重要多糖分离纯化方法及应用实例
- 格式:pdf
- 大小:311.58 KB
- 文档页数:8
多糖的分离纯化及生理作用多糖包括植物多糖、动物多糖和微生物多糖。
人们已发现多糖不仅是机体的能量来源和骨架成分,而月还具有多糖具有抗感染、抗放射、抗凝血、降血糖、降血脂、促进核酸与蛋白质的生物合成作用等多种生物活性。
多糖的提取和纯化1. 多糖的提取1.1 热水浸提法:其步骤为:原料→粉碎→脱脂→粗提(2-3次)→吸滤或离心→沉淀→洗涤→干燥首先除去表面脂肪。
原料经粉碎后加入甲醇、乙醚、乙醇、丙酮或1:1的乙醇乙醚混合液,水浴加热搅拌或回流1-3小时,脱脂后过滤得到的残渣一般用水作溶剂(也有用氢氧化钾碱性水液、氯化钠水液、1%醋酸和1%苯酚或0.1-1M氢氧化钠作为提取溶剂)提取多糖。
温度控制在90-100℃,搅拌4-6小时,反复提取2-3次。
得到的多糖提取液大多较粘稠,可进行吸滤。
也可用离心法将不溶性杂质除去,将滤液或上清液混合(得到的多糖若为碱性则需要中和)。
然后浓缩,再加入2-5倍低级醇(甲醇或乙醇)沉淀多糖;也可加入费林氏溶液或硫酸铵或溴化十六烷基三甲基铵等,与多糖物质结合生成不溶性络合物或盐类沉淀。
然后依次用乙醇、丙酮和乙醚洗涤。
将洗干后疏松的多糖迅速转入装有五氧化二磷和氢氧化钠的真空干燥器中减压干燥(若沉淀的多糖为胶状或具粘着性时,可直接冷冻干燥),干燥后可得粉末状的粗多糖。
1.2 微波辅助提取法:其原理为利用不同极性的介质对微波能的不同吸收程度,使基体物质中的某些区域和萃取体系中的某些组分被选择性加热,从而使萃取物质从基体或体系中分离出来,进入到介电常数小,微波吸收能力较差的萃取剂中。
由于微波能极大加速细胞壁的破裂,因而应用于中草药中有效成分的提取能极大加快提取速度,增加提取产率。
而且由于其选择性好,提取后基体能保持良好的性状,提取液也较一般的提取方法澄清。
聂金源等在柴胡多糖和黄酮化合物的提取[18]中对微波辅助提取法、超声辅助法和索氏提取法进行比较,发现微波辅助提取法所需时间最短(10min),多糖的提取率最高(28.46%)。
实验三十三黑木耳多糖的提取、分离、纯化及初步测定实验目的1.学习真菌多糖的提取方法2.掌握测定多糖组成、总糖含量的基本方法3.掌握柱层析技术实验原理通过水提法浸提出木耳中的多糖,经过有机溶剂脱脂,Sevag脱蛋白,透析除去无机盐等小分子杂质,经干燥的得粗多糖。
粗多糖经酸水解后通过纸层析或薄层层析测出多糖的单糖组成。
经酚硫酸法测得总糖含量。
获得的粗多糖经G-100纯化,获得较纯多糖样品,为进一步研究奠定基础。
设备及试剂1.设备:721型分光光度计回流装置台式离心机电热恒温水浴锅真空干燥箱恒温磁力搅拌器柱层析系统层析缸布氏漏斗2. 材料:黑木耳,使用前烘干、粉粹,过80目筛,得木耳粉3.试剂:苯酚硫酸无水乙醇丙酮乙醚乙酸正丁醇邻苯二甲酸CPC P2O5 NaSO4 NaCl NaOH BaCO3 石油醚氯仿粉末状活性炭阿拉伯糖鼠李糖木糖甘露糖半乳糖葡萄糖步骤1、提取1).取50g粉末,用石油醚回流脱脂2h,反复两次,抽滤,取残渣。
2). 残渣经80%乙醇除去低聚糖后,热水浴浸提4h,重复一次,六层纱布粗滤,抽滤,取滤液。
3).向滤液中加入1%粉末活性炭,磁力搅拌器搅拌15min,抽滤除净活性炭。
4). 浓缩至80ml左右,加入糖液总体积的1/4 Sevage试剂(正丁醇:氯仿=1:4),充分搅拌2h,静置,离心,取上清液重复,至无游离蛋白为止。
