数控系统插补的方法和原理
- 格式:docx
- 大小:16.16 KB
- 文档页数:2
教案讲 稿第2章 计算机数控系统(CNC )§2.4数控系统的插补原理 一、插补的基本概念机床数字控制的核心问题之一,就是如何控制刀具与工件的相对运动。
加工平面直线或曲线需要两个坐标协调运动,对于空间曲线或曲面则需要三个或三个以上坐标协调运动,才能走出其轨迹。
协调的实质上是决定联动过程中各坐标轴的运动顺序、位移、方向和速度。
这种协调即是所谓插补。
插补计算机就是对数控系统输入基本数据,动用一定的算法计算,并根据计算结果向相应的坐标发出进给指令。
对应于每一进给指令,机床在相应的坐标方向上移动一定距离,从而加工出所需的轮廓形状。
实现这一插补运算的装置,称为插补器。
对于插补器有一些最基本的要求: (1) 插补所需的原始数据较少。
(2) 有较高的插补精度。
(3) 进给速度要恒定。
(4) 实现简单可靠,计算机速度快。
根据插补所采用的原理和计算方法,可有许多插补方法,目前应用的插补方法分为脉冲增量插补和数字增量插补两类。
二、逐点比较法插补逐点比较法的原理就是每走一步控制系统都要将加工点与给定的图形轨迹相比较,以决定下一步进给的方向,使之逼近加工轨迹。
逐点比较法以折线来逼近直线或圆弧,运算直观,容易理解,输出脉冲均匀,在两坐标插补的开环步进控制系统中得到普遍应用。
1、逐点比较法直线插补如图所示,设直线OA 为第一象限直线,起点为坐标原点O (0,0),终点坐标为A (X e ,Y e ),P(X i ,Y i )为加工点。
若P 点正好在直线OA 上,由相似三角形关系则有XeYeXi Yj = 即Xe -XiYe=0 若P 点正好在直线OA 上方,由相似三角形关系则有XeYe Xi Yj > 即Xe -XiYe>0 若P 点正好在直线OA 上,由相似三角形关系则有XeYe Xi Yj 即Xe -XiYe<0 令Fi,j= XeYj-XiYe 则有(1) 如Fi,j=0,则点P 在直线OA 上; (2) 如Fi,j>0,则点P 在直线OA 上方; (3) 如Fi,j<0,则点P 在直线OA 下方。
数控系统中直线与圆弧插补算法的探讨导言数控系统是一种广泛应用于机械加工领域的自动化控制系统。
其中,直线与圆弧插补算法是数控系统中的核心算法之一。
本文将深入探讨直线与圆弧插补算法的原理、方法以及应用。
直线插补算法直线插补是数控系统中最基本的插补运动方式之一。
它的目标是实现两个给定点之间的直线路径。
在直线插补算法中,我们需要考虑以下几个方面:1.起始点和终点的坐标:为了实现直线插补,我们需要明确起始点和终点的空间坐标。
2.运动速度和加速度:直线插补需要考虑加速度和速度的变化,以实现平滑而又快速的运动。
3.插补精度:直线插补的精度决定了运动轨迹的平滑度和误差控制的能力。
直线插补算法的基本思路是将插补路径划分为多个小段,然后通过控制每个小段的加速度和速度,以达到平滑运动的效果。
常用的直线插补算法包括线性插补算法和B样条插补算法。
线性插补算法线性插补算法是最简单和最基础的直线插补算法之一。
它假设插补路径是一条直线,并根据起始点和终点的坐标以及插补周期,计算出每个插补周期点的位置。
线性插补算法的优点是计算简单,实现容易,但缺点是对于曲线路径的插补效果较差。
B样条插补算法B样条插补算法是一种基于样条曲线的插补算法。
在B样条插补算法中,我们将插补路径表示为一条样条曲线,并通过控制样条曲线的控制点来实现运动轨迹的控制。
B样条插补算法的优点是对曲线路径的插补效果较好,但是计算复杂度较高。
圆弧插补算法除了直线插补,圆弧插补算法也是数控系统中常用的插补方式之一。
圆弧插补用于实现两个给定点之间的圆弧路径。
与直线插补类似,圆弧插补算法也需要考虑起始点和终点的坐标、运动速度和加速度等因素。
圆弧插补算法的基本思路是通过指定起始点、终点和圆心,计算出圆弧路径上每个插补点的位置。
常用的圆弧插补算法包括圆心法和半径法。
圆心法圆心法是一种基于圆心坐标的圆弧插补算法。
