第3章 确定性推理技术
- 格式:pdf
- 大小:1.99 MB
- 文档页数:29
第三章确定性推理第四节消解原理消解反演如欲证明Q为P1 ,P2 ,…,Pn的逻辑结论,只需证(P1∧P2∧…∧Pn)∧¬Q是不可满足的,或证明其子句集是不可满足的。
而子句集的不可满足性可用归结原理来证明。
➢应用归结原理证明定理的过程称为归结(消解)反演。
➢设F为已知前提的公式集,Q为目标公式(结论),用归结反演进行证明的步骤是:1. 否定Q,得到¬Q;2. 把¬Q并入到公式集F中,得到{F, ¬Q};3. 把公式集{F, ¬Q}化为子句集S;4. 应用消解推理规则对子句集S中的子句进行归结,并把每次归结得到的归结式都并入S 中。
如此反复进行,若出现了空子句,则停止归结。
反演证明过程的正确性:设S={F1,…,F n }是前提条件,L是欲求证的结论则,从前提条件推出结论的问题,可以表示成: F1∧…∧F n L =~(F1∧…∧F n)∨L并证明其永真(永远成立)先将公式取“非”:~(~(F1∧…∧F n)∨L)=(F1∧…∧F n)∧~ L= F1∧…∧F n∧~ L利用消解原理来证明它是永假的(即,构造一个反演)实际中,我们可以将F1∧…∧F n∧~ L中的每一个部分化成子句集(化法任选),合并后得到完整的子句集,然后利用消解原理导出空子句(反演)反演求解过程从反演树求取某一个问题的答案,其过程为:①将前提条件用谓词表示出来,并化成子句集 S②将目标公式(问题)用谓词表示出来,把由目标公式的否定所产生的子句及其非(目标公式否定之否定)用析取连接词相连组成一个新子句(重言式),加到 S 构成新的子句集S’③对子句集S’ ,进行消解演绎,直到得到某一个子句为止④将此子句作为问题的答案⏹举例:已知三个条件✓F1::王(Wang)先生是小李(Li)的老师✓F2:小李与小张(Zhang)是同班同学✓F3:如果x与y是同班同学,则x的老师就是y的老师问题:小张的老师是谁?①定义谓词T(x , y) : x 是 y 的老师C(x , y) : x 与 y 是同班同学②用谓词表示前提条件与目标(问题):前提:F1:T(Wang , Li)F2:C(Li , Zhang)F3: (∀x) (∀y) (∀z) (C(x,y)∧T(z,x) ⇒T(z,y))目标:G: (∃x)T(x,Zhang)~ G:~ (∃x)T(x,Zhang)=(∀x) (~ T(x,Zhang))③求出子句集:前提的子句集:T(Wang, Li)C(Li, Zhang)~ C(x,y) ∨~ T(z,x) ∨ T(z,y)目标的否定的子句及其非组成重言式:~ T(x,Zhang) ∨ T(x,Zhang)④完整的子句集:(1) T(Wang, Li)(2) C(Li, Zhang)(3) ~C(x,y) ∨~T(z,x) ∨ T(z,y)(4) ~T(u,Zhang) ∨ T(u,Zhang)⑤消解演绎的过程(1) T(Wang, Li)(2) C(Li, Zhang)(3) ~C(x,y) ∨~T(z,x) ∨ T(z,y)(4) ~T(u,Zhang) ∨ T(u,Zhang)(5) ~C(Li ,y) ∨ T(Wang,y) (1)(3) mgu={Wang/z, Li/x)}第五节规则演绎系统●规则演绎的基本概念上面所讲的归结反演系统把所有的表达式都转换为子句形式,这样做虽然在逻辑上是等价的,但也丧失了很多有用的信息。
确定性与不确定性推理主要方法1.确定性推理:推理时所用的知识与证据都是确定的,推出的结论也是确定的,其真值或者为真或者为假。
