三角函数换底公式
- 格式:doc
- 大小:13.00 KB
- 文档页数:1
三角函数变换公式大全这篇文章给大家分享三角函数的变换公式以及初中常用的三角函数公式,一起看一下具体内容。
三角函数变换公式三角函数乘积变换和差公式sinAsinB=-[cos(A+B)-cos(A-B)]/2cosAcosB=[cos(A+B)+cos(A-B)]/2sinAcosB=[sin(A+B)+sin(A-B)]/2cosAsinB=[sin(A+B)-sin(A-B)]/2三角函数和差变换乘积公式sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)三角函数两角和与差公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cossinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)三角函数的转化公式sin(-α)=-sinαcos(-α)=cosαsin(π/2-α)=cosαcos(π/2-α)=sinαsin(π/2+α)=cosαcos(π/2+α)=-sinαsin(π-α)=sinαcos(π-α)=-cosαsin(π+α)=-sinαtanα=sinα/cosαtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα常用三角函数公式三角函数半角公式sin(A/2)=±√((1-cosA)/2)cos(A/2)=±√((1+cosA)/2)tan(A/2)=±√((1-cosA)/((1+cosA))三角函数倍角公式Sin2A=2SinA*CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2)。
职业高中常用数学公式三、指数部分与对数部分常用公式1、指数部分:⑵分数指数幂与根式形式的互化: ① nmnm a a= ② nmnm aa1=-)1*,(>∈n N n m 且、①10=a② a a n n =)( ③ ⎩⎨⎧=为偶数,当为奇数当n a n a a n n ||,2、对数部分:⑴1log =a a ;⑵01log =a ;⑶对数恒等式:N aNa =log 。
⑷N M N M a a a log log )(log +=⋅ ⑸N M NMa a a log log )(log -=; ⑹ M p M a pa log log =⑺换底公式:abb c c a log log log =﹡四、三角部分公式 1、弧度与角度⑴换算公式:1800=π,10=180πrad 1rad=π0180≈57018'=57.3002、角α终边经过点P ),(y x ,22y x r +=,则r y =αsin ,r x =αcos ,xy=αtan 1、 三角函数在各象限的正负情况:4、同角函数基本关系式:5、简化公式:①⎪⎩⎪⎨⎧-=-=--=-ααααααtan )tan(cos )cos(sin )sin( ②⎪⎩⎪⎨⎧-=-=--=-ααπααπααπtan )2tan(cos )2cos(sin )2sin( ③⎪⎩⎪⎨⎧-=--=-=-ααπααπααπtan )tan(cos )cos(sin )sin( ④ ⎪⎩⎪⎨⎧=+-=+-=+ααπααπααπtan )tan(cos )cos(sin )sin( ⑤⎪⎩⎪⎨⎧=+=+=+ααπααπααπtan )2tan(cos )2cos(sin )2sin(k k k (k Z ∈)⑥⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=-ααπααπααπcot )2tan(sin )2cos(cos )2sin(6、两角和与差的正弦、余弦、正切:⑴两角和与差的正弦:βαβαβαsin cos cos sin )sin(+=+βαβαβαsin cos cos sin )sin(-=-⑵两角和与差的余弦:βαβαβαsin sin cos cos )cos(-=+βαβαβαsin sin cos cos )cos(+=-⑶两角和与差的正切:βαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-7、二倍角公式:⑴二倍角的正弦:αααcos sin 22sin =⑵二倍角的余弦:ααα22sin cos 2cos -== α2sin 21-= 1cos 22-α⑶二倍角的正切:ααα2tan 1tan 22tan -=五、几何部分 1、 向量④向量的数量积:θcos ||||⋅⋅=⋅b a b a(其中θ为两个向量的夹角)﹡ ⑵代数方式的运算:设),(21a a a =,)(2,1b b b = ,①加法:),(2211b a b a b a ++=+②减法:),(2211b a b a b a --=-③数乘向量:),(21a a a λλλ=④向量的数量积:2211b