9.2 格林公式
- 格式:ppt
- 大小:1.46 MB
- 文档页数:35
格林公式高斯公式斯托克斯公式格林公式、高斯公式和斯托克斯公式是数学领域中三个著名的公式,它们在计算曲线、曲面和体积的积分时非常有用。
下面将对这三个公式进行简要介绍。
1. 格林公式(Green's theorem):格林公式是一个关于曲线积分和双重积分的定理。
它将曲线积分与曲面的面积积分联系起来。
根据格林公式,如果C是一个简单闭合曲线,它围绕一个平面区域D,且具有光滑的边界,如果P和Q是具有连续一阶偏导数的函数,则有以下关系式成立:∮C Pdx + Qdy = ∬D (∂Q/∂x - ∂P/∂y)dA这个公式是一种有力的工具,用于计算曲线周围的环量和曲面上的通量。
2. 高斯公式(Gauss's theorem):高斯公式是一个重要的曲面积分定理,也被称为高斯-斯托克斯公式的一部分。
该定理描述了通过一个连续可微的矢量场F流入或流出封闭曲面S的总量。
根据高斯公式,如果S是一个封闭曲面,其边界为曲线C,且F是一个具有连续二阶偏导数的矢量场,则有以下关系式成立:∬S F·dS = ∮C F·dr这个公式在电学、磁学和流体力学等领域中常被应用,用于计算场的通量与曲线周围的环量之间的关系。
3. 斯托克斯公式(Stokes's theorem):斯托克斯公式是一个关于曲线积分和曲面积分的定理,也是高斯-斯托克斯公式的一部分。
根据斯托克斯公式,如果曲线C是一个光滑的边界,围绕一个光滑曲面S,且F是一个具有连续一阶偏导数的矢量场,则有以下关系式成立:∮C F·dr = ∬S (∇×F)·dS这个公式在电磁学、流体力学和计算机图形学等领域中广泛应用,用于计算曲线周围的环量与曲面上的旋度之间的关系。
总之,格林公式、高斯公式和斯托克斯公式是数学中重要的积分定理,它们在各种科学和工程问题的计算中发挥着关键作用,提供了一种将曲线、曲面和体积的积分相互联系起来的方法。
第三节 格林公式及其应用教学目的:理解和掌握格林公式及应用 教学重点:格林公式教学难点:格林公式的应用 教学内容: 一、Green 公式单连通区域.设D 为单连通区域,若D 内任一闭曲线所围的部分都属于D .称D 为单连通区域(不含洞),否则称为复连通区域(含洞).规定平面D 的边界曲线L 的方向,当观看者沿L 行走时,D 内在他近处的那一部分总在他的左边,如定理1. 设闭区域D 由分段光滑的曲线L 围成,函数),(y x P 和),(y x Q 在D 上具有一阶连续偏导数,则有dxdy y Px Q D⎰⎰∂∂-∂∂)(=⎰-L Qdy Pdx .L 为D 的取正向的边界曲线.即格林公式既为x - 型又为y -型区域2L :)(2x y ϕ=∵y P∂∂连续,证:对⎰⎰∂∂D dxdy y P=dyy y x P dx x x b a ⎰⎰∂∂)()(21),(ϕϕ=dxx x P x x P ba})](,[)](,[{1121⎰-ϕϕ1L :)(1x y ϕ= 又⎰⎰⎰+=21L L L Pdx Pdx Pdx=dxx x P ba⎰)](,[11ϕ+dxx x P ba⎰)](,[21ϕ=dxx x P x x P ba})](,[)](,[{2111⎰-ϕϕ∴⎰⎰⎰=∂∂-LD Pdx dxdy y PyxlLoyxL 1L 2ab对于y -型区域,同理可证 ⎰⎰∂∂D dxdy y Q=⎰L Qdx ∴原式成立对于一般情况,可引进辅助线分成有限个符合上述条件区域,在4321,,,D D D D 上应用格林公式相加,由于沿辅助线积分是相互抵消,即可得证.几何应用,在格林公式中,取x Q y P =-=,,⎰⎰Ddxdy2=⎰-Lydx xdy∴21=A ⎰-L ydx xdy说明:1)格林公式对光滑曲线围成的闭区域均成立2)记法⎰-L ydx xdy =⎰⎰∂∂-∂∂Ddxdy y x3)在一定条件下用二重积分计算曲线积分,在另外条件下用曲线积分计算二重积分.4)几何应用.例1. 计算⎰++-Cdy y x dx x y )3()( L :9)4()1(22=-+-y x解: 原式=⎰⎰=-D dxdy π18)13(, 3=∂∂x Q ,1=∂∂y P例1. 计算星形线⎩⎨⎧==t a y t a x 33sin cos 围成图形面积)20(π≤≤t⎰⎰⋅+⋅=-=π202223)sin cos 3sin cos sin 3cos (2121dtt t a t a t t a t a ydx xdy A L=832a π二 平面上曲线积分与路径无关的条件1) 与路无关:是G 为一开区域,),(),,(y x Q y x P 在G 内具有一阶连续偏导数,若G 内任意指定两点B A ,及G 内从A 到B 的任意两条曲线21,L L⎰⎰+=+21L L Q d yP d x Q d y P d x 恒成立,则称⎰+LQdy Pdx 在G 内与路径无关.