分离纯化综合性实
- 格式:ppt
- 大小:323.00 KB
- 文档页数:16
血清伽马球蛋白的分离提纯综合性实验流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copyexcerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!血清伽马球蛋白的分离提纯综合性实验流程血清伽马球蛋白是一种含有多种抗体的蛋白质,对疾病的诊断和治疗有重要作用。
分离纯化的操作方法
分离纯化是指将混合物中的不同组分分离开来,并通过不同的纯化过程得到纯净的组分。
一般来说,常用的分离纯化方法包括以下几种:
1. 蒸馏:根据组分的不同挥发性,在加热条件下使液体组分转化为气体,然后再通过冷凝将气体转化为液体,从而实现组分的分离纯化。
2. 结晶:通过调节溶液的温度、浓度和溶剂性质等因素,使溶液中的某一组分逐渐形成结晶并沉淀出来,然后通过过滤或离心将结晶得到纯净的晶体。
3. 萃取:利用溶剂在不同组分之间的分配系数差异实现组分的分离。
将混合物与适宜的溶剂混合后,通过摇动或搅拌促使组分在两相之间分配,然后分离出溶液中的不同组分。
4. 汽提:通过组分的不同沸点,利用物质在液相和气相之间的转移特性,通过加热使混合物中的组分转化为气体,然后通过冷凝收集气体,实现组分的分离纯化。
5. 离子交换:利用离子交换树脂的选择性吸附和释放离子的性质,将混合物中的离子组分吸附在树脂上,然后通过变化条件或采用适当的洗脱溶液将所需组分
从树脂上解吸下来。
6. 膜分离:利用不同物质在膜上通过速率的差异,通过渗透、过滤或电解等方式将混合物中的组分分离开来,常用于分离物质的液体或气体。
以上是常见的分离纯化方法,具体的操作方法会根据实际情况和目的进行调整和选择。
微生物发酵的产物分离与纯化在微生物发酵领域,获得高纯度和高质量的产物是至关重要的目标。
而实现这一目标的关键步骤之一,便是对发酵产物进行有效的分离与纯化。
这一过程不仅决定了最终产品的质量和产量,还直接影响着生产的成本和效率。
微生物发酵所产生的产物多种多样,包括但不限于各种有机酸、氨基酸、抗生素、酶、蛋白质等。
这些产物在发酵液中的浓度通常较低,且往往与大量的杂质混合在一起。
因此,要将所需的产物从复杂的发酵体系中分离出来并纯化至符合要求的纯度,需要采用一系列精心设计的技术和方法。
首先,我们来谈谈过滤和离心这两种常见的初步分离手段。
过滤是利用过滤介质,如滤纸、滤膜等,将发酵液中的固体颗粒和较大的杂质去除。
而离心则是通过离心机产生的离心力,使固体颗粒或细胞等较重的成分沉淀到底部,从而实现固液分离。
这两种方法能够在一定程度上减少发酵液中的杂质含量,为后续的分离纯化步骤减轻负担。
在初步分离之后,萃取技术常常被应用于进一步提取目标产物。
萃取的原理是基于目标产物在不同溶剂中的溶解度差异。
例如,对于一些亲脂性的产物,可以使用有机溶剂从水相发酵液中将其萃取出来。
而对于某些水溶性较好的产物,则可能需要采用反胶束萃取等特殊的萃取方法。
接着,我们来看一看沉淀法。
通过改变发酵液的物理化学条件,如pH 值、温度、添加盐类等,可以使目标产物沉淀出来。
例如,在蛋白质的分离纯化中,常常通过调节 pH 值使蛋白质达到等电点,从而引发沉淀。
沉淀法操作相对简单,但可能会导致部分产物的活性损失,因此需要谨慎控制条件。
膜分离技术也是近年来发展迅速的一种分离方法。
包括微滤、超滤、纳滤和反渗透等。
这些技术利用具有特定孔径的膜,根据分子大小、形状和电荷等特性对发酵液进行分离。
