各统计图的特点和优势_用统计图描述数据
- 格式:ppt
- 大小:144.50 KB
- 文档页数:3
数据的表示【学习目标】1.会用扇形统计图、条形统计图和折线统计图表示数据,并能从统计图或表中获取信息.描述数据的方法有两种:统计表和统计图.统计表:利用表格将要统计的数据填入相应的表格内,表格统计法可以很好地整理数据 统计图:利用“条形图”、“扇形图”、“折线图”描述数据,这样做的最大优点是将表格中的数据所呈现出来的信息直观化.1.扇形统计图(1)扇形统计图的概念用圆和扇形来表示总体和部分的关系,即用圆表示总体,各个扇形分别代表总体中的不同部分,扇形面积的大小表示各部分占总体的百分比的大小,这样的统计图叫扇形统计图.扇形统计图,它是用整个圆的面积表示总数,用圆内的扇形面积表示各部分占总数的百分比的统计图.特点:能直观地反映每组数据占总数的百分比,及各部分之间的关系. 画法:(1)计算出各部分数量占总体数量的百分比;(2)利用百分比计算出各部分所对应的扇形圆心角的度数; (3)绘制扇形图;(4)标明各部分的名称和相应的百分比.应用:①透过扇形图能读出各组数据所占的百分比,在已知总数的情况下能求出各组数据的个数. ②在扇形统计图中,每部分扇形占总体的百分比乘以360°等于该部分所对应的扇形圆心角的度数. 【例1】 如图是某中学七年级(3)班全体同学年龄的统计表:年龄/岁 13 14 15 16 合计 人数/名4 15 256 50 根据表中提供的信息,绘制扇形统计图表示该班学生的年龄分布情况.分析:根据表中提供的信息,首先计算出不同年龄的人数占全班总人数的百分比.然后计算出不同年龄的人数在圆中所占的扇形圆心角的度数.最后画出扇形统计图.解:分别计算出不同年龄的人数占全班人数的百分比及相应的扇形圆心角的度数:13岁:450×100%=8%,360°×8%=28.8°;14岁:1550×100%=30%,360°×30%=108°;15岁:2550×100%=50%,360°×50%=180°;16岁:650×100%=12%,360°×12%=43.2°.根据这些数据画出如图所示的扇形统计图.5. (益阳)南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2009年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图(如图所示):每亩生产成本每亩产量油菜籽市场价格种植面积110元130千克3元/千克500000亩请根据以上信息解答下列问题(1)种植油菜每亩的种子成本是多少元?(2)农民冬种油菜每亩获利多少元?(3)2009年南县全县农民冬种油菜的总获利多少元?(结果用科学记数法表示)【思路点拨】由扇形统计图反映出来的信息知:种子占生产成本的10%,根据这一点不难解答本题.【答案与解析】解:(1)种子占成本的百分数为 1-10%-35%-45%=10%,故种植油菜每亩的种子成本为:110×10%=11(元).(2)由统计表知,每亩油菜销售总价为:130×3=390(元),故农民冬种油菜每亩获利390-110=280(元).(3)因为农民种植油菜.每亩获利280元,则500000亩油菜共获利:280×500000=140000000=1.4×108(元).【总结升华】在扇形统计图中,各部分所占的百分比之和=1,扇形对应圆心角度数=该扇形所占百分比×360°.2.条形统计图条形统计图是用一定单位长度的长方形表示一定的数量,并根据数量的多少画成长短不同的条形图,然后,把这些图形按照一定的顺序排列起来的反映数据之间关系的图形.条形的宽度相同,长度不同,通过条形高的长短来体现各组数据个数及各组数据间的差别.特点:①它能直观地反映每组中数据的个数;②能直观地反映出数据之间的差别.缺点:不容易看出各组数据占总数的比例.应用:通过条形统计图能读出各组数据的个数,进而能求出总数据个数及各组数据间的差,以及各组数据所占的百分比等.【例2】对某校八(2)班学生参加课外活动情况的一次调查得到下表:参加的体育项目乒乓球篮球羽毛球足球人数1510520(1)该班有多少名学生?(2)根据上述统计表,请用条形图来表示各个数据的分布情况.分析:画条形图时,要注意单位长度的选择.解:(1)15+10+5+20=50(名).(2)根据所提供的统计表,画出条形图如图所示.4. (珠海)2010年亚运会即将在广州举行,广元小学开展了“你最喜欢收看的五项亚运会球类比赛(只(1)将统计图补充完整;(2)根据以上调查,试估计该校1800名学生中,最喜欢收看羽毛球的人数. 【思路点拨】依据条形图反映出来的数量作答. 【答案与解析】解:(1)因为喜欢排球的12人占抽样总人数的6%,故抽样人数为:122006%=(人), 故喜欢乒乓球的人数为:200-12-38-80-20=50(人). (2)喜欢收看羽毛球人数为:201800180200⨯=(人). 【总结升华】把小长方形对应的纵轴数相加即得到抽取的调查报告数,这也是样本数;每组所占样本的百分比乘总数即这组调查报告约有的份数.3.频数直方图频数直方图也是描述数据的一种重要方法.通过频数直方图能直观地了解各组数据中的频数分布情况.画频数直方图的一般步骤:(1)计算最大值与最小值的差,找出数据的变化范围通过观察,首先找出数据中的最大值和最小值,并计算出最大值与最小值的差(极差),找出数据的变化范围.(2)决定组距与组数把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距.根据最大值与最小值的差,来决定组距与组数.组距和组数的确定没有固定的标准,一般来说,数据越多分的组数也越多,当数据不超过50个时,可以分成5~7组;当数据在50~100之间时,一般分成8~12组.组数可以根据最大值-最小值组距来计算.(3)决定分点有些数据本身就是分点,不好决定它们究竟应该属于哪一组,为了避免出现这种情况,可以使分点比已知数据多一位小数,并且把第一组的起点稍微的减小一点.(4)列频数分布表频数分布表一般由三部分组成,一是数据分组,二是划记,三是频数. 对落在各个小组内的数据进行累计,得到各个小组内的数据的个数(叫做频数),整理可得频数分布表. (5)画频数直方图频数直方图的横轴由数据组成,纵轴由频数组成.每个小长方形的高表示相应小组内数据的频数. 【例3】 王大爷开了一个报亭,为了使每天进的某种报纸适量,王大爷对这种报纸40天的销售情况作了调查,这40天卖出这种报纸的份数如下:136,175,153,135,161,140,155,180,179,166,188,142,144,154,155,157,160,162,135,156,148,173,154,145,158,150,154,168,168,155,169,157,157,149,134,167,151,144,155,131.将上面数据适当分组,作出频数直方图,说明王大爷每天进多少这种报纸比较合适?