否则与路径有关.例1.⎰-++Ldy y x dx y x )()( 1L :从)1,1(到)3,2(的折线2L 从)1,1(到)3,2(的直线解:⎰+1L QdyPdx =25)1()2(2131=++-⎰⎰dx x dy y 32L :)2(23-+=x y ,即 12-=x y⎰-++2)()(L dyy x dx y x =25)]1(2)12[(21=-+-+⎰dx x x x定理:设),(y x P ,),(y x Q 在单连通区域D 内有连续的一阶偏导数,则以下四个条件相互等价(1)内任一闭曲线C ,⎰+CQdy Pdx =0. (2)对内任一曲线L ,⎰+LQdyPdx 与路径无关(3)在D 内存在某一函数),(y x μ使Qdy Pdx y x d +=),(μ在D 内成立.(4)x Qy P ∂∂-∂∂,在D 内处处成立. 证明:(1)⇒(2) 在D 内任取两点B A ,,及连接B A ,的任意两条曲线⋂AEB ,⋂AGB ∴⋂⋂+=BGA AGB C 为D 内一闭曲线知⎰+CQdyPdx , 由(1)⎰⋂+AGBQdyPdx +⎰⋂+BEAQdy Pdx =0即⎰⋂+AGBQdy Pdx =⎰⋂+BEAQdyPdx∴(2)⇒(3)若⎰+LQdy Pdx 在D 内与路径无关.当起点固定在(0,yx )点,终点为),(y x 后,则⎰+),(),(00y x y x Qdy Pdx 是y x ,的函数,记为),(y x u .下证:),(y x u =⎰+),(),(00y x y x QdyPdx 的全微分为),(y x du =Qdy Pdx +.∵),(y x P ,),(y x Q 连续,只需证),(y x P x u =∂∂, ),(y x Q y u =∂∂,由定义=∂∂x u x y x u x x u x ∆-∆+→∆),()(lim 0=∆+),(y x x u ⎰∆++),(),(00y x x y x QdyPdx =),(y x u +⎰∆++),(),(y x x y x QdyPdx=),(y x u +⎰∆+xx xPdx∴-∆+),(y x x u ),(y x u =⎰∆+xx xPdx =x P ∆,),(y x x P P ∆+=θ)10(≤≤θoyx(2,3)(1,1)L2L1oyxEBAGx ∆),(000y x M oyxM(x,y)N(x+,y)即),(y x P x u =∂∂, 同理),(y x Q y u =∂∂.(3)⇒(4)若),(y x du =Qdy Pdx +,往证y P ∂∂=x Q ∂∂,=P x P∂∂,=Q y Q ∂∂y x P y P ∂∂∂=∂∂,x y Qx Q ∂∂∂=∂∂, 由Q P ,具有连续的一阶偏导数=∂∂∂y x u 2x y u ∂∂∂2 故y P ∂∂=x Q ∂∂(4)⇒(1)设C 为D 内任一闭曲线,D 为C 所围成的区域.⎰+CQdyPdx =dxdy y Px Q D⎰⎰∂∂-∂∂)(=0.例2.曲线积分⎰-++=Lx y dyy xe dx x e I )2()(, L 为过)0,0(,)1,0(和)2,1(点的圆弧.解: 令x e P y+=,y xe Q y2-=,则ye x Q=∂∂,ye y P =∂∂ ∴I 与路径无关. 取积分路径为AB OA +.=I ⎰+OAQdyPdx +⎰+ABQdyPdx=⎰⎰-++201)2()1(dy y e dx x y=272-e例2. 计算⎰+-Cy x ydxxdy 22, (1)c 为以)0,0(为心的任何圆周.(2)c 为以任何不含原点的闭曲线. 解:(1)令22y x y P +-=,22y x x Q +=,22222)(y x x y y P +-=∂∂,22222)(y x x y x Q +-=∂∂,∴在除去)0,0(处的所有点处有y P ∂∂=x Q∂∂,做以0为圆心,r为半径作足够小的圆使小圆含在C 内,∴⎰⎰++rC CQdyPdx =0,即=+⎰CQdy Pdx θθπd r r x r ⎰+202222sin cos =π2≠0(2)∵y P ∂∂=x Q∂∂ ∴=+⎰C Qdy Pdx 0 三、二元函数的全微分求积oyxBAoyx∵ ⎰+C QdyPdx 与路径无关,则Qdy Pdx +为某一函数的全微分为),(y x u =⎰+),(),(00y x y x QdyPdx =⎰+xx QdyPdx 0+⎰+yy QdyPdx 0注:),(y x u 有无穷多个.例3. 验证:ydy x dx y x cos )sin 2(++是某一函数的全微分,并求出一个原函数.解:令y x P sin 2+=,y x Q cos =y x Q cos =∂∂,y y P cos =∂∂∴原式在全平面上为某一函数的全微分,取)0,0(),(00=y x ,⎰+=),()0,0(),(y x Q d yP d x y x u =⎰⎰+x yydy x xdx 00cos 2=y x x sin 2+例5. 