高二(文科)双曲线基础练习题
- 格式:doc
- 大小:173.54 KB
- 文档页数:4
高二(文科)双曲线练习题一、选择题1.已知a=3,c=5,并且焦点在x 轴上,则双曲线的标准程是( )A .116922=+y x B. 116922=-y x C. 116922=+-y x 1916.22=-y x D 2.已知,5,4==c b 并且焦点在y 轴上,则双曲线的标准方程是( )A .191622=-y x B. 191622=+-y x C.116922=+y x D.116922=-y x 3..双曲线191622=-y x 上P 点到左焦点的距离是6,则P 到右焦点的距离是( ) A. 12 B. 14 C. 16 D. 184..双曲线191622=-y x 的焦点坐标是 ( ) A. (5,0)、(-5,0)B. (0,5)、(0,-5) C. (0,5)、(5,0) D.(0,-5)、(-5,0)5、方程6)5()5(2222=++-+-y x y x 化简得:A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 6.已知实轴长是6,焦距是10的双曲线的标准方程是( )A ..116922=-y x 和116922=+-y x B. 116922=-y x 和191622=+-y x C. 191622=-y x 和191622=+-y x D. 1162522=-y x 和1251622=+-y x 7.过点A (1,0)和B ()1,2的双曲线标准方程( )A .1222=-y xB .122=+-y xC .122=-y x D. 1222=+-y x8.P 为双曲线191622=-y x 上一点,A 、B 为双曲线的左右焦点,且AP 垂直PB ,则三角形PAB 的面积为( ) A . 9 B . 18 C . 24 D . 369.双曲线191622=-y x 的顶点坐标是 ( ) A .(4,0)、(-4,0) B .(0,-4)、(0,4)C .(0,3)、(0,-3) D .(3,0)、(-3,0)10.已知双曲线21==e a ,且焦点在x 轴上,则双曲线的标准方程是( ) A .1222=-y x B .122=-y x C .122=+-y x D. 1222=+-y x11.双曲线191622=-y x 的的渐近线方程是( ) A . 034=±y x B .043=±y x C .0169=±y x D .0916=±y x12.已知双曲线的渐近线为043=±y x ,且焦距为10,则双曲线标准方程是( )A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 13.方程11122=-++ky k x 表示双曲线,则k 的取值范围是( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k14.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长( ) A .28 B .22 C .14 D .1215.方程x k y k22941--+=的曲线是双曲线,则它的焦点坐标是 ( ) (A)(±13,0) (B)(0,±13) (C)(±13,0) (D)(0,±13)16.设双曲线2218y x -=的两个焦点为12,F F ,P 是双曲线上的一点,且12||:||=3:4PF PF ,则△PF 1 F 2的面积等于( )二、填空题17.已知双曲线虚轴长10,焦距是16,则双曲线的标准方程是________________.18.已知双曲线焦距是12,离心率等于2,则双曲线的标准方程是___________________.19.已知16522=++-t y t x 表示焦点在y 轴的双曲线的标准方程,t 的取值范围是___________. 20.椭圆C 以双曲线122=-y x 焦点为顶点,且以双曲线的顶点作为焦点,则椭圆的标准方程是___________________三、解答题21.求满足下列条件的标准方程 (1)求以椭圆18522=+y x 的焦点为顶点,且以椭圆的顶点为焦点的双曲线的方程。
高二数学【文科】双曲线周练卷一.选择题1.(2021·长春高二检测)双曲线-=1的焦距为( )A. B.22.“mn<0”是“方程mx2+ny2=1表示焦点在x轴上的双曲线〞的( )3.假设方程-=1表示双曲线,那么实数m的取值范围是( )≠1且m≠-3 B.m>1C.m<-3或m>1D.-3<m<14.(2021·南昌高二检测)设双曲线-=1上的点P到点(4,0)的距离为10,那么点P到点(-4,0)的距离为( )A.16B.16+2C.10+2或10-25.(2021·济宁高二检测)F1,F2为双曲线C:x2-y2=1的左、右焦点,点P 在C上,∠F1PF2=60°,那么P到x轴的距离为( )A. B. C. D.6.以下曲线中离心率为的是( )A.-=1B.-=1C.-=1D.-=17.双曲线-=1的右焦点为(3,0),那么该双曲线的离心率等于A. B. C. D.8.(2021·兰州高二检测)对称轴为坐标轴的双曲线有一条渐近线平行于直线x+2y-3=0,那么该双曲线的离心率为( )A. 5或B.或C.或D. 5或9.(2021·温州高二检测)双曲线x2-y2=1的渐近线方程是( )A.x=±1B.y=±xC.y=±xD.y=±x10.(2021·太原高二检测)双曲线的离心率为2,焦点是(-4,0),(4,0),那么双曲线方程为( )A.-=1B.-=1C.-=1D.-=111.(2021·福建高考)双曲线-y2=1的顶点到渐近线的距离等于( )A. B. C. D.12.(2021·兰州高二检测)直线y=kx+2与双曲线x2-y2=2有且只有一个交点,那么k的值是( )A.k=±1B.k=±C.k=±1或k=±D.k=±13.过点A(4,3)作直线l,如果它与双曲线-=1只有一个公共点,那么直线l的条数为( )A.1B.2C.314.(2021·重庆高二检测)双曲线x2-y2=2,过定点P(2,0)作直线l与双曲线有且只有一个交点,那么这样的直线l的条数为( )A.1B.215.过双曲线x2-=1的右焦点作直线与双曲线交于A,B两点,假设|AB|=16,这样的直线有( )16.(2021·长春高二检测)双曲线E的中心在原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB中点为N(-12,-15),那么E 的方程为( )A.-=1B.-=1C.-=1D.-=117.(2021·郑州高二检测)双曲线-=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为30°的直线交双曲线右支于M点,假设MF2⊥x轴,那么双曲线的离心率为( )A. B. C. D.18.F1,F2是双曲线-y2=1的两个焦点,过右焦点F2作倾斜角为的弦AB,那么△F1AB的面积为( )A. B.2 C. D.二、填空题19.点F1,F2分别是双曲线-=1(a>0)的左、右焦点,P是该双曲线上的一点,且|PF1|=2|PF2|=16,那么△PF1F2的周长是.20.(2021·唐山高二检测)P是双曲线-=1上一点,F1,F2是双曲线的两个焦点,假设|PF1|=17,那么|PF2|的值为.21.(2021·双鸭山高二检测)双曲线-=1(a>0,b>0)的两个焦点分别为F1(-2,0),F2(2,0),点P(3,)在双曲线上,那么双曲线方程为______________.22.(2021·黄石高二检测)F是双曲线-=1的左焦点,A(1,4),点P 是双曲线右支上的动点,那么|PF|+|PA|的最小值是.23.(2021·白山高二检测)设双曲线-=1(a>0)的渐近线方程为3x±2y=0,那么该双曲线的离心率为.24.