2-1倒易点阵
- 格式:ppt
- 大小:844.01 KB
- 文档页数:21
倒易格子与衍射—1.倒易格子理论2.倒易格子与X射线衍射3.倒易点阵与电子衍射4.典型0层倒易面举例一、倒易格子概念及性质1. 倒易点阵的定义设有一正点阵,用三个基矢(a,b,c)描述,记为S=S(a,b,c)。
引入三个新基矢(a*,b*,c*)描述,记为S*=S(a*,b*,c*)。
二者之间的关系:a*•a=1a*•b=0 a*•c=0b*•a=0b*•b=1b*•c=0c*•a=0c*•b=0c*•c=1则S*称作S的倒易点阵(Reciprocal lattice)。
2. 正倒格子的关系:a*=(b×c)/V b*=(c×a)/V c*=(a×b)/V其中V= a•(b×c)正格子的体积或为:a=(b*×c*)/V*b=(c*×a*)/V* c=(a*×b*)/V*其中V*=a*•(b*×c*)倒格子的体积亦有:V* = 1/V正倒格子的角度换算:|a*| = bcsinα/V|b*| = casinβ/V |c*|= absinγ/V或:|a| = b*c*sinα*/V* |b| = c*a*sinβ*/V* |c|= a*b*sinγ*/V*上式中:cosα* = (cosβcosγ-cosα)/sinβsinγcosβ* = (cosγcosα -cosβ)/sinγsinαcosγ* = (cosαcosβ -cosγ)/sinαsinβ当晶体的对称中,α=β=γ=90°时|a*| = 1/a|b*| =1/b|c*| = 1/c单斜晶系时,α=γ=90°,β≠90°,即:α*=γ*=90°,β*=180°-β则:|a*| =1/asinβ |b*| = 1/b |c*| =1/csinβ图1-1.三斜晶系的倒易点阵如图1-1所示为三斜晶系的倒易点阵,其中a*在与bc平面垂直的方向,b*与ac平面垂直,长度为1/b,c*与ab平面垂直,长度为1/c。
第三章X射线衍射法(X-Ray Diffraction:XRD)一晶体学知识晶体对X-射线的衍射二X-射线的本质、产生与探测三X-射线衍射法原理四X-射线粉末衍射(实验方法)五X-射线衍射法在物相分析中的应用晶胞的指标化晶体中最小的结构重复单元,形状为平行六面体,其三边长度a,b,c不一定相等,也不一定垂直。
整个晶体是由晶胞并置堆砌而成。
划分晶胞2原则:一是尽可能反映晶体内结构的对称性;二是尽可能小。
晶胞的两个基本要素1.晶胞的大小和形状,可以用晶胞参数表示。
2.晶胞中原子的位置,通常用分数坐标表示,原子的位置可用向量OP = xa+ yb+ zc。
---CsCl晶体中,Cs+ (O点)(0,0,0)Cl-(P点)(1/2,1/2,1/2)XY ZOPCsCl晶胞abca bc 1/k 1/l1/h平面在三个坐标轴的截距a/h, b/k, c/l ,点阵平面的指数定义为hkl (hkl 为整数且无公约数)。
坐标原点到hkl 平面的距离d hkl 称晶面间距(d hkl )。
从原点发出的射线在三个坐标轴的投影为ua, vb, wc ,(uvw 为整数且无公约数)称为点阵方向或晶向[uvw]。
[uvw]点阵平面的指数晶面指标---米勒指数(Miller indices)的定义晶面在三个晶轴上的倒易截数的互质整数之比。
截距:h’a, k’b, l’c截数:h’, k’, l’倒易截数:1/h’, 1/k’, 1/l’倒易截数之比化为一组互质的整数比:1/h’:1/k’:1/l’~(h*:k*:l*)(h* k* l*) 称晶面指标,abc右图晶面:1/3:1/2:1/1~2:3:6,则晶面指标(236)。
倒易点阵一、布拉格方程的另一种表示方法2d h*k*l*sin θ= n λn:晶面间距为d h*k*l*的晶面(h*k*l*)进行着n 级反射。
此式可以化为2d h*k*l*sin θ/n = λ如果用d hkl 代替d h*k*l*/n ,则2d hkl sin θ= λ式中d hkl 是假想的(hkl )晶面的面间距。