分析:由于这组数据的最大值为188,最小值为131,所以最大值与最小值的差是188-131=57,所份数(x)划记频数130≤x<140正 5140≤x<1507150≤x<160正正正15160≤x<1708170≤x<180 3180≤x<190 2合计40(2)画频数直方图,如图所示.由此可知,王大爷每天进150~160份比较合适.注:分组不同,组距不同,频数分布表和直方图也不同.6. (湖北荆门)某住宅小区六月份的1至6日每天的用水量变化情况如图所示,那么这6天的平均用水量是A.30吨 B.31吨 C.32吨 D.33吨【答案】C.【解析】解:从折线统计图,可知1日的用水量为30吨,2日的用水量为34吨,3日的用水量为32吨,4日的用水量为37吨,5日的用水量为28吨,6日的用水量为31吨,由此可计算出这6天的平均用水量为(30+34+32+37+28+31)÷6=32(吨).【总结升华】折线图的特点:易于显示数据的变化趋势.【高清课堂:统计图例4】举一反三:【变式】近年来国内生产总值增长率变化情况如图, 从图上看下列结论不正确的是( ). A.1995~1999年国内生产总值增长率逐年减少B.2000年国内生产总值的年增长率开始回升C.这7年中, 每年的国内生产总值不断增长D.这7年中, 每年的国内生产总值有增有减【答案】D4.合理分组的方法分组是列频数分布表和画频数直方图的前提,分组不同,所画出的直方图也不同. 对于一组数据,分组的方法有三种:一是根据组距分组,首先计算出最大值与最小值的差,根据最大值与最小值的差,适当地确定组距,根据最大值-最小值组距=组数(收尾法)来确定组数,然后分组,整理数据.二是根据组数分组,先根据数据的个数和实际需要确定组数,再根据最大值-最小值组数=组距,取适当的数作为组距,然后分组,整理数据.三是根据最大值与最小值的差,再根据数据的实际情况,大约确定一个适合的利于计算的数为组距,如5,10等.只要能正确地反映数据的分布情况,并且能包含所有的数据的分组方法都可以.【例4】 育才中学为了了解本校学生的身体发育情况,对同年龄的40名女生的身高进行了测量,结果如下(数据均为整数,单位:厘米):168,160,157,161,158,153,158,164,158,163,158,157,167,154,159,166,159,156,162,158,159,160,164,164,170,163,162,154,151,146,151,160,165,158,149,157,162,159,165,157.请将上述的数据适当分组整理,列出频数分布表,根据频数分布表的数据说明:大部分同学处于哪个身高段?身高的整体分布情况如何?分析:由于有40个数据,最小的数据为146厘米,最大的数据为170厘米,其差为24厘米,可将数据分成5组,整理数据列出频数分布表,可从总体上把握数据的分布情况.解:列频数分布表如下:身高x (厘米) 划记 频数146≤x <1512 151≤x <156 正5 156≤x <16118 161≤x <16611 166≤x <1714 合计40 由频数分布表可知,大部分学生处于156厘米到166厘米之间,占抽样调查人数的72.5%,低于156厘米和高于166厘米的学生比较少,分别占17.5%和10%.5.频数直方图与扇形统计图综合应用在统计图表的综合应用中,频数直方图与扇形统计图组合是出现较多的题目,它们之间的互相结合、互相补充,能多方面地反映数据间的内在关系.频数分布表和频数直方图能直观显示各组频数分布的情况,也能清楚地反映各组数据中频数的差别,扇形图侧重反映了各部分占总数的百分比,因而,它们之间互相补充.【例5】 某学校开展了向贫困地区捐赠图书的活动.全校1 200名学生每人都捐赠了一定数量的图书.已知各年级人数比例的扇形统计图如图①所示.学校为了了解各年级捐赠情况,从各年级中随机抽样调查了部分学生,进行了捐赠情况的统计调查,绘制成图②所示的频数直方图.根据以上信息解答下列问题.(1)从图②中我们可以看出人均捐赠图书最多的是几年级? (2)九年级约捐赠图书多少册? (3)全校大约共捐赠图书多少册?解:(1)从图中可以看出,人均捐赠图书最多的是八年级.(2)九年级的学生有1 200×35%=420(人),估计九年级共捐赠图书420×5=2 100(册);(3)全校大约共捐赠图书1 200×35%×4.5+1 200×30%×6+2 100=1 890+2 160+2 100=6 150(册).7. (泰州)玉树地震后,全国人民慷慨解囊,积极支援玉树人民的抗震救灾,他们有的直接捐款,有的捐物,国家民政部、中国红十字会、中华慈善总会及其他基金会分别接收了捐赠,青海省也直接接收了部分捐赠截至5月14日12时,他们分别接收捐赠(含直接捐款数和捐赠物折款数)的比例见扇形统计图(如图①所示),其中,中华慈善总会和中国红十字会共接收捐赠约合人民币15.6亿元.请你根据相关信息解决下列问题:(1)其他基金会接收捐赠约占捐赠总数的百分比是________; (2)全国接收直接捐款数和捐赠物折款数共计约________亿元; (3)请你补全图②中的条形统计图;(4)据统计,直接捐款数比捐赠物折款数的6倍还多3亿元,那么直接捐款数和捐赠物折款数各多少亿元?【思路点拨】本题是一道与扇形统计图和条形统计图的综合题.从扇形统计图中,可以获取各部门获得捐赠的百分数.从条形统计图中可以获取其他基金会获得的捐赠为2亿元根据这两点,问题便迎刃而解. 【答案与解析】解:(1)1-33%-33%-13%-17%=4%;(2)15.65213%17%=+(亿元);(3)因为中华慈善总会接收捐赠占所有捐赠的13%,故中华慈善总会接收捐赠共计:52×13%=6.76(亿元);(4)设捐赠物折款数为x 亿元,依题意有 6x+3+x =52,解方程得x =7.举一反三:【变式1】如果想表示我国从2000 2010年间国民生产总值的变化情况, 最合适的是采用( ).A. 条形统计图B. 扇形统计图 C.折线统计图 D.以上都很合适【答案】C.【变式2】(自贡)我市某化工厂从2008年开始节能减排,控制二氧化硫的排放.图③,图④分别是该厂2008-2011年二氧化硫排放量(单位:吨)的两幅不完整的统计图,根据图中信息回答下列问题.(1)该厂2008-2011年二氧化硫排放总量是吨;这四年平均每年二氧化硫排放量是吨.(2)把图中折线图补充完整.(3)2008年二氧化硫的排放量对应扇形的圆心角是度,2011年二氧化硫的排放量占这四年排放总量的百分比是.【答案】(1)100,25.(2)略.(3)144,10%.6.频数直方图与条形统计图的比较应用条形图和直方图都是描述数据的重要方式,它们图形类似,都能直观地反映每组中数据的个数(频数),也能直观地反映出数据(频数)之间的差别.但它们是两种不同的数据描述方式,在描述数据的侧重点和表现形式上也存在着很多不同.(1)条形图是用条形的高表示各类别频数的多少,其宽度是固定的;频数直方图是用面积表示各组频数的多少,宽度则表示各组的组距,因此各长方形的高度与宽度均有意义.