计算⎰-+-Cx x dym e y dy my e y )3()(23,c 为从E 到F 再到G ,⋂FG 是半圆弧解:令my e y P x-=3, m e y Q x-=23m e y y P x -=∂∂23,x e y y Q23=∂∂,m y Px Q =∂∂-∂∂添加直线GE,则,原式+⎰+GEQdy pdx =⎰⎰-Dmdxdy=])22(211221[2π⋅+⋅⋅-m =)41(π+-m ∴原式=m )41(π+-⎰-310dx =)41(π+-m 例6.设)(x f 在),(+∞-∞上连续可导,求dy y x f y y x dx y y x f y L L ⎰⎰++)],([),(1222,其中为从点)32,3(A 到)2,1(B 的直线段. ),(00y x ),(y x oyx),(y x )0.(x oyxo yxF (2,1)E (1,0)G (3,0)oy xB A C解;令y y x f y P ),(12+=, ]1),([22-=y x f y y x Q222),(1)],(),(2[y y x f y y y x f xy y x yf y P --'+=∂∂=2321),(),(y y x f xy y x f y -+=∂∂x Q ='+-)],([]1),([13222y x f y y x y x f y y 2321),(),(y y x f xy y x f y -+x Q y P ∂∂=∂∂,故原积分与路径无关,添CB AC +构成闭路,∴原式+0=+⎰⎰AC BC∴原式=⎰⎰+AC CB =dx x f dy y f y y )]32(941[23]1)([11322322++-⎰⎰ dy y y f dx x f ⎰⎰-++=132322]1)([)]32(3223[u x =3241)()(2323223223213-=+++⎰⎰y dy y f du u f x练习:1.证明:若)(u f 为连续函数,而C 为无重点的按段光滑的闭曲线,则)()(22=++⎰ydy xdx y xf c.2.确定的n 值,使在不经过直线0=y 的区域上,dy y y x x dx y y x x I c nc n ⎰⎰+-+=222222)()(与路径无关,并求当C 为从点)1,1(到点)2,0(B 的路径时I 的值.21-=n ,21-=I3.设),(y x f ,),(y x g 为L 上的连续函数,证明dsg f gdy fdx L L ⎰⎰+≤+22小结: 1. 格林公式及应用,积分与路径无关的四个等价命题,全微分求积.2. 格林公式使有些问题简化,有时可计算不封闭曲线积分,只需添上一条线使之成为封闭曲线,再减去所添曲线的积分值即可.作业:P153 2,3,5。
格林公式及其应用格林公式格林公式是向量分析中的一个重要定理,也被称为格林-斯托克斯定理。
它是由爱尔兰数学家乔治·格林在19世纪提出的,用于计算一个曲线或曲面上的环流和散度之间的关系。
格林公式的应用非常广泛,可以用来求解流体力学、电磁学和热力学等领域的问题。
下面将介绍格林公式的表达形式,以及它在常见问题中的具体应用。
1.格林公式的表达形式格林公式有两种常见的表达形式,一种是针对平面区域的格林公式,另一种是针对空间曲线的格林公式。
下面将分别介绍这两种格林公式的表达形式。
1.1平面区域的格林公式若D是一个紧致的平面区域,边界为C(C是一个简单、逐段光滑的曲线),向量函数F(x,y)=(P(x,y),Q(x,y))在区域D中具有二阶连续偏导数,则有如下格林公式:∬D(∂Q/∂x-∂P/∂y)dxdy=∮C(Pdx+Qdy)其中,∂P/∂y和∂Q/∂x分别表示P和Q对y和x的偏导数,dxdy表示在D中的面积元素,Pdx+Qdy表示沿着边界C的曲线元素。
1.2空间曲线的格林公式若S是一个有向光滑曲面,它的边界为C(C是一个简单、光滑的曲线),向量函数F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))在曲面S内具有连续偏导数,则有如下格林公式:∯S(∂R/∂y-Q)dydz+(∂P/∂z-R)dzdx+(∂Q/∂x-P)dxdy=∮C(Pdx+Qdy+Rdz)其中,∂P/∂z、∂Q/∂x和∂R/∂y分别表示P、Q和R对z、x和y的偏导数,dydz、dzdx和dxdy表示在S内的面积元素,Pdx+Qdy+Rdz表示沿着边界C的曲线元素。
2.格林公式的应用格林公式具有广泛的应用,在流体力学、电磁学、热力学等领域都能够找到它的身影。
下面将以几个例子来说明格林公式的具体应用。
2.1流体力学中的应用格林公式在流体力学中常常用于计算流体的环流和散度。
例如,可以利用格林公式来推导速度势函数和流函数之间的关系,进而求解流场中的速度分布。