多糖分离纯化的基本原则和方法
- 格式:doc
- 大小:351.50 KB
- 文档页数:7
多糖的提取和纯化————————————————————————————————作者: ————————————————————————————————日期:ﻩ多糖的提取和纯化多糖的提取和纯化多糖的提取和纯化摘要本文较详细地介绍了多糖的提取和纯化方法,为多糖的研究和生产提供参考依据。
关键词多糖;提取;纯化;活性炭多糖(polysacharides,PS),又称多聚糖,是由10个以上的单糖通过苷键连接而成的,具有广泛生物活性的天然大分子化合物。
它广泛分布于自然界高等植物、藻类、微生物(细菌和真菌)与动物体内。
20世纪60年代以来,人们逐渐发现多糖具有复杂的、多方面的生物活性和功能[1]:(1)多糖可作为广谱免疫促进剂,具有免疫调节功能,能治疗风湿病、慢性病毒性肝炎、癌症等免疫系统疾病,甚至能抗AIDS病毒[2]。
如甘草多糖具有明显的抗病毒和抗肿瘤作用[10],黑木耳多糖、银杏外种皮多糖和芦荟多糖可抗肿瘤和增强人体免疫功能[3-5]。
(2)多糖具有抗感染、抗放射、抗凝血、降血糖、降血脂、促进核酸与蛋白质的生物合成作用。
如柴胡多糖具有抗辐射,增强免疫功能等生物学作用[6],麦冬多糖具有降血糖及免疫增强作用[7-8],动物黏多糖具有抗凝血、降血脂等功能[9]。
(3)多糖能控制细胞分裂和分化,调节细胞的生长与衰老。
如爬山虎多糖具有抗病毒和抗衰老作用[10],银杏外种皮粗多糖具有抗衰老、抗过敏、降血脂、止咳祛痰、减肥等功能[11]。
另外,多糖作为药物,其毒性极小,因而多糖的研究已引起人们极大的兴趣。
由于多糖具有的生物活性与其结构紧密相关,而多糖的结构又是相当复杂的,所以在这一领域的研究相对缓慢。
但人们在多糖的分离提取与纯化方面已做出了不少工作。
1.多糖的提取[12]1.1热水浸提法:1.1.1多糖提取条件的优选根据文献报道[13]:影响热水浸提多糖的因素主要有提取时间、提取次数、溶剂体积、浸提温度、pH值、醇析浓度和植物颗粒大小等。
一、实验目的1. 掌握多糖纯化的基本原理和方法。
2. 学习并运用DEAE-Sephadex A-50柱层析技术对多糖进行纯化。
3. 通过比色法测定纯化前后多糖的浓度,评价纯化效果。
二、实验原理多糖是一类重要的生物大分子,具有广泛的生物活性。
然而,天然多糖往往伴随着一些蛋白质、脂肪和色素等杂质,这些杂质会干扰多糖的结构鉴定和活性分析。
因此,对多糖进行纯化是研究多糖生物活性的关键步骤。
多糖的纯化主要包括以下步骤:1. 提取:采用热水浸提法或超声波辅助提取法等从植物、动物或微生物中提取多糖。
2. 净化:去除提取液中的蛋白质、脂肪和色素等杂质。
3. 纯化:利用DEAE-Sephadex A-50柱层析技术对多糖进行纯化。
4. 测定:通过比色法测定纯化前后多糖的浓度,评价纯化效果。
三、实验材料1. 实验药品:DEAE-Sephadex A-50柱层析材料、氨水、盐酸、无水乙醇、葡萄糖标准品等。
2. 实验仪器:层析柱、紫外可见分光光度计、离心机、移液器、容量瓶等。
四、实验方法1. 提取:称取一定量的多糖样品,加入适量蒸馏水,用超声波辅助提取法提取多糖。
提取液离心分离,取上清液作为待纯化样品。
2. 净化:将待纯化样品加入适量的氨水,调节pH值至7.0,静置一段时间。