(2)由于分组数据具有连续性,频数直方图的各长方形通常是连续排列的,而条形统计图则是分开排列的,中间有空隙.(3)条形统计图是直观地显出具体数据,频数直方图是表现频数的分布情况.【例6】向阳超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如图所示的频数直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其他类同).这个时间段内顾客等待时间不少于6分钟的人数为( ).A.5 B.7 C.16 D.33解析:频数直方图可以直观地表示各部分数目的多少及数量大小.由频数直方图可以很清楚地看到顾客等待时间为6~7 min的有5人,等待时间为7~8 min的有2人,这个时间段内顾客等待时间不少于6分钟的人数为5+2=7,故应选B.答案:B【巩固练习】一、选择题1.数据处理过程中,以下顺序正确的是().A.收集数据→整理数据→描述数据→分析数据B.收集数据→整理数据→分析数据→描述数据5.若扇形统计图中有4组数据,其中前三组数据相应的圆心角度数分别为72°、108°、144°,则这四组数据的比为().A.2:3:4:1 B.2:3:4:3 C.2:3:4:5 D.第四组数据不确定7.如图所示是某造纸厂2009年中各季度的产量统计图,下列表述中不正确的是().A.二季度的产量最低B.从二季度到四季度产量在增长C.三季度产量增幅最大D.四季度产量增幅最大8.(重庆)某班学生在颁奖大会上得知该班获得奖励的情况如下表:已知该班共有28人获得奖励,其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为().A.3项B.4项C.5项D.6项二、填空题10.某中学举行一次演讲比赛,分段统计参赛同学的成绩,结果如下表(分数均为整数,满分为100分):请根据表中提供的信息,解答下列各题:(1)参加这次演讲比赛的同学共有________人;(2)已知成绩在91~100分的同学为优胜者,那么,优胜率为________.13.某城市有120万人口,其中各民族所占比例如图所示,则该市少数民族的人口共有________万人.14.(天津)为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到如下图所示的条形图,观察(如图),可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每株结________根黄瓜.三、解答题15. (长春)小明参加卖报纸的社会实践活动,他调查了一个报亭某天A、B、C三种报纸的销售量,并把调查结果绘制成如图所示条形统计图.(1)求该天A、C报纸的销售量各占这三种报纸销售量之和的百分比.(2)请绘制该天A、B、C三种报纸销售量的扇形统计图.(3)小明准备按上述比例购进这三种报纸共100份,他应购进这三种报纸各多少份.17.(山东菏泽)初中生对待学习的态度一直是教育工作者关注的问题之一.为此菏泽市教育局对我市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了________名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?【答案与解析】一、选择题1. 【答案】A;【解析】数据处理的基本过程是:收集,整理,描述,分析数据.5. 【答案】A;【解析】这四组数据的比为:72:108:144:(360-72-108-144)=2:3:4:1.6. 【答案】A;7. 【答案】D;【解析】从折线统计图可知,这个造纸厂第一季度至第二季度的产值呈下降趋势,第二至第四季度的产值呈上升趋势,第四季度产值最高,第二季度的产值最低.8. 【答案】B;【解析】获奖人次共计18+3+6+2+12+3=44人次,减去只获两项奖的13人计13×2=26人次,则剩下44-13×2=18人次.28-13=15人,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的15人中的一人获奖最多,其余15-1=14人获奖最少,只获一项奖励,则获奖最多的人获奖项目为18-14=4项.二、填空题10.【答案】 (1)20 (2)20%;【解析】优胜率=42020优胜人数==%总人数.13.【答案】18;【解析】120×(6%+4%+5%)=18(万人).14.【答案】60,13;【解析】由条形图可知总株数为20+15+15+10=60.三、解答题15.【解析】解:(1)46100%20%4611569⨯=+=,69100%30%4611569⨯=++.∴该天A、C报纸的销售量各占这三种报纸销售量之和的20%和30%.(2)A、B、C三种报纸销售量的扇形统计图如图所示.(3)100×20%=20(份),100×50%=50(份),100×30%=30(份).∴小明应购进A种报纸20份,B种报纸50份,C种报纸30份.17.【解析】解: (1)200:(2)200-120-50=30(人).画图如图所示.(3)C所占圆心角度数=360°×(1-25%-60%)=54°.(4)80000×(25%+60%)=68000.∴估计该市初中生中大约有68000名学生学习态度达标.11。
《选择合适的统计图表示数据》【教学内容】青岛版教科书第119-122页,选择合适的统计图描述数据。
【教学目标】1.能根据统计目的需要,合理选择条形或折线统计图直观、有效地表示数据,对数据进行简单地分析,根据结果做出合理地判断或预测;在选择统计图的过程中,进一步体会统计图的优点,加深对统计图特征的认识。
2.借助实例,引导学生经历分析、判断、决策和表示数据的过程,探究解决问题的策略方法,培养学生的分析、判断和决策能力。
3.在解决问题的过程中,进一步体会统计图与现实生活的联系,感受其应用价值,发展学生的统计观念。
4.通过自主探究和合作交流,获得成功的体验,增强学习数学的信心。
【教学重点】根据统计目的需要,选择合适的统计图表示数据,对数据进行简单地分析,并能做出合理地决策或预测。
【教学难点】培养学生根据统计需要,合理选择统计图表示数据的能力。
【教学准备】课件、学生学习探究单。
【教学过程】:教学过程:一、创设情境,导入新课:同学们,上课前我们先来玩个小游戏:猜地名?考考你对山东了解多少?(课件出示)苹果之乡---(烟台)帆船之都----(青岛)风筝之都---(潍坊)泉城---(济南)泰山脚下---(泰安)师:咱同学知道的可真不少!可你们知道吗?它们还有一个共同的城市名片---“国家森林城市”?获此殊荣的城市咱们山东一共才有9座!而城市的人均公共绿地面积则是一项重要的指标,瞧,这是其中五座城市的人均公共绿地情况:(课件出示:)五座城市2015年的人均公共绿地面积情况统计表请大家仔细观察表格,从这张统计表上你收集到了那些数据?生:……师:接下来,我们再来看看我们烟台2011--2015市人均公共绿地面积情况统计表(课件出示:)烟台市2011—2015年人均公共绿地面积情况统计表师:从图中,你又能获得哪些信息呢?生:……课件出示:两张统计表师:从这两组统计表中我们获得了不同的数据,回想之前的学习,除了可以用统计表整理数据,还可以用什么来整理数据?生:条形统计图和折线统计图师:同学们,你们猜猜接下来老师要提出什么数学问题啦?生:分别选用什么样的统计图描述数据更合理呢?师:真是和老师心有灵犀。