2.不确定性推理:从不确定性的初始证据出发,通过运用不确定性的知识,最终推出具有一定程度的不确定性但却是合理或者近乎合理的结论的思维过程。
3.演绎推理:如:人都是会死的(大前提)李四是人(小前提)所有李四会死(结论)4.归纳推理:从个别到一般:如:检测全部产品合格,因此该厂产品合格;检测个别产品合格,该厂产品合格。
5.默认推理:知识不完全的情况下假设某些条件已经具备所进行的推理;如:制作鱼缸,想到鱼要呼吸,鱼缸不能加盖。
6.不确定性推理中的基本问题:①不确定性的表示与量度:1)知识不确定性的表示2)证据不确定性的表示3)不确定性的量度②不确定性匹配算法及阈值的选择1)不确定性匹配算法:用来计算匹配双方相似程度的算法。
2)阈值:用来指出相似的“限度”。
③组合证据不确定性的算法最大最小方法、Hamacher方法、概率方法、有界方法、Einstein方法等。
④不确定性的传递算法1)在每一步推理中,如何把证据及知识的不确定性传递给结论。
2)在多步推理中,如何把初始证据的不确定性传递给最终结论。
⑤结论不确定性的合成6.可信度方法:在确定性理论的基础上,结合概率论等提出的一种不确定性推理方法。
其优点是:直观、简单,且效果好。
可信度:根据经验对一个事物或现象为真的相信程度。
可信度带有较大的主观性和经验性,其准确性难以把握。
C-F模型:基于可信度表示的不确定性推理的基本方法。
CF(H,E)的取值范围: [-1,1]。
若由于相应证据的出现增加结论 H 为真的可信度,则 CF(H,E)> 0,证据的出现越是支持 H 为真,就使CF(H,E) 的值越大。
反之,CF(H,E)< 0,证据的出现越是支持 H 为假,CF(H,E)的值就越小。
若证据的出现与否与 H 无关,则 CF(H,E)= 0。
确定性与不确定性推理主要方法-人工智能导论确定性与不确定性推理主要方法1.确定性推理:推理时所用的知识与证据都是确定的,推出的结论也是确定的,其真值或者为真或者为假。
2.不确定性推理:从不确定性的初始证据出发,通过运用不确定性的知识,最终推出具有一定程度的不确定性但却是合理或者近乎合理的结论的思维过程。
3.演绎推理:如:人都是会死的(大前提)李四是人(小前提)所有李四会死(结论)4.归纳推理:从个别到一般:如:检测全部产品合格,因此该厂产品合格;检测个别产品合格,该厂产品合格。
5.默认推理:知识不完全的情况下假设某些条件已经具备所进行的推理;如:制作鱼缸,想到鱼要呼吸,鱼缸不能加盖。
6.不确定性推理中的基本问题:①不确定性的表示与量度:1)知识不确定性的表示2)证据不确定性的表示3)不确定性的量度②不确定性匹配算法及阈值的选择1)不确定性匹配算法:用来计算匹配双方相似程度的算法。
2)阈值:用来指出相似的“限度”。
③组合证据不确定性的算法最大最小方法、Hamacher方法、概率方法、有界方法、Einstein 方法等。
④不确定性的传递算法1)在每一步推理中,如何把证据及知识的不确定性传递给结论。
2)在多步推理中,如何把初始证据的不确定性传递给最终结论。
⑤结论不确定性的合成6.可信度方法:在确定性理论的基础上,结合概率论等提出的一种不确定性推理方法。
其优点是:直观、简单,且效果好。
可信度:根据经验对一个事物或现象为真的相信程度。
可信度带有较大的主观性和经验性,其准确性难以把握。
C-F模型:基于可信度表示的不确定性推理的基本方法。
CF(H,E)的取值范围: [-1,1]。
若由于相应证据的出现增加结论H 为真的可信度,则CF(H,E)> 0,证据的出现越是支持 H 为真,就使CF(H,E) 的值越大。