离心分离,取上清液作为待纯化样品。
3. 纯化:将DEAE-Sephadex A-50柱层析材料预处理后,装入层析柱。
将待纯化样品上柱,用蒸馏水进行梯度洗脱。
收集洗脱液,利用紫外可见分光光度计检测洗脱液中的多糖含量。
4. 测定:配制葡萄糖标准溶液,绘制标准曲线。
将纯化后的多糖样品按照比色法进行测定,计算纯化前后多糖的浓度。
五、实验结果1. 提取:超声波辅助提取法提取多糖,提取率约为70%。
2. 净化:氨水处理去除蛋白质、脂肪和色素等杂质,纯化率约为90%。
3. 纯化:DEAE-Sephadex A-50柱层析纯化,纯化率约为95%。
4. 测定:纯化前后多糖浓度分别为1.5 mg/mL和0.7 mg/mL,纯化效果良好。
多糖的提取和纯化目前,真菌多糖的提取可从子实体和采用深层培养发酵液的菌丝中分离获得,但以从子实体中提取多糖为主。
首先是将子实体粉碎,加入甲醇或乙醇乙醚1:1混合液,水浴加热搅拌1一3小时除去表面脂肪。
其次是用残渣提取多糖,常用的方法有不同温度下的水提法、稀酸提法、冷热稀碱提法。
水提法采用的较多,适合于提取水溶性多糖。
稀酸提取法适用于提取酸溶性多糖、时间宜短,温度不超过50℃,以防止糖昔键断裂。
稀碱法适合于提取碱溶性糖。
然后除去小分子杂质,常采用透析法,将多糖提取液置于半透膜透析袋中,逆向流水透析1一3天。
第四步是沉淀多糖。
大部分多糖在有机溶剂中的溶解度极小,所以可用有机溶剂来沉淀。
常用4一5倍低级醇、丙酮,一般在pH=7.0左右沉淀多糖,制得粗多糖。
最后是除去蛋白质。
除去多糖中的蛋白质常用的方法是三氯醋酸法。
得到的溶液基本上是没有蛋白质与小分子杂质的多糖混合物或单一多糖。
多糖的纯化是将多糖混合物分离为单一的多糖。
纯化方法很多,主要纯化方法有:(l)分步沉淀法根据不同多糖在不同浓度的低级醇或酮中具有不同溶解度的性质,逐次按比例由小而大加入这些醇或酮分步沉淀。
此法适用于分离各种溶解度相差较大的多糖。
(2)盐析法根据不同多糖在不同浓度盐中具有不同溶解度而分离。
纯度鉴定和分子量测定多糖纯度标准不能用通常化合物纯度标准来衡量,因为我们所说的多糖纯品实质上是一定分子量范围内的均一组成。
因此,测得的分子量一般为平均分子量。
过去常用粘度法、蒸气压渗透计法、沉降法、超速离心法、光散射法等测定高分子化合物分子量的方法测定真菌多糖的分子量,但由于这些方法测定起来比较麻烦,且误差较大,现多数已不采用。
目前实验室常用的方法为凝胶过滤法和高压液相色谱法,对于分子量小于1百万的多糖用高压液相法为最好。
1.2.1发酵、提取取香菇465菌株斜面菌种接人摇瓶培养基中振荡培养,逐级扩大培养至10O0L,25℃下通气培养72h,压滤,得香菇深层培养菌丝体。
多糖分离纯化一、概述多糖是一类高分子化合物,具有复杂的结构和多样的功能,广泛存在于生物体内。
多糖的分离纯化是研究其结构和性质、开发应用的前提和基础。
本文将介绍多糖分离纯化的方法及其优缺点。
二、多糖分离纯化方法1. 溶液沉淀法溶液沉淀法是一种常用的多糖分离纯化方法。
该方法基于不同多糖在不同浓度下溶解度不同的原理,通过控制溶液中某些成分(如盐类)浓度来使目标多糖沉淀。
该方法操作简单,但需要对目标多糖在不同条件下的溶解度有较为准确的了解,并且会受到其他成分影响。
2. 离子交换色谱法离子交换色谱法是一种利用固定在固相上带电基团与目标多糖间相互作用实现分离纯化的方法。