1.扇形统计图(1)扇形统计图的概念用圆和扇形来表示总体和部分的关系,即用圆表示总体,各个扇形分别代表总体中的不同部分,扇形面积的大小表示各部分占总体的百分比的大小,这样的统计图叫扇形统计图.扇形统计图,它是用整个圆的面积表示总数,用圆内的扇形面积表示各部分占总数的百分比的统计图.特点:能直观地反映每组数据占总数的百分比,及各部分之间的关系.画法:(1)计算出各部分数量占总体数量的百分比;(2)利用百分比计算出各部分所对应的扇形圆心角的度数;(3)绘制扇形图;(4)标明各部分的名称和相应的百分比.应用:①透过扇形图能读出各组数据所占的百分比,在已知总数的情况下能求出各组数据的个数.②在扇形统计图中,每部分扇形占总体的百分比乘以360°等于该部分所对应的扇形圆心角的度数.2.条形统计图 条形统计图是用一定单位长度的长方形表示一定的数量,并根据数量的多少画成长短不同的条形图,然后,把这些图形按照一定的顺序排列起来的反映数据之间关系的图形. 条形的宽度相同,长度不同,通过条形高的长短来体现各组数据个数及各组数据间的差别. 特点:①它能直观地反映每组中数据的个数;②能直观地反映出数据之间的差别. 缺点:不容易看出各组数据占总数的比例.应用:通过条形统计图能读出各组数据的个数,进而能求出总数据个数及各组数据间的差,以及各组数据所占的百分比等.3.频数直方图频数直方图也是描述数据的一种重要方法.通过频数直方图能直观地了解各组数据中的频数分布情况.画频数直方图的一般步骤:(1)计算最大值与最小值的差,找出数据的变化范围通过观察,首先找出数据中的最大值和最小值,并计算出最大值与最小值的差(极差),找出数据的变化范围.(2)决定组距与组数把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距. 根据最大值与最小值的差,来决定组距与组数.组距和组数的确定没有固定的标准,一般来说,数据越多分的组数也越多,当数据不超过50个时,可以分成5~7组;当数据在50~100之间时,一般分成8~12组.组数可以根据最大值-最小值组距来计算.(3)决定分点有些数据本身就是分点,不好决定它们究竟应该属于哪一组,为了避免出现这种情况,可以使分点比已知数据多一位小数,并且把第一组的起点稍微的减小一点.(4)列频数分布表频数分布表一般由三部分组成,一是数据分组,二是划记,三是频数.对落在各个小组内的数据进行累计,得到各个小组内的数据的个数(叫做频数),整理可得频数分布表.(5)画频数直方图频数直方图的横轴由数据组成,纵轴由频数组成.每个小长方形的高表示相应小组内数据的频数.4.合理分组的方法分组是列频数分布表和画频数直方图的前提,分组不同,所画出的直方图也不同. 对于一组数据,分组的方法有三种:一是根据组距分组,首先计算出最大值与最小值的差,根据最大值与最小值的差,适当地确定组距,根据最大值-最小值组距=组数(收尾法)来确定组数,然后分组,整理数据. 二是根据组数分组,先根据数据的个数和实际需要确定组数,再根据最大值-最小值组数=组距,取适当的数作为组距,然后分组,整理数据.三是根据最大值与最小值的差,再根据数据的实际情况,大约确定一个适合的利于计算的数为组距,如5,10等.只要能正确地反映数据的分布情况,并且能包含所有的数据的分组方法都可以.5.频数直方图与扇形统计图综合应用在统计图表的综合应用中,频数直方图与扇形统计图组合是出现较多的题目,它们之间的互相结合、互相补充,能多方面地反映数据间的内在关系.频数分布表和频数直方图能直观显示各组频数分布的情况,也能清楚地反映各组数据中频数的差别,扇形图侧重反映了各部分占总数的百分比,因而,它们之间互相补充.直方图和扇形图综合运用主要表现在,根据直方图中频数的个数和对应的数据在扇形图中所占的比例,能够求出数据总个数,进而根据数据总个数确定直方图中未知组的频数个数,补全直方图,求出扇形图中的百分比值,或圆心角度数等.6.频数直方图与条形统计图的比较应用条形图和直方图都是描述数据的重要方式,它们图形类似,都能直观地反映每组中数据的个数(频数),也能直观地反映出数据(频数)之间的差别.但它们是两种不同的数据描述方式,在描述数据的侧重点和表现形式上也存在着很多不同.(1)条形图是用条形的高表示各类别频数的多少,其宽度是固定的;频数直方图是用面积表示各组频数的多少,宽度则表示各组的组距,因此各长方形的高度与宽度均有意义.(2)由于分组数据具有连续性,频数直方图的各长方形通常是连续排列的,而条形统计图则是分开排列的,中间有空隙.(3)条形统计图是直观地显出具体数据,频数直方图是表现频数的分布情况。
5.3用统计图描述数据1.通过实例进一步理解三种统计图的特点及其性能,能根据具体的问题情境灵活地选择统计图描述数据;(重点、难点) 2.培养综合运用统计图描述数据的能力,体会数形结合思想在学习统计知识中的具体作用.一、情境导入在前面的学习中我们了解到三种统计图的作用,三种统计图的能力可谓是“各有千秋”,实际上我们在选择统计图的时候也需要考虑它们的特点,你能说出它们的特点吗?二、合作探究探究点一:统计图的合理选择【类型一】选择合适的统计图新区四月份第一周连续七天的空气质量指数(AQI)分别为:118,96,60,82,56,69,86.则这七天空气质量变化情况最适合用哪种统计图描述( )A.条形统计图B.扇形统计图C.折线统计图D.以上都不对解析:根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.这七天空气质量变化情况最适合用折线统计图.故选C.方法总结:本题考查了统计图的选择,此题根据扇形统计图、折线统计图、条形统计图各自的特点来判断.【类型二】根据要求选择合适的统计图并绘图某课外活动小组的同学举行植物标本制作比赛,结果统计如下表:请根据表中信息,回答下列问题:(1)活动小组共有学生多少人?(2)制作标本数在6个及以上的人数占小组总人数的百分比是多少?(3)根据统计表制作一个形象的统计图.解析:(1)把表中的人数加起来即可;(2)制作标本数在6个及以上的人数在全组人数中所占百分比=制作标本数在6个及以上的人数÷小组总人数×100%;(3)由表画出条形统计图即可.解:(1)该组共有学生1+2+4+3+2=12(人);(2)制作标本数在6个及以上的人数在全组人数中所百分比:(4+3+2)÷12×100%=75%;(3)根据题意可知,此类情况最适合条形统计图表示(如下图).方法总结:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.探究点二:复式统计图 【类型一】复式折线统计图两辆汽车行驶时间与路程的关系如下表,观察其中的规律,填写下表.。