a b a b a +=⋅(结果为实数)⑶两个向量平行与垂直的判定:设),(21a a a =,)(2,1b b b = ,①平行的判定:a ∥b ⇔a bλ=⇔1221b a b a =②垂直的判定:a ⊥b ⇔0=⋅b a⇔02211=+b a b a⑷其它公式:设),(21a a a =,)(2,1b b b =①向量的长度:2221||a a a +=﹡②设),(),,(2211y x B y x A ,则),(1212y y x x B A --=;|212212)()(|y y x x B A -+-=﹡③设),(),,(2211y x B y x A ,则线段AB 的中点M 的坐标为M )2,2(2121y y x x ++﹡④两个向量的夹角为θ,则222122212211||||cos b b a a b a b a b a ba +++=⋅= θ2、 直线部分⑴斜率公式:①)为直线的倾斜角,090(tan ≠=αααk②)(211212x x x x y y k ≠--=⑵直线方程的形式:① 点斜式:)(00x x k y y -=- (k 为斜率,),(00y x 为直线过的点); ② 斜截式:b kx y +=(k 为斜率,b 为直线在y 轴上的截距); ③ 一般式:)0(0≠=++A C By Ax (斜率BCb B A k -=-=,) ⑶两条直线平行或垂直的条件:① 两条直线斜率为21,k k ,且不重合则1l ∥2l ⇔21k k = ② 两条直线的斜率为21,k k ,则1l ⊥2l ⇔121-=⋅k k ⑷两条直线的夹角公式(设夹角为θ): ①21k k =时,1l ∥2l ,夹角θ=00; ②121-=⋅k k 时,1l ⊥2l ,则夹角θ=900; ⑷点),(00y x 到直线0=++C By Ax 的距离公式: ||2200BA CBy Ax d +++=⑸两平行线0:11=++C By Ax l 与0:22=++C By Ax l 间距离 ||2221B A C C d ++=3、圆部分⑴圆的方程:① 标准方程:222)()(r b y a x =-+-(其中圆心为),(b a ,半径为r ) ② 一般方程:022=++++F Ey Dx y x (其中圆心为)2,2(ED --,半径为2422FE D r -+=)六、数列1、 已知前n 项和公式n S :⎩⎨⎧∈≥-==-),2()1(11Z n n s s n s a n n n2、 等差数列:⑴通项公式d n a a n )1(1-+=(1a 是首项;d 为公差n 为项数;n a 为通项即第n 项)⑵等差公式:a ,A ,b 三数成等差数列,A 为a 与b 的等差中项,则)2(2b a A ba A +=+=或 ⑶前n 项和公式:① d n n n a S n 2)1(1-+=(已知n d a ,,1时应用此公式) ②2)(1n n a a n S +=(已知n a a n ,,1时应用此公式) ③特殊地:当数列为常数列,,,a a a ----时,na S n = 3、等比数列:⑴通项公式:11-=n n qa a⑵等比中项公式:若a ,A ,b 三数成等比数列,则A 为a 与b 的等比中项,则)(2b a A b a A ⋅±=⋅=或⑶前n 项和公式:①)1(1)1(1≠--=q qq a S nn (已知n q a ,,1时应用)②)1(1)1≠--=q qq a a S n n (已知n a a n ,,1时应用)③当1=q 时,数列为常数列,则1na S n =。
什么是换底公式换底公式怎么推导来的换底公式是数学中常用的一种技巧,用于将不同底的对数转换为同底的对数。
它在解决一些复杂计算问题时具有很大的便利性,并且被广泛应用于各个领域。
本文将详细介绍什么是换底公式以及它是如何推导而来的。
1. 换底公式的定义换底公式是指将不同底的对数转换为同底的对数的公式。
具体来说,对于任意一个正实数a、b(a、b≠1),以及任意一个正实数x,换底公式可以表示为:logₐx = logₐb * log_bx其中,logₐx表示以底数a为底的x的对数,logₐb表示以底数a为底的b的对数,log_bx表示以底数b为底的x的对数。
2. 换底公式的推导过程为了推导换底公式,我们先从上述公式入手,根据对数的定义和性质进行推算。
首先,根据对数的定义,底数a为底的x的对数可以表示为a的多少次幂等于x。
即:a^logₐx = x。
其次,我们可以将a表示为b的对数的形式,即:a = b^log_ba。
将以上两个等式代入我们的初等换底公式中,得到:a^logₐx =(b^log_ba)^logₐb * log_bx。
在指数运算中,当相同底数的幂次相乘时,其底数保持不变,幂次相加。
根据此性质,上述等式可以进一步简化为:(b^log_ba)^logₐb *log_bx = b^{(log_ba)*(logₐb)} * log_bx。
为了使等式更加简洁,我们引入一个新的变量t,令t = log_ba。