膜分离具有操作方便、节能高效等优点,但膜容易受到污染和堵塞,需要定期清洗和维护。
色谱分离技术在微生物发酵产物的纯化中占据着重要地位。
例如,凝胶过滤色谱根据分子大小进行分离,离子交换色谱基于分子的电荷差异,亲和色谱则利用目标产物与配体之间的特异性亲和力。
溶菌酶的提取分离和纯化实验报告生物工程综合实验溶菌酶的提取、分离纯化及其活性测定实验报告集班级生工1411学号组别7姓名实验室学生守则一、严格遵守实验室各项规章制度和管理措施,服从教师及实验技术人员的指导。
二、严格按照实验要求,做好实验预习,实验之前5分钟进入实验室,及时、准确地完成实验任务,实事求是地完成实验报告,杜绝弄虚作假。
三、严格执行操作规定,爱护仪器设备及工具。
凡不按教师的指导擅自操作引起仪器、设备损坏者,应予赔偿。
四、爱护实验室公共财物,节约水电、材料和试剂。
未经允许不得随便挪动非实验需用的其他仪器,不得随便拆装仪器或将仪器、工具带至室外。
五、持实验室的严肃安静,不得大声喧哗、嘻闹,严禁在实验室内抽烟和吃东西。
六、严防事故,确保实验室安全,发现异常情况,应及时向有关教师和管理人员报告。
七、每次实验结束后,主动整理好仪器设备,归还所借器材,关闭电源、水源,按指导老师的要求做好实验结束工作及室内外的清洁卫生工作,经指导老师许可后,方可离开。
预习报告(手写,可自行续页)溶菌酶的提取、分离纯化及其活性测定名称实验目的和要求:实验材料:主要仪器:主要步骤:教师签名:时间:实验报告溶菌酶的提取、分离纯化及其活性测定一、目的对从鸡蛋清中提取并分离纯化出溶菌酶进行活性测定二、原理鸡蛋是溶菌酶的主要来源,等电点约为10.5~11,最适温度50℃,最适pH为6~7左右。
1、溶菌酶分离纯化原理:(1)等电点法利用溶菌酶等电点较高,在酸性条件下除去一些杂蛋白(2)阳离子树脂柱层析法进一步除去杂蛋白2、溶菌酶鉴定分析(1)考马斯亮蓝法测蛋白含量(2)分光光度法测定酶活性(3)使用SDS-PAGE 鉴定溶菌酶纯度三、实验材料与方法1、实验材料与试剂鸡蛋清,PBS缓冲液,40%甘油、冰醋酸、氢氧化钠,D152大孔弱酸性阳离子交换树脂、透析袋,考马斯亮蓝G250、牛血清蛋白、乙醇、磷酸,溶菌酶标准品、底物微球菌粉,蛋白质分子量Marker 、SDS、聚乙二醇-20000等2、实验仪器低速离心机、高速冷冻离心机、离心管、分光光度计,玻璃层析柱,Bio-Rad垂直电泳系统,移液枪、移液管,培养皿、玻璃棒、普通漏斗、滤纸、量筒、刻度试管及试管架、冰箱、摇床、烧杯、止水夹等。
生物技术综合大实验实验报告GFP的分离与纯化姓名:专业班级院系:指导教师:完成日期GFP的分离与纯化摘要: GFP,在生物领域应用广泛。
本实验回顾了GFP提取纯化过程,包括细菌破碎、GFP沉淀、疏水过滤层析、透析、离子交换层析和凝胶过滤层析等步骤,来获得较纯的GFP,并运用SDS-PAGE来检测纯化效果。
关键词:GFP 应用进展层析 SDS-PAGE绿色荧光蛋白(Green fluorescent protein,GFP)是一类存在于这些腔肠动物体内的生物发光蛋白。
1962年Shimomura等首先从多管水母(Aequorin victoria)中分离出一种分子量为20kDa的称为Aequorin的蛋白。
由于水母整体荧光及提取的蛋白质颗粒荧光都呈绿色,因此,人们将这种蛋白命名为绿色荧光蛋白。