御m 七年级数学.配合北师大教材,一一—7、髟l锈———__一/\。
j 、}卜,———一丁、h1盯弓/——■—钛圆W\漩亲≮田\徽卿∽\-,以厶^蚋、学生步课堂口山东左效平在学习直方图之前,我们习惯用扇形统计图、条形统计图、折线统计图描述数据,这=三种统计图互相补充,各有优点.我们先来认识这i 种统计网的意义,然后再探索中考是如何考查这三种统计图的,以方便同学们学习.一、三种统计图的特点1.扇形统计图.扇形统计图可以清楚地表示各部分在总体中所占的百分比.2.条形统计图.条形统计图可以清楚地表示每组中的具体数据,各组数据之和就是样本总数.3.折线统计图.折线统计图町以清楚地表示数据的变化趋势.二、三种统计图的应用1.扇形统计图的应用.例l如图1.整个圆表示某班参加课外活动的学生总体,其中跳绳的学生占总体的30%,表示踢毽子的扇形的圆心角是6俨,踢毽子和打篮球的人数之比为l :2。
那么参加其他活动的学生占总体的.分析:在解答与扇形统计图有关的问题时,图1万方数据2008.12篪酝下两个方面的问题:v .f f扇形的圆心角的度数体2360。
j 形统计网通过扇形面积的大小来反映各个部分占总体的百分,且各个部分所占的百分比之和为1.表示踢毽子的扇形的圆心角是600,所以踢毽子的学生占总体l—-一-6为踢毽子和打篮球的人数之比为l :2,所以打篮球的学生占总,跳绳、踢毽子、打篮球的学生共占总体的80%,‘扇形统计罔中所有扇形表示的部分占总体的百分比之和为:加其他活动的学生占总体的20%.真20%.比的大小的嚣=体的{.j的图2若该校有3000名学生,请根据统计图提供的信息回答以下问题.(1)抽取的学生有一名.(2)估计喜欢听易中天《品专国》的学生约有一一名.(3)估计该校喜欢听刘心武评《红楼梦》的女学生约占全校学生%.(4)你认为上述估计合理吗?理由是什么?6够万方数据倒礅七年级数学.配合北师大教材分析;在解答与条形统计图有关的问题时(1)要能通过条形统计图准确地求出各部(2)各部分数目之和就是总数;(3)各部分所占的百分比=各部分警曩体数解:(1)抽取的学生有20+10+30+145=300(名).f 2)喜欢听易中天《品三国》的男生有64由学生数理化●同步课堂。
用统计图描述数据教学目标【知识与技能】理解三种统计图各自的特点,能根据不同的问题选择适当的统计图描述数据,学会选择、处理数字信息,并做出合理的推断和猜测.【过程与方法】掌握用图形准确地表达解决问题的过程.【情感、态度与价值观】通过观察、操作、推理、想象、交流等活动,培养数感和统计观念.教学重难点【重点】三种统计图的特点.【难点】能根据不同问题选择适当的统计图描述数据,如何从统计图中获取信息及体会统计、决策的作用.教学过程一、创设情境、导入新课在我们日常所接触的报纸、杂志及电视中,我们经常见到一些统计图,本节课我们来学习统计图的选择.问题展示:小华对2001年~2011年同学家中有无电视机及近一年来同学在家看电视的情况,对同年级两个班的100名同学做了问卷调查,得到如下两个方面的数据:展示:调查项目1年份2001 2003 2005 2007 2009 2011 家庭数20 32 56 70 88 94展示:调查项目2 近一年中每周看电视的时间看电视4h以下48h 8h以上的时间人数36 48 16师:我们已经学习了三种不同的统计图,它们的特点是我们选择统计图处理数据的依据.对于调查项目1,若想表示各年份拥有电视机的家庭户数,选择什么样的统计图比较合适?生:条形统计图能够清晰地反映每个项目的具体数目及它们之间的大小关系,应选择条形统计图.师:(展示条形统计图)从这个条形图中,你能获得哪些信息?学生回答.师:对于调查项目1,要想让别人通过统计图很快地了解不同时期拥有电视机户数的增长情况,选择什么统计图合适?生:折线统计图能够清晰地反映同一事物在不同时期的变化情况选择折线统计图合适.师:展示折线统计图,你能从中获得哪些信息呢?生:逐年增长.师:哪一时间段增长较快,反映什么现象?学生回答.师:对于调查项目2,用怎样的统计图较合适?生:扇形统计图能够清楚地表示各部分在总体中所占百分率及各部分之间的大小关系,选择扇形统计图合适.师:常用的三种统计图,它们各自的特点也就是它们在描述数据上的优势,它们是我们选择统计图处理数据的依据.二、巩固新知问题1:某报对本市特色在市民中进行了一次调查,结果如下.市民对城市特色的评价.特色认可人数的百分率现代气息22%传统风格10%现代与传统兼容18%特色不突出46%无特色4%你选用哪种统计图描述上述数据?绘制统计图,并与同学交流你选择的理由.学生思考、画图、展示、分析.教师巡视、指导.问题2:2000年、2010年两次人口普查中,都对每10万人中受教育程度的人数进行了统计,结果如下表:每10万人中受教育程度的人数统计表受教育程度大学高中初中小学其他人数时间2000年第五3611 11146 33961 35701 15581 次2010年第六8930 14032 38788 26799 11451 次(1)小王用两幅条形统计图比较两次普查各种受教育的程度的情况,如图1.(2)小李用一幅条形统计图比较两次普查各种受教育程度的情况,如图2.师:哪种方法效果好?好在哪里?学生发表看法.师:小李的统计图称为复式统计图,用来表示多组同类数据,比用两幅统计图表示数据更直观、更易于比较.三、课堂小结师:今天这节课我们学习了哪些内容,你有什么收获?生:我们学习了统计图的特点、统计图的选择,知道了统计图的选择要根据实际问题的需要来确定.。
统计图知识点总结统计图是指利用图形表示统计数据的一种图形表达方式,是统计学中常用的一种数据展示方法。
统计图可以直观地展示出数据的分布规律和趋势变化,能够帮助人们更好地理解和分析数据。
在日常生活和工作中,统计图被广泛运用于各个领域,如教育、经济、医疗、环境保护等,以帮助人们更好地理解、分析和决策。
本文将从统计图的基本概念、常见类型和应用技巧等方面进行总结和介绍,以期帮助读者更好地掌握统计图知识。
一、统计图的基本概念1. 统计图的定义统计图是一种用图形来表示、说明和说明数字材料的图形,可直观地描述事物的数量关系、数量占比和变化趋势等现象。
统计图的主要功能是通过图形方式直观地展现数据的特点和规律。
2. 统计图的作用统计图能够帮助我们更好地理解和分析数据,通过直观的图形展示,可以更容易地观察数据的变化趋势和规律,帮助我们进行数据的比较和分析,以便更好地制定决策和规划。
3. 统计图的特点统计图一般具有直观、简洁、易于比较和分析等特点,能够使人们更直观地理解数据,便于做出决策和规划。
二、统计图的常见类型根据数据的类型和展示需求,统计图可分为多种类型,主要包括柱状图、折线图、饼图、散点图、雷达图等,每种类型都有其独特的优势和适用范围。