反之,CF(H,E)< 0,证据的出现越是支持 H 为假,CF(H,E)的值就越小。
若证据的出现与否与 H 无关,则 CF(H,E)= 0。
第三章模糊认知图3.1认知图因果知识通常涉及许多相互作用的事物及其关系,由于缺乏有力的分析工具,因此,对这类知识的处理显得比较困难。
在这种情况下,一些其它技术包括定性推理技术就被应用到因果知识的处理中。
认知图就是这种定性推理技术的一种。
认知图是一个新兴的研究领域,它是一种计算智能,提供了一个有效的软计算工具来支持基于先验知识的自适应行为。
对它的研究涉及到模糊数学、模糊推理、不确定性理论及神经网络等诸多学科。
认知图的显著特点就是可利用系统的先验知识、并对复杂系统的子系统具有简单的可加性,能表示出用树结构、Bayes网络及Markov模型等很难表示的具有反馈的动态因果系统。
在认知图中很容易鸟瞰系统中各事物间如何相互作用,每个事物与那些事物具有因果关系。
认知图通常由概念(concept)与概念间的关系(relations of concepts)组成。
概念(用节点表示)可以表示系统的动作、原因、结果、目的、感情、倾向及趋势等,它反映系统的属性、性能与品质。
概念间的关系表示概念间的因果关系(用带箭头的弧表示,箭头的方向表示因果联系的方向)。
3.2认知图的发展简史认知图首先由Tloman于1948年在 Cognitive Maps in Rats and Men一文中提出的,其最初目的是想为心理学建立一个模型,此后认知图便被应用到其他方向和领域中。
人们把认知图描述为有向图,认为认知图是由一些弧连接起来节点的集合,但不同的学者对弧与节点赋予不同的含义。
1955年Kelly依据个人构造理论(Personal construct theory)提出了认知图,概念间的关系是三值的,即利用“+”、“-"表示概念间不同方向因果关系的影响效果,“O”表示概念间不具有因果关系。
1976年Axelord在 structure of Decision –The Cognitive Maps of Political Elites 中提出的认知图比Kelly的更接近于动态系统。
⼈⼯智能导论复习⼈⼯智能导论复习题⼈⼯智能导论复习题第⼀章绪论1.智能是()和()的总和。
正确答案:(1) 知识,智⼒2.()是⼀切智能⾏为的基础正确答案:(1) 知识3.()是获取知识并应⽤知识求解问题的能⼒。
正确答案:(1) 智⼒4.智能的特征有()、()、()、()。
正确答案:(1) 具有感知能⼒(2) 具有记忆与思维能⼒(3) 具有学习能⼒(4) 具有⾏为能⼒5.(填空题)⼈⼯智能的长期⽬标是()正确答案:(1) 实现⼈类⽔平的机器智能6.⼈⼯智能的主要研究内容有()、()、()、()、()正确答案:(1) 知识表⽰(2) 机器感知(3) 机器思维(4) 机器学习(5) 机器⾏为7.⼈⼯智能的定义是什么?正确答案:⼈⼯智能主要研究⽤⼈⼯的⽅法和技术,模拟、延伸和扩展⼈的智能,实现机器智能。
8.简述“图灵测试”?正确答案:让⼈与机器分别在两个房间⾥,两者之间可以通话,但彼此看不到对⽅,如果通过对话,⼈的⼀⽅不能分辨对⽅是⼈还是机器,那么就可以认为对⽅的那台机器达到了⼈类智能的⽔平。
第⼆章知识表⽰与知识图谱1.造成知识具有不确定性的原因主要有()、()、()、()。
正确答案:随机性模糊性经验不完全性2.知识的特性有()、()、()。
正确答案:(1) 相对正确性(2) 不确定性(3) 可表⽰性与可利⽤性3.在⼈⼯智能领域内显式的知识表⽰⽅法主要有()、()、()、()。