1992年Prasher 等克隆了GFP基因的cDNA,并分析了GFP的一级结构;1994年Chalfie 等首次在大肠杆菌细胞和线虫中表达了GFP,开创了GFP应用研究的先河,之后很快发现GFP能在多种异源细胞中表达,GFP在细胞学、分子生物学和医学、病毒学等领域中迅速掀起了一股热潮;1997年10月18~22日在美国New—Jersey专门召开了一次关于GFP的国际会议。
1994年钱永健改造了GFP,使得GFP的荧光变强、变色。
由此和Shimomura、Martin Chalfie共享了2008年诺贝尔化学。
从此,荧光蛋白带来了生物技术的新革命。
GFP本身是一种酸性,球状,可溶性天然荧光蛋白,分子量约27×103,一级结构为一个由238个氨基酸残基组成的单链多肽。
在395 nm具有最高光吸收峰,肩峰为473 nm;发射光谱λmax=508~509nm。
GFP性质极其稳定,易耐受高温处理,甲醛固定和石蜡包埋不影响其荧光性质。
其变性需在90℃或pH<4.0或pH>12.0的条件下用6mol/L盐酸胍处理,一旦恢复中性环境,或去除变性剂,虽然变性的蛋白质并不能完全复性,但是复性蛋白质同天然蛋白质对温度、pH 变化的耐受性、抗胰蛋白酶消解的能力是相同的。
分离纯化的方法分离纯化是化学、生物学和生物化学领域中一个非常重要的步骤,它用于从混合物中分离出所需的化合物或生物分子,并去除杂质。
在实验室中,科研人员经常需要使用各种方法对混合物进行分离纯化,以便进行后续的实验或应用。
本文将介绍几种常见的分离纯化方法,包括过滤、结晶、色谱和电泳等。
首先,过滤是一种常见的分离纯化方法,它利用不同大小的孔径来分离固体颗粒和溶液。
通过选择合适的滤膜或过滤纸,可以将溶液中的固体颗粒或大分子物质过滤掉,从而得到较为纯净的溶液。
过滤是一种简单易行的方法,广泛应用于实验室中。
其次,结晶是一种常用的固体分离纯化方法。
当溶液中的溶质浓度超过其溶解度时,溶质会结晶沉淀出来,从而实现分离纯化的目的。
通过适当的溶剂选择和控制结晶条件,可以得到纯度较高的晶体产物。
另外,色谱技术是一种高效的分离纯化方法,它根据化合物在固定相和流动相之间的分配系数来实现分离。
常见的色谱方法包括薄层色谱、柱层析色谱和高效液相色谱等,它们可以根据化合物的性质和分子大小选择合适的分离方法,从而得到高纯度的化合物。
最后,电泳是一种常用的生物分子分离纯化方法,它根据生物分子在电场中的迁移速度差异来实现分离。
电泳可以根据分子的电荷、大小和形状进行选择性分离,常用于蛋白质、核酸和多肽等生物分子的分离纯化。
综上所述,分离纯化是化学、生物学和生物化学领域中非常重要的实验步骤,它涉及到多种方法和技术。
通过选择合适的分离纯化方法,可以有效地从混合物中分离出所需的化合物或生物分子,并得到高纯度的产物,为后续的实验和应用奠定基础。
在实际操作中,科研人员应根据实验要求和样品特性选择合适的分离纯化方法,以确保实验顺利进行并取得理想的结果。
香豆素提取分离纯化的原理香豆素是从大豆种子中提取分离出来的一种黄酮类化合物,具有抗氧化、抗炎、抗肿瘤等药理活性。
其提取分离纯化主要包括以下几个步骤:一、预处理将大豆种子进行粉碎、脱脂等预处理,去除脂肪后得到大豆粉,增大接触面,有利于提高提取率。
二、提取常用的提取方法有乙醇提取、乙酸乙酯提取等。
将预处理后的大豆粉与提取溶剂混合,保证溶剂量足以溶解样本中目的成分。
常在50-70C条件下回流提取1-3小时,重复2-3次,即可从大豆粉中有效提取出香豆素。
三、粗提与除脂将提取液用减压浓缩的方法除去大部分溶剂,得到浓缩提取液。
然后进行液-液萃取,以正己烷等脱脂溶剂除去提取液中的脂肪成分,洗去杂质。