过点A(6,1)作直线与双曲线x2-4y2=16相交于两点B,C,且A为线段BC的中点,那么直线的方程为.三、解答题25.如图,双曲线中c=2a,F1,F2为左、右焦点,P是双曲线上的点,∠F1PF2=60°,=12.求双曲线的标准方程.26.焦点在x轴上的双曲线,它的两条渐近线的夹角为,焦距为12,求此双曲线的方程及离心率.高二数学【文科】双曲线周练卷答案1.【解析】-=1,得a2=9,b2=7,所以c2=a2+b2=16,即c=4,所以焦距2c=8.2.【解析】2+ny2=1表示焦点在x轴上的双曲线,那么有m>0,n<0,故mn<0,假设m·n<0,那么m>0,n<0或m<0,n>0.应选B.3.【解析】选C.由(m-1)(m+3)>0,得m>1或m<-3.4.【解析】-=1,得a2=7,b2=9,所以c2=a2+b2=16,c=4,a=,所以F2(4,0)和F1(-4,0)为双曲线的焦点.由||PF1|-|PF2||=2a=2,故|PF1|=10+2或10-2.5.【解析】选B.因为||PF1|-|PF2||=2,所以|PF1|2-2|PF1|·|PF2|+|PF2|2=4,所以|PF1|2+|PF2|2=4+2|PF1|·|PF2|,由余弦定理知|PF1|2+|PF2|2-|F1F2|2=2|PF1|·|PF2|cos 60°,得|PF1|2+|PF2|2=|F1F2|2+|PF1|·|PF2|,又a=1,b=1,所以c==,所以|F1F2|=2c=2,所以4+2|PF1||PF2|=|PF1|·|PF2|+8,所以|PF1|·|PF2|=4.设P到x轴的距离为|y0|,=|PF1||PF2|sin 60°=|F1F2|·|y0|,所以×4×=×2|y0|,所以y0==.6.【解析】选B.选项B中,a2=4,b2=2,所以c2=a2+b2=6,所以a=2,c=,故e==.7.【解析】2+5=32,得a=2,所以e==.8.【解析】选B.因为双曲线的一条渐近线平行于直线x+2y-3=0,所以=-或=-,所以e==或.9.【解析】2-y2=1,得a2=1,b2=1,即a=1,b=1,所以渐近线方程为y=±x=±x.10.【解析】-=1(a>0,b>0),由所以a=2,又b2=c2-a2=12,所以双曲线的标准方程为-=1.11.【解析】选C.双曲线的右顶点为(2,0),渐近线方程为x-2y=0,那么顶点到渐近线的距离为=.12.【解析】选 C.联立直线y=kx+2与双曲线x2-y2=2,消元,得:(1-k2)x2-4kx-6=0,当1-k2=0时,k=±1,此时方程只有一解;当1-k2≠0时,要满足题意,Δ=16k2+24(1-k2)=0,即k=±.综上知:k的值是k=±1或k=±.13.【解析】l的条数为3.14.【解析】选B.因为点P(2,0)在双曲线含焦点的区域内,故只有当直线l与渐近线平行时才会与双曲线只有一个交点,故这样的直线只有两条.15.【解析】选C.过右焦点且垂直于x轴的弦长为16,因为|AB|=16,所以当l与双曲线的两交点都在右支上时只有一条.又因为实轴长为2,16>2,所以当l与双曲线的两交点在左、右两支上时应该有两条,共三条.16.【解析】l的斜率k==1,设双曲线方程为-=1(a>0,b>0),A(x1,y1),B(x2,y2),那么-=1,-=1,两式相减并结合x1+x2=-24,y1+y2=-30得=,从而=1,又因为a2+b2=c2=9,故a2=4,b2=5,所以E的方程为-=1.17.【解析】选B.将x=c代入双曲线的方程得y=,即M,在△MF1F2中,tan30°=,即=,解得e==.18.【解析】-y2=1,得a2=3,b2=1,c2=a2+b2=4,所以c=2,F1(-2,0),F2(2,0),直线AB:y=x-2.由得2x2-12x+15=0.设A(x1,y1),B(x2,y2),那么x1+x2=6,x1·x2=,所以|AB|=|x1-x2|=·=2.又F1到直线AB:x-y-2=0的距离为:d==2,所以=×d×|AB|=×2×2=2.19.【解析】因为|PF1|=2|PF2|=16,所以|PF1|-|PF2|=16-8=8=2a,所以a=4.又因为b2=9,所以c2=25,所以2c=10.所以△PF1F2的周长为|PF1|+|PF2|+|F1F2|=16+8+10=34.答案:3420.【解析】由条件知a2=64,即a=8,c2=b2+a2=100,c=10,所以双曲线右支上的点到左焦点F1的最短距离a+c=18>17,故点P在双曲线左支上.所以|PF2|-|PF1|=2a=16,即|PF2|=16+|PF1|=33.答案:3321.【解析】|PF1|==4,|PF2|==2,|PF1|-|PF2|=2=2a,所以a=,又c=2,故b2=c2-a2=2,所以双曲线的方程为-=1.答案:-=122.【解析】由双曲线-=1,得c=4,所以左焦点F(-4,0),右焦点F′(4,0),由双曲线的定义得:|PF|-|PF′|=2a=4,所以|PF|+|PA|=4+|PF′|+|PA|≥4+|AF′|=4+=9,此时P为AF′与双曲线的交点,即|PF|+|PA|的最小值为9.答案:923.【解析】因为双曲线的焦点在x轴上,且渐近线方程为3x±2y=0,所以=,所以该双曲线的离心率e==.答案:24.【解析】依题意可得直线的斜率存在,设为k(k≠0),那么直线的方程为y-1=k(x-6).设B(x1,y1),C(x2,y2),因为点A(6,1)为线段BC的中点,所以x1+x2=12,y1+y2=2.因为点B,C在双曲线x2-4y2=16上,所以由②-①得:(x2-x1)(x2+x1)-4(y2-y1)(y2+y1)=0,所以k====,所以经检验,直线的方程为y-1=(x-6),即3x-2y-16=0.答案:3x-2y-16=025.【解析】由题意可知双曲线的标准方程为-=1.由于||PF1|-|PF2||=2a,在△F1PF2中,由余弦定理得cos60°==,所以|PF1|·|PF2|=4(c2-a2)=4b2,所以=|PF1|·|PF2|·sin60°=2b2·=b2,从而有b2=12,所以b2=12,c=2a,结合c2=a2+b2,得a2=4.所以双曲线的标准方程为-=1.26.【解析】由可设双曲线的方程为-=1(a>0,b>0),所以两条渐近线为y=±x.因为两条渐近线的夹角为,故分两种情况,即y=x的倾斜角为或.当y=x的倾斜角为时,所以=tan=,所以=,即a2=3b2.又2c=12,所以c=6.由c2=a2+b2,得b2=9,a2=27.所以双曲线方程为-=1,e===.当y=x的倾斜角为时,所以=tan=,所以b2=3a2.又2c=12,所以c=6.由c2=a2+b2,得a2=9,b2=27.所以双曲线方程为-=1,e===2.。
高二数学双曲线试题一:选择题1.双曲线()2210x y mn m n -=≠的离心率为2,有一个焦点与椭圆2211625x y +=的焦点重合,那么m 的值为〔 〕 A . B .C .D .【答案】A2.以112422-=-y x 的焦点为顶点,顶点为焦点的椭圆方程为〔 〕 A .1121622=+y x B .1161222=+y x C .141622=+y x D .116422=+y x 【答案】A3.设12F F 、分别是双曲线2213y x -=的两个焦点,P 是该双曲线上的一点,且123||4||PF PF =,那么12PF F ∆的面积等于〔 〕 〔A 〕45〔B 〕315〔C 〕53 〔D 〕210【答案】B4.双曲线的中心在坐标原点,两个焦点为F 1〔﹣,0〕,F 2〔,0〕,点P 是此双曲线上的一点,且•=0,||•||=4,该双曲线的标准方程是〔 〕A .B .C .D .解:设双曲线的方程为:﹣=1, ∵两焦点F 1〔﹣,0〕,F 2〔,0〕,且•=0,∴⊥,∴△F 1PF 2为直角三角形,∠P 为直角; ∴+===28;①又点P 是此双曲线上的一点,∴||PF1|﹣|PF2||=2a,∴+﹣2|PF1|•|PF2|=4a2,由||•||=4得|PF1|•|PF2|=4,∴+﹣8=4a2,②由①②得:a2=5,又c2==7,∴b2=c2﹣a2=2.