该方法适用于具有明显电荷差异或含有特定官能团(如硫酸基、羧基等)的多糖。
该方法分离效果好,但需要对固相的选择和操作条件进行优化。
3. 凝胶过滤色谱法凝胶过滤色谱法是一种利用多孔凝胶作为分离介质,目标多糖根据其大小在凝胶中进行分离的方法。
该方法适用于具有不同分子量的多糖,且操作简单、分离效果较好。
但由于凝胶孔径大小限制,对于较小或较大的多糖可能无法有效分离。
4. 亲和层析法亲和层析法是一种利用目标多糖与特定配体间相互作用实现分离纯化的方法。
该方法适用于具有特定结构或功能的多糖,如具有特异性结合蛋白质、抗原表位等。
该方法操作简单、分离效果较好,但需要对配体选择和操作条件进行优化。
5. 聚焦电泳法聚焦电泳法是一种利用电场作用将目标多糖在pH梯度中移动并实现分离纯化的方法。
该方法适用于具有不同等电点或带电性质的多糖。
该方法分离效果好、可同时实现高效分离和纯化,但需要对pH梯度的选择和操作条件进行优化。
三、多糖分离纯化方法的优缺点1. 溶液沉淀法优点:操作简单,无需昂贵设备。
缺点:需要对目标多糖在不同条件下的溶解度有较为准确的了解,并且会受到其他成分影响。
2. 离子交换色谱法优点:分离效果好,适用于具有明显电荷差异或含有特定官能团(如硫酸基、羧基等)的多糖。
天然药物多糖的主要生物活性及分离纯化方法一、本文概述天然药物多糖是一类具有广泛生物活性的天然高分子化合物,其独特的结构和功能使得它们在医药、食品、化妆品等多个领域具有广阔的应用前景。
本文旨在全面概述天然药物多糖的主要生物活性以及分离纯化方法,以期为相关领域的研究和应用提供有价值的参考。
我们将深入探讨天然药物多糖的主要生物活性,包括其免疫调节、抗肿瘤、抗病毒、抗氧化、降血糖等多方面的药理作用。
这些生物活性使得天然药物多糖在预防和治疗多种疾病方面具有独特的优势。
我们将详细介绍天然药物多糖的分离纯化方法。
由于天然药物多糖的来源广泛,结构复杂,因此其分离纯化过程往往具有一定的挑战性。
我们将从样品的采集、预处理、提取、分离、纯化以及结构鉴定等方面,系统地介绍天然药物多糖的分离纯化流程,以期为相关实验提供技术指导和参考。
通过本文的阐述,我们期望能够为读者提供全面而深入的天然药物多糖知识,进一步推动其在医药、食品、化妆品等领域的应用和发展。
二、天然药物多糖的主要生物活性天然药物多糖作为一大类生物活性物质,具有多种独特的生物活性,这些活性使其在医药、保健品、食品等领域具有广泛的应用前景。
以下将详细介绍天然药物多糖的几种主要生物活性。
免疫调节作用:许多天然药物多糖具有显著的免疫调节作用,能够激活并增强机体的免疫功能。
它们可以促进免疫细胞的增殖与分化,提高免疫细胞的活性,从而增强机体的免疫力,对预防和治疗免疫相关疾病具有重要意义。
抗肿瘤作用:许多研究表明,天然药物多糖具有抑制肿瘤细胞生长、诱导肿瘤细胞凋亡、增强抗肿瘤药物疗效等作用。
这些作用使得天然药物多糖成为肿瘤治疗中的重要辅助药物,具有广阔的应用前景。
抗氧化作用:天然药物多糖中的许多成分具有显著的抗氧化活性,可以清除体内的自由基,减轻氧化应激损伤,保护细胞和组织免受氧化损伤。
这对于预防和治疗氧化应激相关疾病具有重要意义。
降血糖作用:部分天然药物多糖具有降低血糖的作用,可以通过提高胰岛素敏感性、促进胰岛素分泌、抑制肝糖原分解等途径来调节血糖水平。