代入上式得到:b^t * log_bx = b^{t * (logₐb)} * log_bx。
进一步观察整个等式,我们可以发现b^t与b^{t * (logₐb)}是相等的,即:b^t = b^{t * (logₐb)}。
由于底数相等,所以指数也必须相等。
根据这一条件,我们得到logₐb = 1。
将这个结果代入上面的等式,我们就可以得到最终的换底公式:a^logₐx = b^t * log_bx。
3. 换底公式的应用举例现在我们来看一些实际应用,以更好地理解换底公式。
三角函数公式百科名片三角函数是数学中属于初等函数中的超越函数的一类函数。
它们的本质是任何角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的。
其定义城为整个实数城。
另一种定义是在直角三角形中,但并不完全。
现代数学把它们描述成无穷敖列的极限和微分方程的解,将其定义扩展到复数系。
[编辑本段]公式分类锐角三角函数公式sin α=∠α的对边/ 斜边cos α=∠α的邻边/ 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA•CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-cos²a)cosa=4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinαsinβ= [cos(α-β)-cos(α+β)] /2cosαcosβ= [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(kπ+α)= tanαcot(kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -si nαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A·sin(ωt+θ)+ B·sin(ωt+φ) =√{(A^2 +B^2 +2ABcos(θ-φ)} • sin{ωt + arcsin[ (A•sinθ+B•sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }√表示根号,包括{……}中的内容诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)[编辑本段]内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。
三角函数转换公式1、诱导公式:sin(-α) = -sinα;cos(-α) = cosα;sin(π/2-α) = cosα;cos(π/2-α) = sinα;sin(π/2+α) = cosα;cos(π/2+α) = -sinα;sin(π-α) = sinα;cos(π-α) = -cosα;sin(π+α) = -sinα;cos(π+α) = -cosα;tanA= sinA/cosA;tan(π/2+α)=-cotα;tan(π/2-α)=cotα;tan(π-α)=-tanα;tan(π+α)=tanα2、两角和差公式:sin(A±B) = sinAcosB±cosAsinBcos(A±B) = cosAcosB sinAsinBtan(A±B) = (tanA±tanB)/(1 tanAtanB)cot(A±B) = (cotAcotB 1)/(cotB±cotA)3、倍角公式sin2A=2s inA•cosAcos2A=cosA2-sinA2=1-2sinA2=2cosA2-1tan2A=2tanA/(1-tanA2)=2cotA/(cotA2-1)4、半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))声屏障板:声屏障板声波在传播过程中,遇到声屏障板时,就会发生反射、透射和绕射三种现象。
通常我们认为屏障板能够阻止直达声的传播,并使统射声有足够的衰减,而透射声的影响可以忽略不计。
因此,声屏障板的隔声效果一般可采用减噪量表示,它反映了声屏障板上述两种屏蔽透声的本领。
换底公式的6个推论首先,我们来介绍一下换底公式:对于任意实数a,b,c,且a≠1,b≠1,有以下的换底公式:1. logₐb = logcₐ / logcₒb2. logₐ(b^c) = c * logₐb3. logₐ1 = 04. logₐa = 15. logₐ(ab) = logₐa + logₐb6. logₐ(b/c) = logₐb - logₐc接下来,我们将详细说明这些换底公式的推论:推论一: logₐb = 1 / logbₐ根据换底公式 logₐb = logcₐ / logcₒb,取c = b,并将logcₐ化简为1,得到 logₐb = logbₐ / logbₐ,再根据对数的倒数性质,可得 logₐb =1 / logbₐ。