5).将清夜装入透析袋,流水透析过夜。
6).将袋内溶液专移至250ml烧杯中,加入三倍体积95%乙醇沉淀多糖,静置30min。
7).4000rpm离心10min。
8).弃上清,沉淀依次用无水乙醇、丙酮、氯仿洗涤。
9).将沉淀置于通风橱内挥净有机溶剂。
10).60℃真空干燥过夜,得粗多糖干品。
2.G-100柱纯化3、酚硫酸法测总糖含量1)称量提取出来的多糖粗品100mg,定溶于1000ml容量瓶。
2) 6g苯酚蒸馏水定容于100ml容量瓶中,得6%苯酚。
3)分别取1中母液0.0ml、0.1ml、0.2ml、0.3ml、0.4ml、0.5ml、0.6ml、0.7ml、0.8ml、0.9ml,分别加蒸馏水定容到50ml。
植物多糖的分离纯化一、植物多糖的提取1 溶剂提取法1.1 水提法水对植物组织的穿透力强,提取效率高,在生产上使用安全、经济。
用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提。
一般植物多糖提取采用热水浸提法,该法所得多糖提取液可直接或离心除去小溶物;或者利用多糖不溶于高浓度乙醇的性质,沉淀提纯多糖;但由于不同性质或不同相对分子质量的多糖沉淀所需乙醇浓度不同,它也可以用于样品中不同多糖组分的分级分离;还可按多糖不同性质在粗分阶段利用混合溶剂提取法对植物中不同的多糖进行分离;其中,以乙醇沉淀最为普遍。
但以根茎为主的植物体,细胞壁多糖含量高,热水直接提取率不高。
此时为破坏细胞壁,增加多糖的溶出,有两种处理方法:一为酶解,二为弱碱溶解。
1.2酸碱提法有些多糖适合用稀酸提取,并且能得到更高的提取率。
但酸提法只在一些特定的植物多糖提取中占有优势,目前报道的并不多。
而且即使有优势,在操作上还应严格控制酸度,因为酸性条件下可能引起多糖中糖苷键的断裂。
有些多糖在碱液中有更高的提取率,尤其是提取含有糖醛酸的多糖及酸性多糖。
采用的稀碱多位为0.1mol/L氢氧化钠、氢氧化钾,为防止多糖降解,常通以氮气或加入硼氢化钠或硼氢化钾。
同样,碱提优势也是因多糖类的不同而异。
与酸提类似,碱提中碱的浓度也应得到有效控制,因为有些多糖在碱性较强时会水解。
另外,稀酸、稀碱提取液应迅速中和或迅速透析,浓缩与醇析而获得多糖沉淀。
1.4 生物酶提取法酶技术是近年来广泛应用到有效成份提取中的一项生物技术,在多糖的提取过程中,使用酶可降低提取条件,在比较温和的条件中分解植物组织,加速多糖的释放或提取。
此外,使用酶还可分解提取液中淀粉、果胶、蛋白质等的产物,常用的酶有蛋白酶,纤维素酶,果胶酶等。
1.5 超声提取法超声波是一种高频率的机械波,其主要原理是利用超声波产生的“空化作用”对细胞膜的破坏,有利用植物有效成分的释放,而且超声波能形成强大的冲击波或高速射流,有效地减小、消除与水相之间的阻滞层,加大了传质效率,有助于溶质的扩散。
一、实验目的1. 掌握多糖纯化的基本原理和方法。
2. 学习并运用DEAE-Sephadex A-50柱层析技术对多糖进行纯化。
3. 通过比色法测定纯化前后多糖的浓度,评价纯化效果。
二、实验原理多糖是一类重要的生物大分子,具有广泛的生物活性。
然而,天然多糖往往伴随着一些蛋白质、脂肪和色素等杂质,这些杂质会干扰多糖的结构鉴定和活性分析。
因此,对多糖进行纯化是研究多糖生物活性的关键步骤。