∴双曲线的方程为:﹣=1,应选C.5.双曲线E的中心为原点,P〔3,0〕是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N〔﹣12,﹣15〕,那么E的方程式为〔〕A.B.C.D.解:由条件易得直线l的斜率为k=k FN=1,设双曲线方程为,A〔x1,y1〕,B〔x2,y2〕,那么有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,应选B.6.椭圆和双曲线有公共的焦点,那么双曲线的渐近线方程是〔〕A.x=±B.y=C.x=D.y=解:∵椭圆和双曲线有公共焦点∴3m2﹣5n2=2m2+3n2,整理得m2=8n2,∴=2双曲线的渐近线方程为y=±=±x应选D7.中心在原点,焦点在x轴上的双曲线的离心率,其焦点到渐近线的距离为1,那么此双曲线的方程为〔〕A.﹣y2=1 B.﹣=1C.﹣y2=1D.x2﹣y2=1解:设双曲线的方程为,渐近线方程为∵双曲线的离心率,其焦点到渐近线的距离为1,∴,=1∴b=1,a=∴双曲线的方程为﹣y2=1应选A.8.抛物线y 2=8x 的准线与双曲线相交于A ,B 两点,点F 是抛物线的焦点,假设双曲线的一条渐近线方程是,且△FAB 是直角三角形,那么双曲线的标准方程是〔 〕 A .B .C .D .解:依题意知抛物线的准线x=﹣2.代入双曲线方程得 y=±.双曲线的一条渐近线方程是,∴那么不妨设A 〔﹣2,〕,F 〔2,0〕∵△FAB 是等腰直角三角形, ∴=4,解得:a=,b=4∴c 2=a 2+b 2=2+16=20,∴双曲线的标准方程是应选C9..椭圆2222:1(0)x y C a b a b +=>>的离心学率为32.双曲线221x y -=的渐近线与椭圆C有四个交点,以这四个焦点为顶点的四边形的面积为16,那么椭圆C 的方程为〔A 〕22182x y += 〔B 〕221126x y += 〔C 〕221164x y += 〔D 〕221205x y += 【答案】D【解析】因为椭圆的离心率为23,所以23==a c e ,2243a c =,222243b a a c -==,所以2241a b =,即224b a =,双曲线的渐近线为x y ±=,代入椭圆得12222=+bx a x ,即1454222222==+b x b x b x ,所以b x b x 52,5422±==,2254b y =,b y 52±=,那么第一象限的交点坐标为)52,52(b b ,所以四边形的面积为16516525242==⨯⨯b b b ,所以52=b ,所以椭圆方程为152022=+y x ,选D. 10.设F 1,F 2分别是双曲线的左、右焦点.假设双曲线上存在点A ,使∠F 1AF 2=90°,且|AF 1|=3|AF 2|,那么双曲线离心率为〔 〕 A .B .C .D .解:设F 1,F 2分别是双曲线的左、右焦点.假设双曲线上存在点A ,使∠F 1AF 2=90°,且|AF 1|=3|AF 2|, 设|AF 2|=1,|AF 1|=3,双曲线中2a=|AF 1|﹣|AF 2|=2,,∴离心率,应选B .11.设双曲线的﹣个焦点为F ;虚轴的﹣个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为〔 〕 A . B . C . D .解:设双曲线方程为,那么F 〔c ,0〕,B 〔0,b 〕 直线FB :bx+cy ﹣bc=0与渐近线y=垂直,所以,即b 2=ac所以c 2﹣a 2=ac ,即e 2﹣e ﹣1=0, 所以或〔舍去〕12.双曲线221124x y -=的右焦点为F ,假设过点F 的直线与双曲线的右支有且只有一个交点,那么此直线斜率的取值围是( C )A.33()B.(3,3)-C.33[D.[3,3]-【答案】C13.如图,F 1,F 2分别是双曲线C :22221x y a b-=〔a,b >0〕的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P,Q 两点,线段PQ 的垂直平分线与x 轴交与点M ,假设|MF 2|=|F 1F 2|,那么C 的离心率是A.233 B 。
学习好资料 欢迎下载高二数学双曲线同步练习一、选择题(本大题共10小题,每小题5分,共50分)1.给出下列曲线:①4x +2y -1=0; ②x 2+y 2=3; ③1222=+y x ④1222=-y x ,其中与直线 y=-2x -3有交点的所有曲线是 ( ) A .①③ B .②④ C .①②③ D .②③④2.若直线过点(3,0)与双曲线224936x y -=只有一个公共点,则这样的直线有( )A .1条B .2条C .3条D .4条3.方程221()23x y k k k -∈-+R =表示双曲线的充要条件是( ) A.2k >或3k <- B.3k <-C.2k >D.32k -<<4.方程11122=-++ky k x 表示双曲线,则k 的取值范围是 ( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k5. 双曲线14122222=--+m y m x 的焦距是 ( ) A .4 B .22 C .8D .与m 有关7. 双曲线的两条准线将实轴三等分,则它的离心率为( ) A .23 B .3 C .34 D . 3 8.焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是 ( ) A .1241222=-y x B .1241222=-x y C .1122422=-x y D .1122422=-y x 7.9.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( ) A .28 B .22C .14D .12 10.已知双曲线方程为1422=-y x ,过P (1,0)的直线L 与双曲线只有一个公共点,则L 的条数共有( )A .4条B .3条C .2条D .1条二、填空题(本题共4小题,每小题6分,共24分)11.双曲线)0,0(12222>>=-b a b y a x 的一条渐近线方程为y=x 34,则离心率为_______ 12.双曲线的一个焦点为F ,虚轴一个端点为B ,若直线FB 与该双曲线一渐近线垂直,求离心率为____________13.直线1+=x y 与双曲线13222=-y x 相交于B A ,两点,则AB =__________________. 14.过点)1,3(-M 且被点M 平分的双曲线1422=-y x 的弦所在直线方程为 15.动点P 与点1(0,5)F -与点2(0,5)F 满足126PF PF -=,则点P 的轨迹方程为。