四、色谱分离提纯常用的色谱方法有硅胶柱层析、Sephadex LH-20明胶层析等。
根据不同化合物在两相之间分配系数的差异进行分离,通过洗脱收集含香豆素的部位,即可得到香豆素的粗提物。
五、再结晶将粗提物溶解于适宜的溶剂后,调整溶液浓度,降低溶液温度,使香豆素析出并结晶。
经过滤、干燥后,即可得到纯度较高的香豆素晶体。
可重复再结晶,提高纯度。
六、列chromatography采用各种COLUMN chromatography 的方法,如硅胶、反相C18等,可进一步除去香豆素中的杂质,得到更高纯度的香豆素。
七、高效液相色谱法利用高效液相色谱技术,选用合适的固定相和流动相,可实现对香豆素样品中各成分的有效分离,检测不同时间段流出的香豆素,收集得到高纯度香豆素。
综上所述,香豆素的提取分离纯化主要通过物理方法的粉碎和溶剂提取,以及色谱技术等进行分离提纯,经过层层处理,可从复杂的大豆样品中分离提取出高纯度的香豆素化合物,用于功能性研究与应用。
这一过程融合了提取技术、分离技术与检测技术,是一项综合性的过程。
一、蛋白质的分离纯化及亚基分子量测定本实验的目的在于学习蛋白质的盐析沉淀、分子筛层析、离子交换层析等生物化学实验技术,实现系统、完整的蛋白质提取、分离、纯化及亚基分子量测定的基本实验技术和技能的综合训练。
本实验的内容主要两个部分:1)通过盐析沉淀和分离筛柱层析获得可用于分离纯化的蛋白质提取液;2)用离子交换柱层析进行蛋白质提取液的分离纯化。
每部分实验计划12课时完成,24课时(3天)完成全部实验内容。
实验技术原理1.蛋白质的盐析沉淀2.蛋白质的分子筛柱层析3.蛋白质的离子交换柱层析实验步骤一、蛋白质的提取及分离1.藻胆蛋白提取取红藻样品5-8 g,加25ml 50 mmol/L NaH2PO4-K2HPO4 pH 7.0缓冲液(内含NaN3 4 mmol/L,EDTA-Na 2 mmol/L,十六烷基三甲基溴化胺(CTAB) 0.1% (W/V)),研磨提取藻胆蛋白。
然后,用50 ml离心管,将提取液在4C︒、12000转/min离心30 min,保留上清液。
对沉淀再做两次相同的藻胆蛋白提取,合并三次提取的上清液,并量出总体积。
2.硫铵沉淀按每100 ml溶液36.1g硫酸铵,称取所需的硫酸铵。
研细后在搅拌条件下缓慢加入提取液(约1-2小时),使硫酸铵饱和度达到60%,置4C︒冰箱中过夜。
用50 ml离心管,在4C︒、12000转/min 离心30 min,小心弃去上清液。
红色沉淀用20 ml 50 mmol/L NaH2PO4-K2HPO4缓冲液充分溶解。
红色溶解液用50 ml离心管,在4C︒、16,000转/min离心30 min。
小心取出上清液,此藻胆蛋白提取液用作后续实验的样品。
3.分子筛柱层析取约60-70 ml溶涨好的Sephadex G-25葡聚糖凝胶,装一柱床体积约为2.6 cm⨯10 cm的分子筛柱。
用50 mmol/L的NaH2PO4-K2HPO4 pH 7.0缓冲液(内含NaN3 4 mmol/L,EDTA-Na 2 mmol/L)过柱平衡柱床,流速~20-30 ml/hr。
生物学中的分离和纯化技术生物学是一门十分综合的学科,它囊括了生物在不同细胞和组织层次的多种结构和功能。
要研究具体的生物物质,必须进行分离和纯化,这是生物学研究中不可或缺的技术。
本文将对分离和纯化技术在生物学中的应用进行介绍和探讨。
一、离心分离技术离心分离技术是一种基于不同颗粒物质重量或密度差异的分离技术。
这种技术通常用于分离细胞和组织等样本中的细胞器、膜组分和其他分子。