以下将对各种类型的统计图进行详细介绍。
1. 柱状图柱状图是以柱形的高度或长度来表示不同类别的数据,通过不同颜色或不同形状的柱形来区分不同类别的数据。
柱状图通常适用于展示不同类别的数据之间的比较情况,可以显示数据的大小和数量差异。
2. 折线图折线图是以折线的形式显示数据的变化情况,通过将数据点连成折线来描绘数据的变化趋势。
折线图适用于展示时间序列数据的变化情况,能够清晰地展现数据的趋势和变化规律。
3. 饼图饼图是以扇形的面积或角度来表示不同类别的数据,并通过不同颜色或标签来区分各个部分。
饼图通常适用于展示不同类别数据所占比例的情况,能够直观地呈现数据的比例和占比情况。
4. 散点图散点图是以点的形式展示两个变量之间的关系,通过将数据点在坐标平面上散布来显示变量之间的相关性。
《5.3 用统计图描述数据》一、选择题(共3小题,每小题3分,满分9分)1.要反映北京某一周每天的最高气温变化趋势,适宜采用()A.条形统计图B.折线统计图C.扇形统计图D.以上方法均可2.空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是()A.扇形图B.条形图C.折线图D.直方图3.某厂一月份到五月份的产值,分别是:350万元,340万元,355万元,400万元,380万元,依据以上数据制作统计图宜选用()A.扇形图B.条形图C.折线图D.三种都可以二、解答题(共11小题,满分40分)4.下表为100粒种子的发芽情况:天数 1 2 3 4 5发芽数10 65 15 5 5用统计图说明该种子的发芽率,可选择统计图,说明种子发芽数量,可选择统计图;反映种子的发芽规律,可选择统计图.5.某校部分男生分3组进行引体向上训练.对训练前后的成绩进行统计分析,相应数据的统计图如下.(1)求训练后第一组平均成绩比训练前增长的百分数;(2)小明在分析了图表后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的50%,所以第二组的平均成绩不可能提高3个这么多.”你同意小明的观点吗?请说明理由;(3)你认为哪一组的训练效果最好?请提供一个解释来支持你的观点.6.某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图(如图),请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?7.要能清楚地表示出各部分在总体中所占的百分比,应选择()A.折线统计图B.扇形统计图C.条形统计图D.表格统计8.近年来我国国内生产总值增长率的变化情况如下:年份2006 2007 2008 2009 2010增长率11.6% 13% 9% 8% 10.3%若想根据表中数据制成统计图,以别清楚看出这几年来国内生产总值增长率变化情况,应选取()A.折线统计图B.扇形统计图C.条形统计图D.以上均不能选9.根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是()A.男生在13岁时身高增长速度最快B.女生在10岁以后身高增长速度放慢C.11岁时男女生身高增长速度基本相同D.女生身高增长的速度总比男生慢10.按A,B,C,D四个等级统计某校九(1)班共50名学生的体育测试成绩,百分率分别为25%,50%,20%,5%,明明想让别人通过统计图很快地了解不同等级学生的数量,宜选用统计图描述.11.为直观地反映某城市一年中各月份的降水量,一般可制作统计图,若直观地反映某城市一年中各月份降水量的变化趋势一般制作统计图,若想表示某一季度降水比例最大,应制作统计图.12.要反映某一学生成绩进步的情况应选择统计图.13.“国际无烟日”来临之际,小敏同学就一批公众对在餐厅吸烟所持的三种态度(彻底禁烟、建立吸烟室、其他)进行了调查,并把调查结果绘制成如图1,2的统计图.请根据图中的信息回答下列问题:(1)被调查者中,不吸烟者中赞成彻底禁烟的人数有人;(2)本次抽样调查的样本容量为;(3)被调查者中,希望建立吸烟室的人数有人.14.在“走基层,树新风”的活动中,青年记者石剑深入边远山区,随机走访农户,调查农村儿童生活教育现状,根据收集的数据,编制了不完整的统计图表如下山区农村儿童生活教育现状类别现状户数比例A 父母常年在外打工,孩子留在老家由老人照顾100B 父母常年在外打工,孩子带在身边10%C 父母就近在城镇打工,晚上回家照顾孩子50D 父母在家务农并照顾孩子15%请你用学过的统计知识,解决问题:(1)记者石剑走访了边远山区多少农户?(2)将统计图中的空缺数据正确填写完整;(3)分析数据后,请你提一条合理建议.《5.3 用统计图描述数据》参考答案与试题解析一、选择题(共3小题,每小题3分,满分9分)1.要反映北京某一周每天的最高气温变化趋势,适宜采用()A.条形统计图B.折线统计图C.扇形统计图D.以上方法均可【考点】统计图的选择.【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.依此即可作出判断.【解答】解:根据题意,得要求直观反映北京某一周每天的最高气温变化趋势,结合统计图各自的特点,应选择折线统计图.故选B.【点评】此题考查扇形统计图、折线统计图、条形统计图各自的特点.2.空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是()A.扇形图B.条形图C.折线图D.直方图【考点】统计图的选择.【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.【解答】解:根据题意,得要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选A.【点评】此题考查扇形统计图、折线统计图、条形统计图各自的特点.3.某厂一月份到五月份的产值,分别是:350万元,340万元,355万元,400万元,380万元,依据以上数据制作统计图宜选用()A.扇形图B.条形图C.折线图D.三种都可以【考点】统计图的选择.【分析】条形统计图的特点是较易看出数量的多少;折线统计图的特点是较易看出数量的变化趋势;扇形统计图的特点是较易看出数量占总数的多少;由此选择即可.【解答】解:要清楚地表示数据,就选用条形统计图.故答案选:B.【点评】本题根据统计图的特点来选择统计图,把各种统计图的优点记住.二、解答题(共11小题,满分40分)4.下表为100粒种子的发芽情况:天数 1 2 3 4 5发芽数10 65 15 5 5用统计图说明该种子的发芽率,可选择扇形统计图,说明种子发芽数量,可选择条形统计图;反映种子的发芽规律,可选择折线统计图.【考点】统计图的选择.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:用统计图说明该种子的发芽率,可选择扇形统计图,说明种子发芽数量,可选择条形统计图;反映种子的发芽规律,可选择折线统计图,故答案为:扇形;条形;折线.