双曲线及其标准方程习题一、 单选题(每道小题 4分 共 56分 )1. 命题甲:动点P 到两定点A 、B 距离之差│|PA|-|PB|│=2a(a >0);命题乙; P 点轨迹是双曲线,则命题甲是命题乙的 [ ] A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件2.若双曲线的一个焦点是,,则等于 . . . .2kx ky =1(04)k [ ]A B C D 22---33258332583.点到点,与它关于原点的对称点的距离差的绝对值等于,则点的轨迹方程是 . .. .P (60)10P [ ]A y 11=1B y 25=1C y 6=1D y 25=12222-----x x x x 2222256125114.k 5+y 6k=1[ ]A B C D 2<是方程表示双曲线的 .既非充分又非必要条件 .充要条件.必要而非充分条件 .充分而非必要条件x k 25--5. 如果方程x 2sin α-y 2cos α=1表示焦点在y 轴上的双曲线,那么角α的终边在 [ ] A .第四象限 B .第三象限 C .第二象限 D .第一象限 6.下列曲线中的一个焦点在直线上的是 . .. .4x 5y +25=0[ ]A y 16=1B +y 16=1C x 16=1D +x 16=12222---x x y y 22229259257. 若a ·b <0,则ax 2-ay 2=b 所表示的曲线是 [ ] A .双曲线且焦点在x 轴上 B .双曲线且焦点在y 轴上 C .双曲线且焦点可能在x 轴上,也可能在y 轴上 D .椭圆 8.以椭圆的焦点为焦点,且过,点的双曲线方程为. .. .x x y y y 2222296109251150+y 25=1P(35)[ ]A y 10=1B x 6=1C x 3=1D x 2=122222----9.到椭圆的两焦点距离之差的绝对值等于椭圆短轴的点的轨迹方程是 . .. .x x x x x 2222225251697+y 9=1[ ]A y 9=1B y 9=1C y 7=1D y 9=122222----10.直线与坐标轴交两点,以坐标轴为对称轴,以其中一点为焦点且另一点为虚轴端点的双曲线的方程是 . .. .或2x 5y +20=0[ ]A y 16=1B y 84=1C y 84=1D y 84=1y 84=122222------x x x x x 2222284161001610011.以坐标轴为对称轴,过,点且与双曲线有相等焦距的双曲线方程是 .或 .或.或 .或A(34)y 20=1[ ]A y 20=1x 20=1B y 15=1x 15=1C y 20=1x 15=1D y 5=1x 10=1222222222x x y x y x y x y 22222222255510105102015---------12.与双曲线共焦点且过点,的双曲线方程是 . .. .x x x x x 2222215520916------y 10=1(34)[ ]A y 20=1B y 5=1C y 16=1D y 9=12222213. 已知ab <0,方程y=-2x +b 和bx 2+ay 2=ab 表示的曲线只可能是图中的 [ ]14.已知△一边的两个端点是、,另两边斜率的积是,那么顶点的轨迹方程是 . .. .ABC A(7,0)B(70)C [ ]A x +y =49B +x 49=1C =1D 5y 147=12222---,x 355147514749492222y y x二、 填空题(每道小题 4分 共 8分 )1.已知双曲线的焦距是,则的值等于 .x k 21+-y 5=18k 22.设双曲线,与恰是直线在轴与轴上的截距,那么双曲线的焦距等于 .x a 22--y b=1(a >0,b >0)a b 3x +5y 15=0x y 22双曲线的标准方程及其简单的几何性质1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( ) A .双曲线 B .一条直线 C .一条线段 D .两条射线 2.已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值范围是( )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-13.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都相外切,则动圆圆心的轨迹为( ) A .双曲线的一支 B .圆 C .抛物线 D .双曲线4.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是( )A.x 23-y 2=1 B .y 2-x 23=1 C.x 23-y 24=1D.y 23-x 24=1 5.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2, |PF 1|·|PF 2|=2,则该双曲线的方程是( ) A.x 22-y 23=1 B.x 23-y 22=1 C.x 24-y 2=1 D .x 2-y 24=17.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( ) A.x 29-y 27=1 B.x 29-y 27=1(y >0) C.x 29-y 27=1或x 27-y 29=1 D.x 29-y 27=1(x >0) 8.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( ) A .16B .18C .21D .269.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,双曲线的方程是( )A.x 212-y 24=1B.x 24-y 212=1 C .-x 212+y 24=1 D .-x 24+y 212=1 10.焦点为(0,±6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )A.x 212-y 224=1 B.y 212-x 224=1 C.y 224-x 212=1 D.x 224-y 212=111.若0<k <a ,则双曲线x 2a 2-k 2-y 2b 2+k 2=1与x 2a 2-y 2b 2=1有( )A .相同的实轴B .相同的虚轴C .相同的焦点D .相同的渐近线12.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .y =±54xB .y =±45xC .y =±43xD .y =±34x13.双曲线x 2b 2-y 2a 2=1的两条渐近线互相垂直,那么该双曲线的离心率为( )A .2B. 3C. 2D.3214.双曲线x 29-y 216=1的一个焦点到一条渐近线的距离等于( )A. 3 B .3 C .4 D .2二、填空题15.双曲线的焦点在x 轴上,且经过点M (3,2)、N (-2,-1),则双曲线标准方程是________. 16.过双曲线x 23-y 24=1的焦点且与x 轴垂直的弦的长度为________.17.如果椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1的焦点相同,那么a =________.18.双曲线x 24+y 2b =1的离心率e ∈(1,2),则b 的取值范围是________.19.椭圆x 24+y 2a 2=1与双曲线x 2a2-y 2=1焦点相同,则a =________.20.双曲线以椭圆x 29+y 225=1的焦点为焦点,它的离心率是椭圆离心率的2倍,求该双曲线的方程为________.双曲线及其标准方程习题答案一、单选题1. B2. C3. A4. D5. B6. C7. B8. B9. C 10. A 11. C 12. A 13. B 14. D 二、填空题1. 10 2.234双曲线的标准方程及其简单的几何性质(答案)1、[答案] D2、[答案] A [解析] 由题意得(1+k )(1-k )>0,∴(k -1)(k +1)<0,∴-1<k <1.3、[答案] A [解析] 设动圆半径为r ,圆心为O , x 2+y 2=1的圆心为O 1,圆x 2+y 2-8x +12=0的圆心为O 2,由题意得|OO 1|=r +1,|OO 2|=r +2, ∴|OO 2|-|OO 1|=r +2-r -1=1<|O 1O 2|=4, 由双曲线的定义知,动圆圆心O 的轨迹是双曲线的一支.4、[答案] B [解析] 由题意知双曲线的焦点在y 轴上,且a =1,c =2, ∴b 2=3,双曲线方程为y 2-x 23=1. 