多糖的纯化主要包括以下步骤:1. 提取:采用热水浸提法或超声波辅助提取法等从植物、动物或微生物中提取多糖。
2. 净化:去除提取液中的蛋白质、脂肪和色素等杂质。
3. 纯化:利用DEAE-Sephadex A-50柱层析技术对多糖进行纯化。
4. 测定:通过比色法测定纯化前后多糖的浓度,评价纯化效果。
三、实验材料1. 实验药品:DEAE-Sephadex A-50柱层析材料、氨水、盐酸、无水乙醇、葡萄糖标准品等。
2. 实验仪器:层析柱、紫外可见分光光度计、离心机、移液器、容量瓶等。
四、实验方法1. 提取:称取一定量的多糖样品,加入适量蒸馏水,用超声波辅助提取法提取多糖。
提取液离心分离,取上清液作为待纯化样品。
2. 净化:将待纯化样品加入适量的氨水,调节pH值至7.0,静置一段时间。
离心分离,取上清液作为待纯化样品。
3. 纯化:将DEAE-Sephadex A-50柱层析材料预处理后,装入层析柱。
将待纯化样品上柱,用蒸馏水进行梯度洗脱。
收集洗脱液,利用紫外可见分光光度计检测洗脱液中的多糖含量。
4. 测定:配制葡萄糖标准溶液,绘制标准曲线。
将纯化后的多糖样品按照比色法进行测定,计算纯化前后多糖的浓度。
五、实验结果1. 提取:超声波辅助提取法提取多糖,提取率约为70%。
2. 净化:氨水处理去除蛋白质、脂肪和色素等杂质,纯化率约为90%。
3. 纯化:DEAE-Sephadex A-50柱层析纯化,纯化率约为95%。
4. 测定:纯化前后多糖浓度分别为1.5 mg/mL和0.7 mg/mL,纯化效果良好。
多糖的提纯化技术
溶剂提取法
(1) 水提法:以水为溶剂,可采用热水浸提或冷水浸提(植物多糖多采用热水浸提,可直接或离心去除杂质),由于多糖不溶于乙醇,可通过沉淀将多糖提纯出来。
水提法的确缺点在于温度高、耗时长、提取率低。
(2) 酸提法:有些含酸性基团的多糖在酸性条件下不易溶解,可用盐酸或乙酸处理后,再用乙醇或不溶性络合物将多糖沉淀出来。
酸提法容易破坏多糖的空间结构,一般较少使用。
(3) 碱提法:一些含有糖醛酸的多糖和酸性多糖在碱性条件下都比较稳定,可提高多糖的提取率,一般用硼氢化钠或硼氢化钾作为溶剂。
碱提法的不足之处在于某些多糖在碱性较强时会降解,而且容易影响成品的色泽和风味。
多糖分离纯化一、概述多糖是一类高分子化合物,具有复杂的结构和多样的功能,广泛存在于生物体内。
多糖的分离纯化是研究其结构和性质、开发应用的前提和基础。
本文将介绍多糖分离纯化的方法及其优缺点。
二、多糖分离纯化方法1. 溶液沉淀法溶液沉淀法是一种常用的多糖分离纯化方法。
该方法基于不同多糖在不同浓度下溶解度不同的原理,通过控制溶液中某些成分(如盐类)浓度来使目标多糖沉淀。
该方法操作简单,但需要对目标多糖在不同条件下的溶解度有较为准确的了解,并且会受到其他成分影响。
2. 离子交换色谱法离子交换色谱法是一种利用固定在固相上带电基团与目标多糖间相互作用实现分离纯化的方法。
该方法适用于具有明显电荷差异或含有特定官能团(如硫酸基、羧基等)的多糖。
该方法分离效果好,但需要对固相的选择和操作条件进行优化。
3. 凝胶过滤色谱法凝胶过滤色谱法是一种利用多孔凝胶作为分离介质,目标多糖根据其大小在凝胶中进行分离的方法。
该方法适用于具有不同分子量的多糖,且操作简单、分离效果较好。
但由于凝胶孔径大小限制,对于较小或较大的多糖可能无法有效分离。