【点评】此题根据扇形统计图、折线统计图、条形统计图各自的特点来判断.5.(10分)(2011•南京)某校部分男生分3组进行引体向上训练.对训练前后的成绩进行统计分析,相应数据的统计图如下.(1)求训练后第一组平均成绩比训练前增长的百分数;(2)小明在分析了图表后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的50%,所以第二组的平均成绩不可能提高3个这么多.”你同意小明的观点吗?请说明理由;(3)你认为哪一组的训练效果最好?请提供一个解释来支持你的观点.【考点】条形统计图;扇形统计图.【专题】图表型.【分析】(1)用训练后的成绩减去训练前的成绩除以训练前的成绩乘以100%即可;(2)求出第二组的平均成绩增加的个数与小明的说法相比较即可作出判断;(3)可以从训练前后成绩增长的百分数去分析,也可以通过个数比较.【解答】解:(1)训练后第一组平均成绩比训练前增长的百分数是×100%≈67%;(2)我不同意小明的观点,设第二组男生的人数为x人,第二组的平均成绩增加(8×10%•x+6×20%•x+5×20%•x+0×50%•x)÷x=3个.故不同意小明的观点;(3)本题答案不唯一,下列解法供参考.我认为第一组的训练效果最好;训练后每组的平均成绩比训练前增长的百分数分别为:第一组:×100%≈67%,第二组:×100%=50%,第三组:×100%≈22%,训练后第一组的平均成绩比训练前增长的百分数最大,所以第一组的训练效果最好.【点评】本题考查了条形统计图和扇形统计图的知识,解决此类题目的关键是正确的识图,通过正确的识图,从中整理出进一步解题的信息.6.(2016•洛江区模拟)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图(如图),请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?【考点】条形统计图.【分析】(1)根据科普类的人数和所占的百分比求出被调查的总人数;(2)用总人数减去文学类、科普类和其他的人数,求出艺体的人数,从而补全统计图;(3)用该校的总人数乘以喜爱文学类图书的学生所占的百分比即可.【解答】解:(1)被调查的学生人数为:12÷20%=60(人);(2)喜欢艺体类的学生数为:60﹣24﹣12﹣16=8(人),如图所示:(3)全校最喜爱文学类图书的学生约有:1200×=480(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,用到的知识点是频数、频率与总数之间的关系和用样本估计总体,关键是根据科普类的人数和所占的百分比求出被调查的总人数.7.(2008秋•沐川县期末)要能清楚地表示出各部分在总体中所占的百分比,应选择()A.折线统计图B.扇形统计图C.条形统计图D.表格统计【考点】统计图的选择.【专题】应用题.【分析】据扇形统计图表示的是部分在总体中所占的百分比,即可进行选择.【解答】解:根据题意,得:表示出各部分在总体中所占的百分比,应选用扇形统计图.故选B.【点评】此题考查扇形统计图、折线统计图、条形统计图各自的特点.8.(2011秋•贵阳期末)近年来我国国内生产总值增长率的变化情况如下:年份2006 2007 2008 2009 2010增长率11.6% 13% 9% 8% 10.3%若想根据表中数据制成统计图,以别清楚看出这几年来国内生产总值增长率变化情况,应选取()A.折线统计图B.扇形统计图C.条形统计图D.以上均不能选【考点】折线统计图;扇形统计图;条形统计图.【分析】根据条形图以及扇形图的特点以及折线图的性质,即可得出应选择折线图.【解答】解:若想根据表中数据制成统计图,以别清楚看出这几年来国内生产总值增长率变化情况,应选择折线统计图;故选:A.【点评】此题考查了利用折线图获取信息的一些方法.画折线图是本节的一个重要内容,要努力练好画折线图的基本功.9.(2011•株洲)根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是()A.男生在13岁时身高增长速度最快B.女生在10岁以后身高增长速度放慢C.11岁时男女生身高增长速度基本相同D.女生身高增长的速度总比男生慢【考点】函数的图象.【专题】压轴题.【分析】根据图象即可确定男生在13岁时身高增长速度是否最快;女生在10岁以后身高增长速度是否放慢;11岁时男女生身高增长速度是否基本相同;女生身高增长的速度是否总比男生慢.【解答】解:A、依题意男生在13岁时身高增长速度最快,故选项正确;B、依题意女生在10岁以后身高增长速度放慢,故选项正确;C、依题意11岁时男女生身高增长速度基本相同,故选项正确;D、依题意女生身高增长的速度不是总比男生慢,有时快,故选项错误.故选D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.10.按A,B,C,D四个等级统计某校九(1)班共50名学生的体育测试成绩,百分率分别为25%,50%,20%,5%,明明想让别人通过统计图很快地了解不同等级学生的数量,宜选用条形统计图描述.【考点】统计图的选择.【分析】根据题意可以分析出选取哪种统计图比较合适,本题得以解答.【解答】解:∵明明想让别人通过统计图很快地了解不同等级学生的数量,∴宜选用条形统计图描述,故答案为:条形.【点评】本题考查统计图的选择,解题的关键是明确各种统计图的特点,选取合适的统计图.11.为直观地反映某城市一年中各月份的降水量,一般可制作条形统计图,若直观地反映某城市一年中各月份降水量的变化趋势一般制作折线统计图,若想表示某一季度降水比例最大,应制作扇形统计图.【考点】统计图的选择.【分析】条形统计图能清楚地表示出每个项目的具体数目;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系,但一般不能直接从图中得到具体的数据;由此根据情况选择即可.【解答】解:根据统计图的特点,为直观地反映某城市一年中各月份的降水量,一般可制作条形统计图,若直观地反映某城市一年中各月份降水量的变化趋势一般制作折线统计图,若想表示某一季度降水比例最大,应制作扇形统计图,故答案为:条形,折线,扇形.【点评】此题考查统计图的选择,掌握扇形统计图、折线统计图、条形统计图各自的特点是解题的关键.12.要反映某一学生成绩进步的情况应选择折线统计图.【考点】统计图的选择.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:要反映某一学生成绩进步的情况应选择折线统计图,故答案为:折线.【点评】此题根据扇形统计图、折线统计图、条形统计图各自的特点来判断13.(12分)“国际无烟日”来临之际,小敏同学就一批公众对在餐厅吸烟所持的三种态度(彻底禁烟、建立吸烟室、其他)进行了调查,并把调查结果绘制成如图1,2的统计图.