5、[答案] C [解析] ab <0⇒曲线ax 2+by 2=1是双曲线,曲线ax 2+by 2=1是双曲线⇒ab <0. 6、[答案] C [解析] ∵c =5,|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2, ∴(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|=4c 2,∴4a 2=4c 2-4=16,∴a 2=4,b 2=1. 7、[答案] D [解析] 由双曲线的定义知,点P 的轨迹是以F 1、F 2为焦点, 实轴长为6的双曲线的右支,其方程为:x 29-y 27=1(x >0)8、[答案] D [解析] |AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8, ∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16,∴|AF 2|+|BF 2|=16+5=21, ∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26.9、[答案] C [解析] ∵椭圆x 29+y 225=1的焦点为(0,±4),离心率e =45,∴双曲线的焦点为(0,±4),离心率为145-45=105=2, ∴双曲线方程为:y 24-x 212=1.10、[答案] B [解析] 与双曲线x 22-y 2=1有共同渐近线的双曲线方程可设为x 22-y 2=λ(λ≠0),又因为双曲线的焦点在y 轴上, ∴方程可写为y 2-λ-x 2-2λ=1.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为y 212-x 224=1.11、[答案] C [解析] ∵0<k <a ,∴a 2-k 2>0.∴c 2=(a 2-k 2)+(b 2+k 2)=a 2+b 2.12、[答案] D [解析] ∵c a =53,∴c 2a 2=a 2+b 2a 2=259,∴b 2a 2=169,∴b a =43,∴a b =34.又∵双曲线的焦点在y 轴上,∴双曲线的渐近线方程为y =±a b x ,∴所求双曲线的渐近线方程为y =±34x .13、[答案] C [解析] 双曲线的两条渐近线互相垂直,则渐近线方程为:y =±x ,∴b a =1,∴b 2a 2=c 2-a 2a 2=1,∴c 2=2a 2,e =ca= 2. 14、[答案] C[解析] ∵焦点坐标为(±5,0),渐近线方程为y =±43x ,∴一个焦点(5,0)到渐近线y =43x 的距离为4.15、[答案] x 273-y 275=1 [解析] 设双曲线方程为:x 2a 2-y 2b 2=1(a >0,b >0)又点M (3,2)、N (-2,-1)在双曲线上,∴⎩⎨⎧ 9a 2-4b 2=14a 2-1b 2=1,∴⎩⎨⎧a 2=73b 2=75.16、[答案]833[解析] ∵a 2=3,b 2=4,∴c 2=7,∴c =7, 该弦所在直线方程为x =7,由⎩⎪⎨⎪⎧x =7x 23-y 24=1得y 2=163,∴|y |=433,弦长为833.17、[答案] 1 [解析] 由题意得a >0,且4-a 2=a +2,∴a =1.18、[答案] -12<b <0 [解析] ∵b <0,∴离心率e =4-b2∈(1,2),∴-12<b <0. 19、[答案]62 [解析] 由题意得4-a 2=a 2+1,∴2a 2=3,a =62. 焦点为(0,±4),离心率e =c a =45,∴双曲线的离心率e 1=2e =85,∴c 1a 1=4a 1=85,∴a 1=52,∴b 21=c 21-a 21=16-254=394,∴双曲线的方程为y 2254-x 2394=1.20、[答案]y2254-x2394=1 [解析]椭圆x29+y225=1中,a=5,b=3,c2=16,。
双曲线练习题(含答案)双曲线及其标准方程习题一、 单选题(每道小题 4分 共 56分 )1. 命题甲:动点P 到两定点A 、B 距离之差│|PA|-|PB|│=2a(a >0);命题乙; P 点轨迹是双曲线,则命题甲是命题乙的 [ ] A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件2.若双曲线的一个焦点是,,则等于 . . . .2kx ky =1(04)k [ ]A B C D 22---33258332583.点到点,与它关于原点的对称点的距离差的绝对值等于,则点的轨迹方程是 . .. .P (60)10P [ ]A y 11=1B y 25=1C y 6=1D y 25=12222-----x x x x 2222256125114.k 5+y 6k=1[ ]A B C D 2<是方程表示双曲线的 .既非充分又非必要条件 .充要条件.必要而非充分条件 .充分而非必要条件x k 25--5. 如果方程x 2sin α-y 2cos α=1表示焦点在y 轴上的双曲线,那么角α的终边在 [ ] A .第四象限 B .第三象限 C .第二象限 D .第一象限6.下列曲线中的一个焦点在直线上的是 . .. .4x 5y +25=0[ ]A y 16=1B +y 16=1C x 16=1D +x 16=12222---x x y y 22229259257. 若a ·b <0,则ax 2-ay 2=b 所表示的曲线是 [ ] A .双曲线且焦点在x 轴上 B .双曲线且焦点在y 轴上 C .双曲线且焦点可能在x 轴上,也可能在y 轴上 D .椭圆8.以椭圆的焦点为焦点,且过,点的双曲线方程为. .. .x x y y y 2222296109251150+y 25=1P(35)[ ]A y 10=1B x 6=1C x 3=1D x 2=122222----9.到椭圆的两焦点距离之差的绝对值等于椭圆短轴的点的轨迹方程是 . .. .x x x x x 2222225251697+y 9=1[ ]A y 9=1B y 9=1C y 7=1D y 9=122222----10.直线与坐标轴交两点,以坐标轴为对称轴,以其中一点为焦点且另一点为虚轴端点的双曲线的方程是 . .. .或2x 5y +20=0[ ]A y 16=1B y 84=1C y 84=1D y 84=1y 84=122222------x x x x x 2222284161001610011.以坐标轴为对称轴,过,点且与双曲线有相等焦距的双曲线方程是 .或 .或.或 .或A(34)y 20=1[ ]A y 20=1x 20=1B y 15=1x 15=1C y 20=1x 15=1D y 5=1x 10=1222222222x x y x y x y x y 22222222255510105102015---------12.与双曲线共焦点且过点,的双曲线方程是 . .. .x x x x x 2222215520916------y 10=1(34)[ ]A y 20=1B y 5=1C y 16=1D y 9=12222213. 已知ab <0,方程y=-2x +b 和bx 2+ay 2=ab 表示的曲线只可能是图中的 [ ]14.已知△一边的两个端点是、,另两边斜率的积是,那么顶点的轨迹方程是 . .. .ABC A(7,0)B(70)C [ ]A x +y =49B +x 49=1C =1D 5y 147=12222---,x 355147514749492222y y x二、 填空题(每道小题 4分 共 8分 )1.已知双曲线的焦距是,则的值等于 .x k 21+-y 5=18k 22.设双曲线,与恰是直线在轴与轴上的截距,那么双曲线的焦距等于 .x a 22--y b=1(a >0,b >0)a b 3x +5y 15=0x y 22双曲线的标准方程及其简单的几何性质1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( )A .