线周测试题答案
11.(,4)(1,)-∞-+∞ 12 .25
3-
13.
2
2
1205
x y -=± 14. 22
122
y x -= 15. 3 16题略 17. (1)解:依题意得,双曲线的半焦距c =2.
2a =|PF 1|-|PF 2|=,22)7()23()7()23(2
2
2
2
=+--++ ∴a 2=2,b 2=c 2-a 2=2.
∴双曲线C 的方程为.12
222=-y x (Ⅱ)依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理,
得(1-k 2)x 2-4kx -6=0.
∵直线I 与双曲线C 相交于不同的两点E 、F ,
∴⎩⎨⎧-±≠⇔⎪⎩⎪⎨⎧-⨯+-=∆≠-,
33,10)1(64)4(,
012
22
<<,>k k k k k ∴k ∈(-1,3-)∪(1,3).
设E (x 1,y 1),F (x 2,y 2),则由①式得x 1+x 2=,16
,142
2
12k x x k k -=-于是 |EF |=22122
212
21))(1()()(x x k y y x x -+=
-+-
=|
1|32214)(12
2
2
212
212
k k k x x x x k
--+=-++•
•
而原点O 到直线l 的距离d =
2
12k
+,
∴S ΔOEF =.|
1|322|1|322112
21||212
2
222
2
k k k k k k EF d --=--++=••
•
• 若S ΔOEF =22,即,0222|
1|3222
42
2=--⇔=--k k k k 解得k =±2,。