请根据图中的信息回答下列问题:(1)被调查者中,不吸烟者中赞成彻底禁烟的人数有82 人;(2)本次抽样调查的样本容量为200 ;(3)被调查者中,希望建立吸烟室的人数有56 人.【考点】条形统计图;总体、个体、样本、样本容量;扇形统计图.【分析】(1)读图易得:不吸烟中赞成在餐厅彻底禁烟的人数是82人;(2)用彻底禁烟的人数除以所对应的百分比即可求出总人数;(3)用总人数乘以希望在餐厅设立吸烟室的百分比即可解答.【解答】解:(1)结合条形统计图可得:不吸烟中赞成在餐厅彻底禁烟的人数是82;故答案为:82;(2)样本容量===200人;故答案为:200;(3)希望建立吸烟室的人数=总人数×希望建立吸烟室的人数所占百分比=200×28%=56人故答案为:56.【点评】本题主要考查条形统计图与扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.14.(18分)(2012•随州)在“走基层,树新风”的活动中,青年记者石剑深入边远山区,随机走访农户,调查农村儿童生活教育现状,根据收集的数据,编制了不完整的统计图表如下山区农村儿童生活教育现状类别现状户数比例A 父母常年在外打工,孩子留在老家由老人照顾100B 父母常年在外打工,孩子带在身边10%C 父母就近在城镇打工,晚上回家照顾孩子50D 父母在家务农并照顾孩子15%请你用学过的统计知识,解决问题:(1)记者石剑走访了边远山区多少农户?(2)将统计图中的空缺数据正确填写完整;(3)分析数据后,请你提一条合理建议.【考点】条形统计图;扇形统计图.【分析】(1)根据扇形图可知C类占25%,总人数=C类÷C类所占百分比;(2)利用总人数×各类所占百分比即可算出各类户数;用各类户数÷总人数=各类户数所占百分比,计算后填表即可;(3)此问是一个开放题,答案不唯一.【解答】解:(1)由扇形图和表格可知,C类占25%,总户数为:50÷25%=200.答:记者石剑走访了200户农家.(2)A类占:100%﹣15%﹣25%﹣10%=50%,B类户数200×10%=20,D类户数:200×15%=30,补全图表空缺数据:类别现状户数比例A类父母常年在外打工孩子留在老家由老人照顾100 50%B类父母常年在外打工,孩子带在身边20 10%C类父母就近在城镇打工,晚上回家照顾孩子50 25%D类父母在家务农,并照顾孩子30 15%(3)由图表可知孩子带在身边有益孩子的身心健康,建议社会关心留守儿童的生活状况.【点评】此题主要考查了扇形图与条形图,关键是读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.初中数学试卷金戈铁骑制作。
第十二章数据的描述12.1 几种常见的统计图表●目标导航1、了解频数、频率、条形图、扇形图等概念。
2、通过比较,了解用条形图、扇形图来描述数据的各自特点,并能初步会用条形图、扇形图来描述数据。
3、了解折线统计图。
通过描述数据的另一种方式——比较,了解用折线统计图表示数据的特点.初步会用折线统计图描述数据,能根据统计图用自己的语言描述数据的变化情况。
4、体会数据在现实生活中的作用,理解直方图的特点,学会从直方图中获取信息。
并能够根据直方图中提供的信息做出合理的判断,并能用自己的语言清楚地表达看法。
●名师引领1.我们常见的统计图表有哪几种?常见的统计图表有四种:条形图、扇形图、折线图、直方图。
2.条形图、扇形图、折线图、直方图分别有什么特点?条形图能够显示每组中的具体数据,易于比较数据之间的差别;扇形图常表示部分在总体中所占的百分比,它易于显示每组数据相对于总数的大小;折线图易于显示数据的变化趋势;直方图能够显示各组频数分布的情况,易于显示各组之间频数的差别。
●师生互动共解难题例1. 选择题:(1)要清楚地反映某地某月每天的气温变化情况,应绘制()统计图。
A. 条形 B. 折线 C. 扇形(2)可以清楚地表示出各班考试平均分数的是()统计图。
A. 条形B. 折线C. 扇形分析与解答:要解决这样的问题并不困难,关键要搞清各种统计图适合表示什么样的数据。
我们知道反映数据有很多种方式,可以用文字与数字,可以用统计表,也可以用我们学过的统计图。
前三者给人以精确的感觉,但并不直观;而后者则容易看出数据的变化与它们之间的比较,所以生活中经常用到,也是最基本的数据表达形式。
而常见的统计图有:条形、折线、扇形统计图。
条形统计图适合表示一些数据之间的大小关系。
折线统计图适合表示一种或几种数据的变化趋势。
(如果有几个数据,则应用不同的线条来表示)扇形统计图适合表示某一个数据占数据总量的百分数。
第一题要求我们表示出气温变化情况,是一个数据的变化,所以适合用折线统计图;而第二题同学们经常表示疑惑,因为三种统计图都可以表示各班考试平均分数,关键是要“清楚”地表示,就只能选择可以对比出各班分数高低的条形统计图。
汇报人:日期:•导入新课•学习新课•探索活动目录•巩固练习•拓展延伸•总结评价导入新课01复习已学知识统计图的概念和种类描述数据的方法和步骤条形统计图的特点和用途条形统计图的基本结构和组成条形统计图的数据表达方式引入新课内容能够正确分析和解读条形统计图能够利用条形统计图解决实际问题掌握条形统计图的基本概念和绘制方法展示学习目标学习新课02条形统计图是一种用条形的长度表示数量大小的图形。
统计图特点制作步骤它能够直观地展示不同类别的数据,方便比较和分析。
确定数据、绘制条形、标注数据。
030201条形统计图的概念准备数据确定分类绘制条形标注数据条形统计图的制作方法01020304首先需要确定要展示的数据,并收集和整理好数据。
根据数据的特征和需求,将数据分为不同的类别。
根据分类,用不同长度的条形表示各个类别的数据。
在条形的上方标注好相应的数据和单位。
条形统计图能够直观地展示数据的分布和比较情况,同时也可以通过颜色、形状等元素突出重点或进行分类。
特点条形统计图广泛应用于各个领域,如商业、社会研究、医学等,帮助人们分析和理解数据,做出决策和预测。
用途条形统计图的特点和用途探索活动03选择一个感兴趣的主题,收集相关数据。
确定数据根据数据的大小和类别,用不同长度的条形表示。
制作条形为条形统计图添加标题和数据标签。
添加标题和标签制作简单的条形统计图选择需要绘制条形统计图的数据。
选择数据确定数据的类别和数量。
确定类别和数量根据数据的类别和数量,用不同长度的条形表示。
绘制条形为条形统计图添加标题和数据标签。
添加标题和标签根据数据绘制条形统计图观察条形的长度和位置,了解不同类别的数据大小和差异。
观察条形比较不同类别的条形长度和位置,了解哪些数据占主导地位。
比较条形根据条形统计图中的信息,得出结论并解释。
得出结论分析条形统计图中的信息巩固练习04完善细节对绘制的条形图进行必要的调整和修饰,使其更加美观和易读。
绘制条形根据选择的条形图类型,使用适当的绘图工具或软件进行绘制。