在圆心法中,我们通过指定起始点、终点和圆心的坐标,计算出圆弧路径上每个插补点的位置。
实验三数控系统的插补实验一、实验目的了解数控系统直线插补和圆弧插补的原理及其实现方法,通过插补算法的可视化,加深对常用插补算法的了解。
应用标准G代码编程实现直线插补和圆弧插补,掌握标准G代码的直线插补和圆弧插补编程方法。
二、实验要求1.掌握数控机床插补原理。
2.掌握数控机床直线和圆弧插补。
三、实验原理1.基本概念机床数字控制的核心问题之一,就是如何控制刀具与工件的相对运动。
加工平面直线或曲线需要两个坐标轴联动,对于空间曲线或曲面则需要三个或三个以上坐标轴联动,才能走出其轨迹。
插补(interpolation)的实质上是决定联动过程中各坐标轴的运动顺序、位移、方向和速度。
具体来说,插补方法是指在轮廓控制系统中,根据给定的进给速度和轮廓线形的要求,在已知数据点之间插入中间点。
每种方法又可能用不同的计算方法来实现,具体的计算方法称之为插补算法。
插补的实质就是数据点的密化。
数控系统中完成插补工作的装置叫插补器。
根据插补器的不同结构,可分为硬件插补器和软件插补器两大类。
硬件插补器由专用集成电路组成,它的特点是运算速度快,但灵活性差:软件插补器利用微处理器通过系统程序完成各种插补功能,这种插补器的特点是灵活易变,但速度较慢。
随着微处理器运算速度和存储容量的提高,现代数控系统大多采用软件插补或软、硬件插补相结合的方法。
2.插补算法按数学模型来分,有一次(直线)插补,二次(圆、抛物线等)插补及高次曲线插补等,大多数控机床都具有直线插补和圆弧插补。
根据插补所采用的原理和计算方法的不同,有许多插补方法,目前应用较多的插补方法分为脉冲增量插补和数字增量插补两类。
脉冲增量插补又称为基准脉冲插补,适用于以步进电动机驱动的开环数控系统中。
在控制过程中通过不断向各坐标轴驱动电机发出互相协调的进给脉冲,每个脉冲通过步进电动机驱动装置使步进电动机转过一个固定的角度(称为步距角),并使机床工作台产生相应的位移。
该位移称为脉冲当量,是最小指令位移。
数控系统插补的方法和原理
数控机床上进行加工的各种工件,大部分由直线和圆弧构成。
因此,大多数数控装置都具有直线和圆弧的插补功能。
对于非圆弧曲线轮廓轨迹,可以用微小的直线段或圆弧段来拟合。
插补的任务就是要根据进给速度的要求,在轮廓起点和终点之间计算出若干中间掌握点的坐标值。
由于每个中间点计算的时间直接影响数控装置的掌握速度,而插补中间点的计算精度又影响整个数控系统的精度,所以插补算法对整个数控系统的性能至关重要,也就是说数控装置掌握软件的核心是插补。
插补的方法和原理许多,依据数控系统输出到伺服驱动装置的信号的不同,插补方法可归纳为脉冲增量插补和数据采样插补两种类型。
一、脉冲增量插补
这类插补算法是以脉冲形式输出,每次插补运算一次,最多给每一轴一个进给脉冲。
把每次插补运算产生的指令脉冲输出到伺服系统,以驱动工作台运动。
一个脉冲产生的进给轴移动量叫脉冲当量,用δ表示。
脉冲当量是脉冲安排计算的基本单位,依据加工的精度选择,一般机床取δ=0.01mm,较为精密的机床取δ=1μm或0.1μm 。
插补误差不得大于一个脉冲当量。
这种方法掌握精度和进给速度低,主要运用于以步进电动机为驱动装置的开环掌握系统中。
二、数据采样插补
数据采样插补又称时间标量插补或数字增量插补。
这类插补算法的特点是数控装置产生的不是单个脉冲,而是数字量。
插补运算分两步完成。
第一步为粗插补,它是在给定起点和终点的曲线之间插入若干个点,即用若干条微小直线段来拟合给定曲线,每一微小直线段的长度△L 都相等,且与给定进给速度有关。
粗插补时每一微小直线段的长度△L 与进给速度F和插补T周期有关,即△L=FT。
图1 数据采样插补
其次步为精插补,它是在粗插补算出的每一微小直线上再作“数据点的密化”工作。
这一步相当于对直线的脉冲增量插补。
数据采样插补方法适用于闭环、半闭环的直流或沟通伺服电动机为驱动装置的位置采样掌握系统中。