正确答案:(1) ⼀阶谓词逻辑表⽰法(2) 产⽣式表⽰法(3) 语义⽹络表⽰法(4) 框架表⽰法4.谓词的⼀般形式是()。
(1) P(x1,x2,...,xn)5.⼀个产⽣式系统由()、()和()三部分组成正确答案:(1) 规则库(2) 推理机(3) 综合数据库6.位于量词后⾯的单个谓词或者⽤括弧括起来的谓词公式称为量词的(),域内与量词中同名的变元称为(),不受约束的变元称为()。
正确答案:(1) 辖域(2) 约束变元(3) ⾃由变元7.在谓词公式中,连接词的优先级别从⾼到低排列是(),(),(),(),()。
人工智能及其应用第四版答案【篇一:人工智能及其应用习题参考答案第9章】txt>9-1 分布式人工智能系统有何特点?试与多艾真体系统的特性加以比较。
分布式人工智能系统的特点:(1) 分布性系统信息(数据、知识、控制)在逻辑上和物理上都是分布的(2) 连接性各个子系统和求解机构通过计算机网络相互连接(3) 协作性各个子系统协调工作(4) 开放性通过网络互连和系统的分布,便于扩充系统规模(5) 容错性具有较多的冗余处理结点、通信路径和知识,提高工作的可靠性(6) 独立性系统把求解任务归约为几个相对独立的子任务,降低了问题求解及软件开发的复杂性9-2 什么是艾真体?你对agent的译法有何见解?agent是能够通过传感器感知其环境,并借助执行器作用于该环境的实体,可看作是从感知序列到动作序列的映射。
其特性为:行为自主性,作用交互性,环境协调性,面向目标性,存在社会性,工作协作性,运行持续性,系统适应性,结构分布性,功能智能性把agent 译为艾真体的原因主要有:(1) 一种普遍的观点认为,agent是一种通过传感器感知其环境,并通过执行器作用于该环境的实体。
(2) “主体”一词考虑到了agent具有自主性,但并未考虑agent还具有交互性,协调性,社会性,适应性和分布性的特性(3) “代理”一词在汉语中已经有明确的含义,并不能表示出agent的原义(4) 把agent译为艾真体,含有一定的物理意义,即某种“真体”或事物,能够在十分广泛的领域内得到认可(5) 在找不到一个确切和公认的译法时,宜采用音译9-3 艾真体在结构上有何特点?在结构上又是如何分类的?每种结构的特点为何?真体=体系结构+程序(1) 在计算机系统中,真体相当于一个独立的功能模块,独立的计算机应用系统。
(2) 真体的核心部分是决策生成器或问题求解器,起到主控作用(3) 真体的运行是一个或多个进程,并接受总体调度(4) 各个真体在多个计算机cpu上并行运行,其运行环境由体系结构支持。
《人工智能》教学大纲人工智能原理及其应用一、说明(一)课程性质随着信息社会和知识经济时代的来临,信息和知识已成为人们的一个热门话题。
然而,在这个话题的背后还蕴含着另外一个更深层的问题——智能。
一般来说,信息是由数据来表达的客观事物,知识是信息经过智能性加工后的产物,智能是用来对信息和知识进行加工的加工器。
在信息社会,人类面对的信息将非常庞大,仅靠人脑表现出来的自然智能是远远不够的,必须开发那种由机器实现的人工智能。
《人工智能导论》是计算机科学与技术专业本科生的一门限选课程。
(二)教学目的使学生掌握人工智能的基本原理、方法及研究应用领域。
了解人工智能中常用的知识表示技术,启发式搜索策略,了解原理以及非确定性推理技术。
通过对典型专家系统的分析、解剖、进一步深入掌握人工智能的主要技术,去解决人工智能的一些实际问题。
增强学生的逻辑思维与实验能力,为人今后处理各门学科的智能奠定基础。