例如,离心分离可以分离细胞中的线粒体、叶绿体和内质网等细胞器。
这种技术的原理是将细胞样本在离心机中离心,通过重力分离使得不同颗粒物质在不同的区域沉淀,从而实现分离。
二、电泳技术电泳技术是一种基于分子电荷和大小差异的分离技术。
这种技术通常用于分离和鉴定蛋白质和核酸等生物大分子。
例如,聚丙烯酰胺凝胶电泳可以将蛋白质按照分子大小和电荷进行分离。
这种技术的原理是将样本经过电泳,电荷带正的物质向负极移动,电荷带负的物质向正极移动,从而实现分离。
三、层析技术层析技术是一种基于分子相互作用的分离技术。
这种技术通常用于分离和纯化蛋白质、核酸等生物分子。
例如,离子交换层析可以将带电荷的分子与带相反电荷的分离柱上的离子进行竞争结合,从而实现分离。
这种技术的原理是将样品通过某些介质(如凝胶、树脂、硅胶等)让目标分子和其他分子之间相互作用,利用吸附性、离子交换、大小排异等原理进行分离和纯化。
四、亲和层析技术亲和层析技术是一种基于生物分子间特异性结合作用的分离技术。
这种技术通常用于分离和纯化某些具有特殊亲和力的生物分子,如酶、抗体、蛋白质、DNA等。
例如,亲和层析可以利用对应亲和物质如互补的DNA序列、配体、抗体来捕获目标分子。
这种技术的原理是利用生物分子之间特定的化学反应结合,在某些介质上捕获目标分子,从而实现分离和纯化。
五、过滤技术过滤技术是一种基于分子大小的分离技术。
这种技术通常用于分离和纯化蛋白质和其他生物分子。
例如,凝胶过滤可以根据分子大小筛选分子,大分子无法进入凝胶孔径而被过滤,从而实现分离。
化合物的分离纯化技术化合物的分离纯化技术是化学实验室中不可或缺的技术之一。
因为在化学研究中,往往需要对某些化合物进行纯化、分离以及提取,以获得相对纯度较高的样品。
在进行化合物的分离纯化时,需要尽可能地保持原有物质的化学性质,因为化合物的分离纯化过程可能会对原有的化学性质产生影响,影响分离、分析及应用等方面。
因此,化学实验室中通常采用某些特定的技术来实现化合物的分离纯化。
以下是一些常用的化合物分离纯化技术:1. 萃取技术萃取技术是基于化学物质在不同的溶剂中溶解度不同的原理,将待分离物质溶解在特定的溶剂中,分离出有机相和无机相,从而获得较为纯净的化合物。
萃取技术有很多种,如硅藻土柱色谱法、液-液分离法、固相微萃取法等。
其中,液-液分离法是最常用的一种。
这种方法利用两个不同互不溶的溶剂相以及待提取物质在两相中溶解性不同的性质,达到萃取目的。
2. 结晶技术结晶技术主要是通过控制待分离固体物质的溶解度来实现分离目的。
利用物质的性质差异,可以控制其溶解度,在适当的温度、压力下将目标物质清晰结晶出来,其它杂质则不结晶而留在溶液中,从而实现纯化和分离的目的。
在结晶过程中,反复结晶可以提高纯度。
通常通过连续结晶来减少杂质含量,使得纯度高达99.9%以上。
3. 色谱技术色谱技术是一种分离物质的方法,它是利用混合物分析阶段或分离纯化阶段中各种气体、液体或固体化合物之间的相互作用,进而达到分离的目的。
色谱的核心原理是将混杂在一起的某些化学物质隔离出来,然后逐一分离。
色谱主要分类为气相色谱和液相色谱两种。
气相色谱是将混合物通过液态载体输送至分离柱内,利用各种化学物质在不同固定相上的吸附性和油墨性达到分离的目的。
而液相色谱是通过物质在溶液中的溶解度和结晶度不同,利用液相不同达到分离的目的。
4. 精馏技术精馏技术是将混合物根据其沸点的不同,在不断升高的温度范围内逐渐分出单一的混合物组分的一种分离技术。
通过迫使混合物中某部分组分在低压或高压下进行沸腾,将物质分离出来。