推论二: loga(b^c) = logb(a^c)根据换底公式 logₐb = logcₐ / logcₒb,将c替换成a^c,可得loga(b^c) = log(a^c)ₐ / log(a^c)ₒb,再根据log的指数性质loga(b^c) = logₐ(b^c),log(a^c)ₐ = c,log(a^c)ₒb = c * log(a)ₒb,可得loga(b^c) = log(b)ₐ / log(b)ₒa^c = logb(a^c)。
推论三: loga1 = 0根据换底公式 logₐb = logₐ1 / logₐb,可以判断 logₐ1 = 0。
推论四: logaa = 1根据换底公式 logₐa = logₐa / logₐb,可以判断 logₐa = 1推论五: log(ab) = loga + logb根据换底公式 logₐb = logcₐ / logcₒb,取c = a * b,并将logcₐ化简为loga + logb,可得 log(ab) = loga + logb。
推论六: log(b/c) = logb - logc根据换底公式 logₐ(b/c) = logcₐ / logcₒ(b/c),取c = b,logcₐ化简为1 / logbₐ,logcₒ(b/c)化简为logbₒ(b) - logbₒ(c),可得 log(b/c) = logb - logc。
常用三角函数转换公式三角函数转换公式汇总锐角三角函数公式sinα=∠α的对边/斜边cosα=∠α的邻边/斜边tanα=∠α的对边/∠α的邻边cotα=∠α的邻边/∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a=tana·tan(π/3+a)·tan(π/3-a)一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina-sinθ)=2sin[(θ+a)/2]cos[(a-θ)/2]*2cos[(θ+a)/2]sin[(a-θ)/2]=sin(a+θ)*sin(a-θ)坡度公式我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h/l,坡度的一般形式写成l:m形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tana.常用三角函数公式1.万能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)2.辅助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r) cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a3.两角和差公式:sin(AB)=sinAcosBcosAsinBcos(AB)=cosAcosBsinAsinBtan(AB)=(tanAtanB)/(1tanAtanB)cot(AB)=(cotAcotB1)/(cotBcotA)4.半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 5.积化和差sina*cosb=[sin(a+b)+sin(a-b)]/2cosa*sinb=[sin(a+b)-sin(a-b)]/2cosa*cosb=[cos(a+b)+cos(a-b)]/2sina*sinb=-[cos(a+b)-cos(a-b)]/26.和差化积sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2] cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]。
函数y=tanx,x∈(-π/2,π/2)的反函数,记作y=arctanx,叫做反正切函数。
反正切函数是反三角函数的一种。
同样,由于正切函数y=tanx在定义域上不具有一一对应的关系,所以不存在反函数。
注意这里选取是正切函数的一个单调区间。
1,定义域:R值域:(-π/2,π/2)单调性:增函数奇偶性:奇函数周期性:不是周期函数2,arctan(x+y) <= arctanx + arctany = arctan[Tan(arctanx + arctany)] = arctan[(x+y)/(1-xy)]反正切函数的大致图像如图所示,显然与函数y=tanx,x∈(-π/2,π/2)关于直线y=x 对称,且渐近线为y=π/2和y=-π/2反三角函数反三角函数主要是三个:y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]图象用红色线条;y=arccos(x),定义域[-1,1] ,值域[0,π],图象用蓝色线条;y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;y=arccot(x),定义域(-∞,+∞),值域(0,π),图象用绿色线条;sin(arcsin