(三)教学内容人工智能的基本原理和方法,人工智能的三个重要研究领域(机器学习、神经网络学习和自然语言理解),人工智能的两个重要应用领域(专家系统和智能决策支持系统)。
(四)教学时数36学时(五)教学方式课堂讲授和上机实验相结合。
二、本文第1章人工智能概述教学要点讨论人工智能的定义、形成过程、研究内容、研究方法、技术特点、应用领域、学派之争及发展趋势。
教学时数3学时教学内容1.1 人工智能及其研究目标(0.5学时)了解人工智能的定义及其研究目标。
1.2 人工智能的产生与发展(0.5学时)了解人工智能产生与发展的四个阶段。
1.3 人工智能研究的基本内容及其特点(0.5学时)了解人工智能研究的基本内容及特点。
1.4 人工智能的研究和应用领域(0.5学时)了解人工智能研究和应用领域。
1.5 人工智能研究的不同学派及其争论(0.5学时)了解三大学派及其理论的争论和研究方法的争论。
1.6 人工智能的近期发展分析(0.5学时)了解更新的理论框架研究,更好的技术集成研究,更成熟的应用方法研究。
人工智能第一章:人工智能(1)人工智能基本概念、方法和技术:基本技术:知识表示、推理、搜索、规划(2)人工智能的主要研究、应用领域机器感知:机器视觉;机器听觉;自然语言理解;机器翻译机器思维:机器推理机器学习:符号学习;连接学习机器行为:智能控制智能机器:智能机器人;机器智能智能应用:博弈;自动定理证明;自动程序设计专家系统;智能决策;智能检索;智能CAD;智能CAI智能交通;智能电力;智能产品;智能建筑等(3)人工智能新技术计算智能:神经计算;模糊计算;进化计算;自然计算人工生命:人工脑;细胞自动机分布智能:多Agent , 群体智能数据挖掘:知识发现;数据挖掘(4)人工智能研究领域:重点介绍机器学习机器思维:就是让计算机模仿和实现人的思维能力,以对感知到的外界信息和自己产生的内部信息进行思维性加工。
机器思维包括:推理、搜索、规划等方面的研究。
机器感知是机器获取外界信息的主要途径,也是机器智能的重要组成部分。
所谓机器感知,就是要让计算机具有类似于人的感知能力,如视觉、听觉、触觉、味觉。
机器行为就是让计算机能够具有像人那样地行动和表达能力,如走、跑、拿、说、唱、写画等。
知识表示:知识表示的观点陈述性观点:知识的存储与知识的使用相分离优点:灵活、简洁,演绎过程完整、确定,知识维护方便缺点:推理效率低、推理过程不透明过程性观点:知识寓于使用知识的过程中优点:推理效率高、过程清晰缺点:灵活性差、知识维护不便知识表示的方法逻辑表示法:一阶谓词逻辑产生式表示法:产生式规则结构表示法:语义网络,框架谓词逻辑表示的应用机器人移盒子问题:分别定义描述状态和动作的谓词描述状态的谓词:TABLE(x):x是桌子EMPTY(y):y手中是空的AT(y, z):y在z处HOLDS(y, w):y拿着wON(w, x):w在x桌面上变元的个体域:x的个体域是{a, b}y的个体域是{robot}z的个体域是{a, b, c}w的个体域是{box}问题的初始状态:AT(robot, c)EMPTY(robot)ON(box, a)TABLE(a)TABLE(b)问题的目标状态:AT(robot, c)EMPTY(robot)ON(box, b)TABLE(a)TABLE(b)机器人行动的目标把问题的初始状态转换为目标状态,而要实现问题状态的转换需要完成一系列的操作描述操作的谓词条件部分:用来说明执行该操作必须具备的先决条件可用谓词公式来表示动作部分:给出了该操作对问题状态的改变情况通过在执行该操作前的问题状态中删去和增加相应的谓词来实现需要定义的操作:Goto(x, y):从x处走到y处。