双曲线B .一条直线C .一条线段D .两条射线2.已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值范围是( )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-13.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都相外切,则动圆圆心的轨迹为( )A .双曲线的一支B .圆C .抛物线D .双曲线4.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是( )A.x 23-y 2=1 B .y 2-x 23=1 C.x 23-y24=1 D.y 23-x 24=15.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=2,则该双曲线的方程是( ) A.x 22-y 23=1 B.x 23-y 22=1 C.x 24-y 2=1 D .x 2-y24=17.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( )A.x 29-y 27=1B.x 29-y 27=1(y >0)C.x 29-y 27=1或x 27-y 29=1 D.x 29-y 27=1(x >0) 8.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( )A .16B .18C .21D .26 9.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,双曲线的方程是( )A.x 212-y 24=1B.x 24-y 212=1 C .-x 212+y 24=1D .-x 24+y 212=110.焦点为(0,±6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )A.x 212-y 224=1B.y 212-x 224=1C.y 224-x 212=1 D.x 224-y 212=111.若0<k <a ,则双曲线x 2a 2-k 2-y 2b 2+k 2=1与x 2a 2-y 2b 2=1有( )A .相同的实轴B .相同的虚轴C .相同的焦点D .相同的渐近线12.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .y =±54xB .y =±45xC .y =±43x D .y =±34x 13.双曲线x 2b 2-y 2a 2=1的两条渐近线互相垂直,那么该双曲线的离心率为( )A .2 B. 3 C. 2 D.3214.双曲线x 29-y 216=1的一个焦点到一条渐近线的距离等于( )A. 3 B .3 C .4 D .2 二、填空题15.双曲线的焦点在x 轴上,且经过点M (3,2)、N (-2,-1),则双曲线标准方程是________.16.过双曲线x 23-y 24=1的焦点且与x 轴垂直的弦的长度为________.17.如果椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1的焦点相同,那么a =________.18.双曲线x 24+y 2b =1的离心率e ∈(1,2),则b 的取值范围是________.19.椭圆x24+y2a2=1与双曲线x2a2-y2=1焦点相同,则a=________.20.双曲线以椭圆x29+y225=1的焦点为焦点,它的离心率是椭圆离心率的2倍,求该双曲线的方程为________.双曲线及其标准方程习题答案一、单选题1. B2. C3. A4. D5. B6. C7. B8. B9. C 10. A 11. C 12. A 13.B 14. D二、填空题1. 10 2. 234双曲线的标准方程及其简单的几何性质(答案)1、[答案] D2、[答案] A [解析]由题意得(1+k)(1-k)>0,∴(k-1)(k+1)<0,∴-1<k<1.3、[答案] A [解析]设动圆半径为r,圆心为O,x2+y2=1的圆心为O1,圆x2+y2-8x+12=0的圆心为O2,由题意得|OO1|=r+1,|OO2|=r+2,∴|OO2|-|OO1|=r+2-r-1=1<|O1O2|=4,由双曲线的定义知,动圆圆心O的轨迹是双曲线的一支.4、[答案] B [解析]由题意知双曲线的焦点在y轴上,且a=1,c=2,∴b2=3,双曲线方程为y2-x23=1.5、[答案] C [解析]ab<0⇒曲线ax2+by2=1是双曲线,曲线ax2+by2=1是双曲线⇒ab<0.6、[答案] C [解析]∵c=5,|PF1|2+|PF2|2=|F1F2|2=4c2,∴(|PF1|-|PF2|)2+2|PF1|·|PF2|=4c2,∴4a2=4c2-4=16,∴a2=4,b2=1.7、[答案] D [解析]由双曲线的定义知,点P 的轨迹是以F1、F2为焦点,实轴长为6的双曲线的右支,其方程为:x29-y27=1(x>0)8、[答案] D [解析]|AF2|-|AF1|=2a=8,|BF2|-|BF1|=2a=8,∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16,∴|AF 2|+|BF 2|=16+5=21,∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26. 9、[答案] C [解析] ∵椭圆x 29+y 225=1的焦点为(0,±4),离心率e =45,∴双曲线的焦点为(0,±4),离心率为145-45=105=2,∴双曲线方程为:y 24-x 212=1.10、[答案] B [解析] 与双曲线x 22-y 2=1有共同渐近线的双曲线方程可设为x 22-y 2=λ(λ≠0),又因为双曲线的焦点在y 轴上, ∴方程可写为y 2-λ-x 2-2λ=1.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为y 212-x 224=1.11、[答案] C [解析] ∵0<k <a ,∴a 2-k 2>0.∴c 2=(a 2-k 2)+(b 2+k 2)=a 2+b 2.12、[答案] D [解析] ∵c a =53,∴c2a 2=a 2+b 2a2=259,∴b 2a 2=169,∴b a =43,∴a b =34. 又∵双曲线的焦点在y 轴上,∴双曲线的渐近线方程为y =±a b x ,∴所求双曲线的渐近线方程为y =±34x . 13、[答案] C [解析] 双曲线的两条渐近线互相垂直,则渐近线方程为:y =±x ,∴b a =1,∴b 2a 2=c 2-a 2a2=1,∴c 2=2a 2,e =c a = 2.14、[答案] C[解析] ∵焦点坐标为(±5,0),渐近线方程为y =±43x ,∴一个焦点(5,0)到渐近线y =43x 的距离为4.15、[答案] x 273-y 275=1 [解析] 设双曲线方程为:x 2a 2-y 2b2=1(a >0,b >0)又点M (3,2)、N (-2,-1)在双曲线上,∴⎩⎪⎨⎪⎧ 9a 2-4b 2=14a 2-1b 2=1,∴⎩⎪⎨⎪⎧a 2=73b 2=75.16、[答案] 833 [解析] ∵a 2=3,b 2=4,∴c 2=7,∴c =7,该弦所在直线方程为x =7,由⎩⎪⎨⎪⎧x =7x 23-y 24=1得y 2=163,∴|y |=433,弦长为833. 17、[答案] 1 [解析] 由题意得a >0,且4-a 2=a +2,∴a =1.18、[答案] -12<b <0 [解析] ∵b <0,∴离心率e =4-b 2∈(1,2),∴-12<b <0.19、[答案] 62 [解析] 由题意得4-a 2=a 2+1,∴2a 2=3,a =62.焦点为(0,±4),离心率e =c a =45,∴双曲线的离心率e 1=2e =85,∴c 1a 1=4a 1=85,∴a 1=52,∴b 21=c 21-a 21=16-254=394,∴双曲线的方程为y 2254-x 2394=1.20、[答案]y2254-x2394=1 [解析]椭圆x29+y225=1中,a=5,b=3,c2=16,。