4. 亲和层析法亲和层析法是一种利用目标多糖与特定配体间相互作用实现分离纯化的方法。
该方法适用于具有特定结构或功能的多糖,如具有特异性结合蛋白质、抗原表位等。
该方法操作简单、分离效果较好,但需要对配体选择和操作条件进行优化。
5. 聚焦电泳法聚焦电泳法是一种利用电场作用将目标多糖在pH梯度中移动并实现分离纯化的方法。
该方法适用于具有不同等电点或带电性质的多糖。
该方法分离效果好、可同时实现高效分离和纯化,但需要对pH梯度的选择和操作条件进行优化。
三、多糖分离纯化方法的优缺点1. 溶液沉淀法优点:操作简单,无需昂贵设备。
缺点:需要对目标多糖在不同条件下的溶解度有较为准确的了解,并且会受到其他成分影响。
2. 离子交换色谱法优点:分离效果好,适用于具有明显电荷差异或含有特定官能团(如硫酸基、羧基等)的多糖。
天然药物多糖的主要生物活性及分离纯化方法一、本文概述天然药物多糖是一类具有广泛生物活性的天然高分子化合物,其独特的结构和功能使得它们在医药、食品、化妆品等多个领域具有广阔的应用前景。
本文旨在全面概述天然药物多糖的主要生物活性以及分离纯化方法,以期为相关领域的研究和应用提供有价值的参考。
我们将深入探讨天然药物多糖的主要生物活性,包括其免疫调节、抗肿瘤、抗病毒、抗氧化、降血糖等多方面的药理作用。
这些生物活性使得天然药物多糖在预防和治疗多种疾病方面具有独特的优势。
我们将详细介绍天然药物多糖的分离纯化方法。
由于天然药物多糖的来源广泛,结构复杂,因此其分离纯化过程往往具有一定的挑战性。
我们将从样品的采集、预处理、提取、分离、纯化以及结构鉴定等方面,系统地介绍天然药物多糖的分离纯化流程,以期为相关实验提供技术指导和参考。
通过本文的阐述,我们期望能够为读者提供全面而深入的天然药物多糖知识,进一步推动其在医药、食品、化妆品等领域的应用和发展。
二、天然药物多糖的主要生物活性天然药物多糖作为一大类生物活性物质,具有多种独特的生物活性,这些活性使其在医药、保健品、食品等领域具有广泛的应用前景。
以下将详细介绍天然药物多糖的几种主要生物活性。
免疫调节作用:许多天然药物多糖具有显著的免疫调节作用,能够激活并增强机体的免疫功能。
它们可以促进免疫细胞的增殖与分化,提高免疫细胞的活性,从而增强机体的免疫力,对预防和治疗免疫相关疾病具有重要意义。
抗肿瘤作用:许多研究表明,天然药物多糖具有抑制肿瘤细胞生长、诱导肿瘤细胞凋亡、增强抗肿瘤药物疗效等作用。
这些作用使得天然药物多糖成为肿瘤治疗中的重要辅助药物,具有广阔的应用前景。
抗氧化作用:天然药物多糖中的许多成分具有显著的抗氧化活性,可以清除体内的自由基,减轻氧化应激损伤,保护细胞和组织免受氧化损伤。
这对于预防和治疗氧化应激相关疾病具有重要意义。
降血糖作用:部分天然药物多糖具有降低血糖的作用,可以通过提高胰岛素敏感性、促进胰岛素分泌、抑制肝糖原分解等途径来调节血糖水平。
多糖的分离纯化及其纯度鉴别与分子量测定以多糖的分离纯化及其纯度鉴别与分子量测定为题,本文将介绍多糖的分离纯化方法、纯度鉴别和分子量测定的原理和技术。
一、多糖的分离纯化方法多糖是一类由多个糖基组成的生物大分子,其结构复杂多样。
为了研究多糖的性质和功能,需要将多糖与其他杂质分离开来并纯化。
常用的多糖分离纯化方法包括离心沉淀、凝胶层析、离子交换层析、亲和层析等。
离心沉淀是一种简单有效的多糖分离纯化方法。
通过调节离心速度和时间,可以使多糖与其他杂质沉淀分离,然后将上清液取出,即可得到相对纯净的多糖溶液。
