3确定性推理
- 格式:ppt
- 大小:310.50 KB
- 文档页数:82
确定性与不确定性推理主要方法1.确定性推理:推理时所用的知识与证据都是确定的,推出的结论也是确定的,其真值或者为真或者为假。
2.不确定性推理:从不确定性的初始证据出发,通过运用不确定性的知识,最终推出具有一定程度的不确定性但却是合理或者近乎合理的结论的思维过程。
3.演绎推理:如:人都是会死的(大前提)李四是人(小前提)所有李四会死(结论)4.归纳推理:从个别到一般:如:检测全部产品合格,因此该厂产品合格;检测个别产品合格,该厂产品合格。
5.默认推理:知识不完全的情况下假设某些条件已经具备所进行的推理;如:制作鱼缸,想到鱼要呼吸,鱼缸不能加盖。
6.不确定性推理中的基本问题:①不确定性的表示与量度:1)知识不确定性的表示2)证据不确定性的表示3)不确定性的量度②不确定性匹配算法及阈值的选择1)不确定性匹配算法:用来计算匹配双方相似程度的算法。
2)阈值:用来指出相似的“限度”。
③组合证据不确定性的算法最大最小方法、Hamacher方法、概率方法、有界方法、Einstein方法等。
④不确定性的传递算法1)在每一步推理中,如何把证据及知识的不确定性传递给结论。
2)在多步推理中,如何把初始证据的不确定性传递给最终结论。
⑤结论不确定性的合成6.可信度方法:在确定性理论的基础上,结合概率论等提出的一种不确定性推理方法。
其优点是:直观、简单,且效果好。
可信度:根据经验对一个事物或现象为真的相信程度。
可信度带有较大的主观性和经验性,其准确性难以把握。
C-F模型:基于可信度表示的不确定性推理的基本方法。
CF(H,E)的取值范围: [-1,1]。
若由于相应证据的出现增加结论 H 为真的可信度,则 CF(H,E)> 0,证据的出现越是支持 H 为真,就使CF(H,E) 的值越大。
反之,CF(H,E)< 0,证据的出现越是支持 H 为假,CF(H,E)的值就越小。
若证据的出现与否与 H 无关,则 CF(H,E)= 0。
1.判断一下公式是否可合一,如可合一,求出其最一般合一。
1)P(a, b), P(x, y)2)P(a, x, f(g(y))), P(z, f(z), f(u))3)P(f(y), y, x), P(x, f(a), f(b))4)P(x, f(x)), P(y, y)2.将以下谓词公式化为相应的子句集。
(可任选其中3道小题)1)(∀x)(∀y) (P(x,y)∧Q(x,y))2)(∀x)(∀y) ((∃z) (P(x,y)→Q(x,y)∨R(x,z))3)(∀x)(∃y) ((P(x)∧(Q(x)∨R(y)))→(∀z)(P(f(z))→Q(g(x))))4)(∀x) (P(x))→(∃x)((∀z)Q(x,z)∨(∀z)R(x,y,z))5)(∃x)(∃y)(∀z)(∃u)(∀v)(∃w) (P(x,y,z,u,v,w) ∧Q(x,y,z,u,v,w)∨¬R(x,z,w))(3-7题中可任选3道大题)3.已知:每个去临潼游览的人,或者参观秦始皇兵马俑,或者参观华清池,或者洗温泉澡;凡去临潼游览的人,如果爬骊山就不能参观秦始皇兵马俑;有的游览者既不参观华清池,也不洗温泉澡。
求证:有的游览者不爬骊山。
解:1)谓词公式定义:Go(x,y): x(人)去y(地点)①Go(x,Q)∨Go(x,H)∨Go(x,W)②Go(x,L)→¬Go(x,Q)③ (∃x)(¬Go(x,H)∧¬Go(x,W) )④ (∃x)¬Go(x,L)2)化简为子句集C1:Go(x,Q)∨Go(x,H)∨Go(x,W)C2:¬Go(x,L)∨¬Go(x,Q)C3:¬Go(a,H)C4:¬Go(a,W)T1:Go(x,L)3)归结演绎证明T2:(C2,T1) ¬Go(x,Q)T3:(C1,T2) Go(x,H)∨Go(x,W)T4:(C3,T3) Go(a,W) {a/x}T5:(C4,T4) NIL结论得证。
确定性知识推理方法的归纳演绎推理法的应用
确定性知识推理方法是一种基于确定性规则和事实的推理方法,而归纳演绎推理法是一种基于概率和统计规则的推理方法。
以下是归纳演绎推理法在确定性知识推理中的应用示例:
1. 规则的归纳:通过观察和搜集一系列相关事实,然后根据这些事实归纳出一条规则。
例如,根据过去的经验,我们可以归纳出“如果下雨,地面会湿”的规则。
2. 推断的归纳:根据已知的规则和事实,推断出新的结论。
例如,如果我们已经知道“如果下雨,地面会湿”,同时已知“今天下了雨”,那么我们可以通过归纳演绎推理法得出结论:“今天地面是湿的”。
3. 假设的归纳:根据已有的事实和规则,推断出未知的事实或规则。
例如,通过观察一系列样本数据,我们可以归纳出一条假设,如“如果一个人拥有足够的工作经验和相关技能,那么他有更大的机会获得工作机会”。
需要注意的是,应用归纳演绎推理法时,我们应该基于充分的数据和验证,以确保推理的准确性和可靠性。
此外,推理的结果仍然是基于已有的规则和事实,可能存在一定的局限性。