x)=x,定义域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx 证明方法如下:设arcsin(x)=y,则sin(y)=x ,将这两个式子代入上式即可得其他几个用类似方法可得cos(arccos x)=x, arccos(-x)=π-arccos xtan(arctan x)=x, arctan(-x)=-arctanx反三角函数其他公式cos(arcsinx)=根号下1-x^2arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotxarcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x当x∈[-π/2, π/2] 有arcsin(sinx)=xx∈[0,π], arccos(cosx)=xx∈(-π/2, π/2), arctan(tanx)=xx∈(0, π), arccot(cotx)=xx>0, arctanx=π/2-arctan1/x, arccotx类似若(arctanx+arctany)∈(-π/2, π/2), 则arctanx+arctany=arctan(x+y/1-xy)一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a 为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
三角函数转换公式大全三角函数是高中数学中的重要内容,它们在数学和物理学中有着广泛的应用。
在学习三角函数的过程中,我们经常会遇到需要进行三角函数的转换,而掌握三角函数的转换公式是十分重要的。
本文将为大家详细介绍三角函数的转换公式,希望能对大家的学习有所帮助。
1. 正弦函数转换公式。
正弦函数是三角函数中的一种基本函数,其转换公式包括:(1)正弦函数的奇偶性,sin(-x)=-sinx,sin(π-x)=sinx;(2)正弦函数的周期性,sin(x+2kπ)=sinx,其中k为整数;(3)正弦函数的同角变换,sin(π/2-x)=cosx,sin(π/2+x)=cosx。
2. 余弦函数转换公式。
余弦函数也是三角函数中的一种基本函数,其转换公式包括:(1)余弦函数的奇偶性,cos(-x)=cosx,cos(π-x)=-cosx;(2)余弦函数的周期性,cos(x+2kπ)=cosx,其中k为整数;(3)余弦函数的同角变换,cos(π/2-x)=sinx,cos(π/2+x)=-sinx。
3. 正切函数转换公式。
正切函数是三角函数中的另一种基本函数,其转换公式包括:(1)正切函数的奇偶性,tan(-x)=-tanx,tan(π-x)=-tanx;(2)正切函数的周期性,tan(x+π)=tanx;(3)正切函数的同角变换,tan(π/2-x)=cotx,tan(π/2+x)=-cotx。
4. 余切函数转换公式。
余切函数是三角函数中的第四种基本函数,其转换公式包括:(1)余切函数的奇偶性,cot(-x)=-cotx,cot(π-x)=-cotx;(2)余切函数的周期性,cot(x+π)=cotx;(3)余切函数的同角变换,cot(π/2-x)=tanx,cot(π/2+x)=-tanx。
5. 正割函数和余割函数转换公式。
正割函数和余割函数是三角函数中的补充函数,其转换公式包括:(1)正割函数的奇偶性,sec(-x)=secx,sec(π-x)=-secx;(2)正割函数的周期性,sec(x+2kπ)=secx,其中k为整数;(3)余割函数的奇偶性,csc(-x)=-cscx,csc(π-x)=-cscx;(4)余割函数的周期性,csc(x+2kπ)=cscx,其中k为整数。
三角函数没有换底公式一说,肯定是对数的换底公式:
log换底公式是:loga(N)=logb(N)/logb(a)。
证明:loga(N)=x,则a^x=N,两边取以b为底的对数,
logb(a^x)=logb(N),xlogb(a)=logb(N),x=logb(N)/logb(a),故此,loga(N)=logb(N)/logb(a)。
换底公式:logb(c)=loga(c)/loga(b) 可将不一样底的对数换为同底的对数 (括号前为底数,括号内为真数)如:log3(5)=lg5/lg3 (换为经常会用到对数)log3(5)=ln5/ln3 (换为自然对
数)log8(9)=log5(9)/log5(8) (换为任意数为底的对数,可将5换为任意正数)期望对你有很大帮助
log以a为底b的对数-loga(b)-=logc(b)/logc(a)也可写
lg(b)]/lg(a)其实就是常说的log以10为底b的对数。
换底公式是高中数学经常会用到对数运算公式,可将多异底对数式转化为同底对数式,结合其他的对数运算公式一起使用。
计算中经常会减少计算的难度,更快速的处理高中范围的对数运算。