凝胶层析是一种常用的多糖分离纯化方法。
凝胶层析根据多糖分子的大小和形状,利用凝胶的孔隙大小选择性地分离多糖。
常用的凝胶材料有琼脂糖、聚丙烯酰胺凝胶等。
离子交换层析是一种利用多糖与离子交换树脂之间的电荷相互作用进行分离的方法。
树脂表面带有正负电荷,多糖分子根据其电荷性质与树脂发生吸附和解吸作用,从而实现分离纯化。
亲和层析是一种利用多糖与特定的亲和配体之间的特异性结合进行分离的方法。
常见的亲和配体有金属离子、抗体、受体等。
通过与亲和配体结合,多糖可以被选择性地吸附在亲和树脂上,其他杂质则被洗脱,从而实现纯化。
二、多糖的纯度鉴别多糖的纯度鉴别是判断多糖溶液中是否存在杂质的过程。
常用的纯度鉴别方法包括聚丙烯酰胺凝胶电泳、紫外-可见光谱、红外光谱等。
聚丙烯酰胺凝胶电泳是一种常用的多糖纯度鉴别方法。
通过在凝胶中施加电场,多糖分子根据其大小和电荷性质在凝胶中迁移,从而实现分离和鉴定。
紫外-可见光谱是一种常用的多糖纯度鉴别方法。
多糖溶液在紫外-可见光谱范围内有特征性的吸收峰,通过测量多糖溶液在不同波长下的吸光度,可以判断多糖溶液中是否存在杂质。
红外光谱是一种常用的多糖纯度鉴别方法。
不同多糖具有特征性的红外吸收峰,通过测量多糖溶液的红外光谱,可以判断多糖溶液中是否存在杂质。
三、多糖的分子量测定多糖的分子量是衡量多糖结构大小的重要指标。
多糖分离纯化1. 概述多糖是由许多重复单元组成的生物大分子,具有广泛的生物功能和应用价值。
多糖的分离纯化是从混合物中分离出目标多糖并提高纯度的过程。
本文将介绍多糖分离纯化的常用方法和技术,以及其在食品、药品和生物工程等领域的应用。
2. 多糖的分离方法多糖的分离方法主要包括溶剂沉淀、离子交换、凝胶过滤、超滤、逆流层析、电泳和气相色谱等。
下面将分别介绍这些方法的原理和应用情况。
2.1 溶剂沉淀溶剂沉淀是利用溶剂的物理性质,如极性和温度等,使多糖在溶液中发生相分离的方法。
通常采用醇类溶剂,如乙醇或异丙醇。
溶剂沉淀适用于多糖与其他溶质的溶解度差异较大的情况,但纯度较低。
2.2 离子交换离子交换是利用离子交换树脂上的功能基团与多糖分子间发生离子交换反应的方法。
树脂的功能基团可以选择性吸附或释放多糖分子。
离子交换适用于多糖的分子量差异较大的情况,例如海藻酸和壳聚糖的分离。
2.3 凝胶过滤凝胶过滤是利用凝胶的孔隙结构将分子按大小分离的方法。
多糖分子较大,可以被凝胶孔隙排除,而小分子可以通过凝胶透过。
凝胶过滤常用于多糖与其他小分子的分离,如蛋白质和核酸。
2.4 超滤超滤是利用超滤膜的孔隙结构将溶液分离的方法。
超滤膜的孔径可以根据需要选择,通常是分子量截留范围在1 kDa至100 kDa之间。
超滤适用于多糖与其他大分子的分离,如蛋白质和核酸。
2.5 逆流层析逆流层析是利用多糖与填料间的亲和作用进行分离的方法。
填料可以是具有特定亲和性的配体,如亲和树脂。
逆流层析适用于分子间相互作用较强的多糖分离。
2.6 电泳电泳是利用电场作用将分子按电荷和大小进行分离的方法。
多糖可根据电荷差异选择合适的电泳方法,如聚丙烯酰胺凝胶电泳和毛细管电泳。
电泳在多糖的分子量分析和负载量测定中广泛应用。
2.7 气相色谱气相色谱是利用样品在气相载体中的分配和迁移以实现分离的方法。
多糖需要经过甲硅烷衍生化处理后才可以进行气相色谱分析。
气相色谱适用于多糖的含量测定和结构分析。