倒易点阵:晶体点阵结构与其电子衍射斑点之间可以通过另外一个假想的点阵很好地联系起来,这就是~零层倒易截面:电子束沿晶带轴的反向入射时,通过原点的倒易平面只有一个,我们把这个二维平面叫做~消光距离:透射束或衍射束在动力学相互作用的结果,在晶体深度方向上发生周期性的振荡,这种振荡的深度周期叫做~明场像:通过衍射成像原理成像时,让透射束通过物镜光阑而把衍射束挡掉形成的图像称为明场像。
暗场像:通过衍射成像原理成像时,让衍射束通过物镜光阑而把透射束挡掉形成的图像称为暗场像。
衍射衬度:由于样品中不同位向的晶体的衍射条件不同而造成的衬度差别叫~质厚衬度:是建立在非晶体样品中原子对入射电子的散射和透射电子显微镜小孔径角成像基础上的成像原理,是解释非晶态样品电子显微图像衬度的理论依据。
二次电子:在入射电子束作用下被轰击出来并离开样品表面的样品的核外电子叫~吸收电子:入射电子进入样品后,经多次非弹性散射能量损失殆尽,然后被样品吸收的电子。
透射电子:如果被分析的样品很薄,那么就会有一部分入射电子穿过薄样品而成为透射电子。
结构消光:当Fhkl=0时,即使满足布拉格定律,也没有衍射束产生,因为每个晶胞内原子散射波的合成振幅为零。
这叫做~分辨率:是指成像物体(试样)上能分辨出来的两个物点间的最小距离。
焦点:一束平行于主轴的入射电子束通过电磁透镜时将被聚焦在轴线上一点。
焦长:透镜像平面允许的轴向偏差.景深:透镜物平面允许的轴向偏差.磁转角:电子束在镜筒中是按螺旋线轨迹前进的,衍射斑点到物镜的而一次像之间有一段距离,电子通过这段距离时会转过一定的角度.电磁透镜:透射电子显微镜中用磁场来使电子波聚焦成像的装置。
透射电子显微镜:是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨率,高放大倍数的电子光学仪器。
弹性散射:当一个电子穿透非晶体薄样品时,将与样品发生相互作用,或与原子核相互作用,或与核外电子相互作用,由于电子的质量比原子核小得多,所以原子核入射电子的散射作用,一般只引来电子改变运动方向,而能量没有变化,这种散射叫做弹性散射。
材料现代研究方法X射线衍射方法 综合热分析 紫外光谱 红外光谱 XPS光电子能谱2倒易点阵1. 倒易点阵的定义; 2. 倒易点阵与正点阵的倒易关系; 3. 倒易点阵参数;倒易点阵Questions: 1. 什么是倒易点阵?天下本无事,庸人自扰之? ☺ 非常有用!2. 倒易点阵有用吗? 3. 为什么要引入倒易点阵概念?能简化(1)晶面与晶面指数表达;(2)衍射原理的表 达;(3)与实验测量结果直接关联,尤其是电子衍射部 部分。
晶体X射线衍射的核心,是对晶体中各个晶面的研 究,如果能把晶面作为一个点来研究,何乐不为!5倒易点阵晶体XRD衍射图谱 晶体电子衍射花样我们所观察到的衍射花样(或者衍射图谱)实际上是满 足衍射条件的倒易阵点的投影。
61.倒易点阵的定义倒易点阵是在晶体点阵的基础上按照一定的对应关系 建立起来的空间几何图形。
每种空间点阵都存在着与其相对应的倒易空间点阵, 它是晶体点阵的另一种表达方式。
用倒易点阵处理衍射问题时,能使几何概念更清楚, 数学推演简化。
晶体点阵空间称为正空间,结点为阵点。
倒易空间中 的结点称为倒易点。
71.倒易点阵的定义简单点阵001 101简单点阵的倒易点阵011 111010 100 110点阵: 原点、基矢量、 阵点、晶向、晶面倒易点阵: 原点、倒易基矢量、 8 倒易点、倒易矢量、倒易面1.倒易点阵的定义1)倒易矢量倒易矢量的定义 从倒易点阵原点向任一倒易阵点 所连接的矢量叫倒易矢量,表示 为: r* = ha* + kb* + lc*2)倒易矢量的两个基本性质1)倒易矢量的方向垂直于正点阵中的(hkl)晶面。
2)倒易矢量的长度等于(hkl)晶面的晶面间距dhkl的倒数。
倒易阵点用它所代表的晶面的面指数(干涉指数)标定。
91.倒易点阵的定义晶面族所对应的倒易点a/2 上图画出了(100)、(200)晶面 (100) 族所对应的倒易阵点,因为 (200)的晶面间距d200 是d100 的一 半,所以(200)晶面的倒易矢量 长度为(100)的倒易矢量长度的 000 C* 二倍。