高中双曲线基础练习题及讲解### 高中双曲线基础练习题及讲解#### 双曲线的定义与性质双曲线是圆锥曲线的一种,其定义为平面上所有点到两个固定点(焦点)距离之差的绝对值等于常数的点的轨迹。
双曲线有以下基本性质:1. 焦点距离:双曲线的两个焦点之间的距离是常数。
2. 实轴与虚轴:双曲线有两条对称轴,分别称为实轴和虚轴。
3. 离心率:双曲线的离心率大于1。
#### 练习题一:双曲线的标准方程给定一个双曲线,其焦点在x轴上,中心点为(0, 0),且a=3,b=2,求双曲线的方程。
解答步骤:1. 根据双曲线的标准方程 \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\)。
2. 代入给定的a和b的值,得到 \(\frac{x^2}{3^2} -\frac{y^2}{2^2} = 1\)。
3. 简化得到 \(\frac{x^2}{9} - \frac{y^2}{4} = 1\)。
#### 练习题二:双曲线的焦点坐标已知双曲线的中心点为(0, 0),a=4,b=3,求双曲线的焦点坐标。
解答步骤:1. 计算离心率 \(e = \sqrt{1 + \frac{b^2}{a^2}}\)。
2. 计算焦点到中心的距离 \(c = ae\)。
3. 由于焦点在x轴上,焦点坐标为 \((\pm c, 0)\)。
4. 代入数值计算,得到焦点坐标为 \((\pm 5, 0)\)。
#### 练习题三:双曲线的渐近线方程已知双曲线的方程为 \(\frac{x^2}{16} - \frac{y^2}{9} = 1\),求其渐近线方程。
解答步骤:1. 渐近线方程形式为 \(y = \pm \frac{b}{a}x\)。
2. 代入a和b的值,得到 \(y = \pm \frac{3}{4}x\)。
#### 练习题四:双曲线的参数方程已知双曲线的方程为 \(\frac{x^2}{25} - \frac{y^2}{16} = 1\),求其参数方程。
高二(文科)双曲线周测试题姓名____________学号_____ 班别_______一.选择题:每小题5分,共50分1、双曲线221102x y -=的焦距为2. 双曲线2214x y k-=的离心率e ∈(1, 2),则k 的取值范围是 A .(0, 6) B . (3, 12) C . (1, 3) D . (0, 12) 3.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线 4. “ab<0”是“方程ax 2+by 2=c 表示双曲线”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.双曲线221169x y -=上的点P 到点(5, 0)的距离是15则点P 到点(-5, 0)的距离是 A.7 B.23 C.5或25 D.7或236.双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞]7 .椭圆222212x y m n +=与双曲线222212x y m n-=有公共焦点,则椭圆的离心率是AB C D8.已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e ,则双曲线方程为(A )22x a -224y a=1(B)222215x y a a -= (C)222214x y b b -= (D)222215x y b b-=9.设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为(A )1342222=-y x (B)15132222=-y x (C)1432222=-y x (D)112132222=-y x10、已知双曲线22:1916x y C -=的左右焦点分别为F 1、F 2 ,P 为C 的右支上一点,且||||212PF F F =,则△PF 1F 2 的面积等于 (A )24 (B )36 (C )48 (D )96二填空题: 每小题5分,共25分11.若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是 。
高二数学双曲线练习题1. 已知双曲线H的焦点为F1和F2,离心率为e。
点P在双曲线上,且PF1与PF2的距离之差为a。
证明:线段PF1与线段PF2的中点M在双曲线H上。
解答:设双曲线H的中心为O,双曲线的两个顶点为A和B,焦点F1和F2分别在双曲线的右侧和左侧。
设点M为线段PF1与线段PF2的中点。
首先,根据双曲线的定义,我们知道焦点F1和F2到双曲线上任意一点P的距离之差等于该点P到曲线的准线AB的距离之差。
也就是说,有PF1 - PF2 = d1 - d2,其中d1和d2分别为点P到准线AB的距离。
因为点M是线段PF1与线段PF2的中点,所以可以得到MF1 =MF2。
又由双曲线的性质可知,对于任意一点P,PF1 - PF2 = d1 - d2。
将点M代入上述等式,可以得到MF1 - MF2 = d1 - d2。
由于MF1 =MF2,因此d1 - d2 = 0。
根据上述推导,我们可以得出结论:当且仅当点P在双曲线上时,线段PF1与线段PF2的中点M在双曲线上。
2. 若双曲线的离心率e = 2,焦距为2a。
已知双曲线上一点的坐标为(x, y),满足x^2 + y^2 = 4。
求该点关于双曲线的对称点的坐标。
解答:设焦点为F1(-ae, 0)和F2(ae, 0),双曲线的中心为O(0, 0),焦距为2a。
由双曲线的性质可知,对于双曲线上任意一点P(x, y),有PF1 - PF2 = 2a。
代入坐标得到√((x+ae)^2 + y^2) - √((x-ae)^2 + y^2) = 2a。
将已知条件x^2 + y^2 = 4代入上述等式,得到√((x+2)^2 + y^2) -√((x-2)^2 + y^2) = 4。
为了求在双曲线上关于点P对称的点Q的坐标,可以通过求解上述方程组得到点Q的坐标。
将方程两边平方并整理,得到((x+2)^2 + y^2) - 2√((x+2)^2 +y^2)√((x-2)^2 + y^2) + ((x-2)^2 + y^2) = 16。
高二(文科)双曲线基础练习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2 高二(文科)双曲线练习题一、选择题1.已知a=3,c=5,并且焦点在x 轴上,则双曲线的标准程是( )A .116922=+y x B. 116922=-y x C. 116922=+-y x 1916.22=-y x D2.已知,5,4==c b 并且焦点在y 轴上,则双曲线的标准方程是( )A .191622=-y x B. 191622=+-y x C.116922=+y x D.116922=-y x3..双曲线191622=-y x 上P 点到左焦点的距离是6,则P 到右焦点的距离是() A. 12 B. 14 C. 16 D. 184..双曲线191622=-y x 的焦点坐标是 ( )A. (5,0)、(-5,0)B. (0,5)、(0,-5)C. (0,5)、(5,0)D.(0,-5)、(-5,0)5、方程6)5()5(2222=++-+-y x y x 化简得:A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x6.已知实轴长是6,焦距是10的双曲线的标准方程是( )A ..116922=-y x 和116922=+-y x B. 116922=-y x 和191622=+-y x C. 191622=-y x 和191622=+-y x D. 1162522=-y x 和1251622=+-y x7.过点A (1,0)和B ()1,2的双曲线标准方程( )3A .1222=-y xB .122=+-y xC .122=-y x D. 1222=+-y x8.P 为双曲线191622=-y x 上一点,A 、B 为双曲线的左右焦点,且AP 垂直PB ,则三角形PAB 的面积为( ) A . 9 B . 18 C . 24 D . 369.双曲线191622=-y x 的顶点坐标是 ( ) A .(4,0)、(-4,0) B .(0,-4)、(0,4)C .(0,3)、(0,-3)D .(3,0)、(-3,0)10.已知双曲线21==e a ,且焦点在x 轴上,则双曲线的标准方程是( )A .1222=-y xB .122=-y xC .122=+-y x D. 1222=+-y x11.双曲线191622=-y x 的的渐近线方程是( ) A . 034=±y x B .043=±y x C .0169=±y x D .0916=±y x12.已知双曲线的渐近线为043=±y x ,且焦距为10,则双曲线标准方程是( )A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 13.方程11122=-++ky k x 表示双曲线,则k 的取值范围是( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k14.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长( )A .28B .22C .14D .1215.方程x k y k22941--+=的曲线是双曲线,则它的焦点坐标是 ( )4(A)(±13,0) (B)(0,±13) (C)(±13,0) (D)(0,±13)16.设双曲线2218y x -=的两个焦点为12,F F ,P 是双曲线上的一点,且12||:||=3:4PF PF ,则△PF 1 F 2的面积等于( )二、填空题17.已知双曲线虚轴长10,焦距是16,则双曲线的标准方程是________________.18.已知双曲线焦距是12,离心率等于2,则双曲线的标准方程是___________________.19.已知16522=++-t y t x 表示焦点在y 轴的双曲线的标准方程,t 的取值范围是___________.20.椭圆C 以双曲线122=-y x 焦点为顶点,且以双曲线的顶点作为焦点,则椭圆的标准方程是___________________三、解答题21.求满足下列条件的标准方程(1)求以椭圆18522=+y x 的焦点为顶点,且以椭圆的顶点为焦点的双曲线的方程。
高二(文科)双曲线练习题
一、选择题
1.已知a=3,c=5,并且焦点在x 轴上,则双曲线的标准程是( )
A .116922=+y x B. 116922=-y x C. 116922=+-y x 19
16.2
2=-y x D 2.已知,5,4==c b 并且焦点在y 轴上,则双曲线的标准方程是( )
A .191622=-y x B. 191622=+-y x C.116922=+y x D.116
92
2=-y x 3..双曲线19
162
2=-y x 上P 点到左焦点的距离是6,则P 到右焦点的距离是( ) A. 12 B. 14 C. 16 D. 18
4..双曲线19
162
2=-y x 的焦点坐标是 ( ) A. (5,0)、(-5,0)B. (0,5)、(0,-5) C. (0,5)、(5,0) D.(0,-5)、(-5,0)
5、方程6)5()5(2222=++-+-y x y x 化简得:
A .116922=-y x B. 191622=+-y x C.116922=+y x D. 19
162
2=-y x 6.已知实轴长是6,焦距是10的双曲线的标准方程是( )
A ..116922=-y x 和116922=+-y x B. 116922=-y x 和19
162
2=+-y x C. 191622=-y x 和191622=+-y x D. 1162522=-y x 和125
162
2=+-y x 7.过点A (1,0)和B ()1,2的双曲线标准方程( )
A .1222=-y x
B .122=+-y x
C .122=-y x D. 122
2=+-y x
8.P 为双曲线19
162
2=-y x 上一点,A 、B 为双曲线的左右焦点,且AP 垂直PB ,则三角形PAB 的面积为( ) A . 9 B . 18 C . 24 D . 36
9.双曲线19
162
2=-y x 的顶点坐标是 ( ) A .(4,0)、(-4,0) B .(0,-4)、(0,4)C .(0,3)、(0,-3) D .(3,0)、(-3,0)
10.已知双曲线21
==e a ,且焦点在x 轴上,则双曲线的标准方程是( ) A .1222=-y x B .122=-y x C .122=+-y x D. 1222=+-y x
11.双曲线19
162
2=-y x 的的渐近线方程是( ) A . 034=±y x B .043=±y x C .0169=±y x D .0916=±y x
12.已知双曲线的渐近线为043=±y x ,且焦距为10,则双曲线标准方程是( )
A .116922=-y x B. 191622=+-y x C.116922=+y x D. 19
162
2=-y x 13.方程11122
=-++k
y k x 表示双曲线,则k 的取值范围是( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k
14.过双曲线19
162
2=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长( ) A .28 B .22 C .14 D .12
15.方程x k y k
22
941--+=的曲线是双曲线,则它的焦点坐标是 ( ) (A)(±13,0) (B)(0,±13) (C)(±13,0) (D)(0,±13)
16.设双曲线2
2
18y x -=的两个焦点为12,F F ,P 是双曲线上的一点,且12||:||=3:4PF PF ,则△PF 1 F 2的面积等于( )
二、填空题
17.已知双曲线虚轴长10,焦距是16,则双曲线的标准方程是________________.
18.已知双曲线焦距是12,离心率等于2,则双曲线的标准方程是___________________.
19.已知16
52
2=++-t y t x 表示焦点在y 轴的双曲线的标准方程,t 的取值范围是___________. 20.椭圆C 以双曲线12
2=-y x 焦点为顶点,且以双曲线的顶点作为焦点,则椭圆的标准方程是___________________
三、解答题
21.求满足下列条件的标准方程 (1)求以椭圆18
52
2=+y x 的焦点为顶点,且以椭圆的顶点为焦点的双曲线的方程。
(2)双曲线14
162
2=-y x 有公共焦点,过点(23,2)
(3)中心在原点,两对称轴都在坐标轴上,过点P (3,
)415和Q (3
16,5)
(4)与双曲线19
162
2=-y x 共渐近线且过点A (3,32-)
22.已知双曲线C :19
162
2=+-y x ,写出双曲线的实轴顶点坐标,虚轴顶点坐标,实半轴长,虚半轴长,焦点坐标,离心率及渐近线方程。
23.已知定点B(3, 0)和定圆C:16)3(22=++y x ,动圆和圆C 外切,且过点B,求动圆圆心C 的轨迹方程。