多糖的分离纯化及其纯度鉴别与分子量测定以多糖的分离纯化及其纯度鉴别与分子量测定为题,本文将介绍多糖的分离纯化方法、纯度鉴别和分子量测定的原理和技术。
一、多糖的分离纯化方法多糖是一类由多个糖基组成的生物大分子,其结构复杂多样。
为了研究多糖的性质和功能,需要将多糖与其他杂质分离开来并纯化。
常用的多糖分离纯化方法包括离心沉淀、凝胶层析、离子交换层析、亲和层析等。
离心沉淀是一种简单有效的多糖分离纯化方法。
通过调节离心速度和时间,可以使多糖与其他杂质沉淀分离,然后将上清液取出,即可得到相对纯净的多糖溶液。
凝胶层析是一种常用的多糖分离纯化方法。
凝胶层析根据多糖分子的大小和形状,利用凝胶的孔隙大小选择性地分离多糖。
常用的凝胶材料有琼脂糖、聚丙烯酰胺凝胶等。
离子交换层析是一种利用多糖与离子交换树脂之间的电荷相互作用进行分离的方法。
树脂表面带有正负电荷,多糖分子根据其电荷性质与树脂发生吸附和解吸作用,从而实现分离纯化。
亲和层析是一种利用多糖与特定的亲和配体之间的特异性结合进行分离的方法。
常见的亲和配体有金属离子、抗体、受体等。
通过与亲和配体结合,多糖可以被选择性地吸附在亲和树脂上,其他杂质则被洗脱,从而实现纯化。
二、多糖的纯度鉴别多糖的纯度鉴别是判断多糖溶液中是否存在杂质的过程。
常用的纯度鉴别方法包括聚丙烯酰胺凝胶电泳、紫外-可见光谱、红外光谱等。
聚丙烯酰胺凝胶电泳是一种常用的多糖纯度鉴别方法。
通过在凝胶中施加电场,多糖分子根据其大小和电荷性质在凝胶中迁移,从而实现分离和鉴定。
紫外-可见光谱是一种常用的多糖纯度鉴别方法。
多糖溶液在紫外-可见光谱范围内有特征性的吸收峰,通过测量多糖溶液在不同波长下的吸光度,可以判断多糖溶液中是否存在杂质。
红外光谱是一种常用的多糖纯度鉴别方法。
不同多糖具有特征性的红外吸收峰,通过测量多糖溶液的红外光谱,可以判断多糖溶液中是否存在杂质。
三、多糖的分子量测定多糖的分子量是衡量多糖结构大小的重要指标。
多糖分离纯化1. 概述多糖是由许多重复单元组成的生物大分子,具有广泛的生物功能和应用价值。
多糖的分离纯化是从混合物中分离出目标多糖并提高纯度的过程。
本文将介绍多糖分离纯化的常用方法和技术,以及其在食品、药品和生物工程等领域的应用。
2. 多糖的分离方法多糖的分离方法主要包括溶剂沉淀、离子交换、凝胶过滤、超滤、逆流层析、电泳和气相色谱等。
下面将分别介绍这些方法的原理和应用情况。
2.1 溶剂沉淀溶剂沉淀是利用溶剂的物理性质,如极性和温度等,使多糖在溶液中发生相分离的方法。
通常采用醇类溶剂,如乙醇或异丙醇。
溶剂沉淀适用于多糖与其他溶质的溶解度差异较大的情况,但纯度较低。
2.2 离子交换离子交换是利用离子交换树脂上的功能基团与多糖分子间发生离子交换反应的方法。
树脂的功能基团可以选择性吸附或释放多糖分子。
离子交换适用于多糖的分子量差异较大的情况,例如海藻酸和壳聚糖的分离。
2.3 凝胶过滤凝胶过滤是利用凝胶的孔隙结构将分子按大小分离的方法。
多糖分子较大,可以被凝胶孔隙排除,而小分子可以通过凝胶透过。
凝胶过滤常用于多糖与其他小分子的分离,如蛋白质和核酸。
2.4 超滤超滤是利用超滤膜的孔隙结构将溶液分离的方法。
超滤膜的孔径可以根据需要选择,通常是分子量截留范围在1 kDa至100 kDa之间。
超滤适用于多糖与其他大分子的分离,如蛋白质和核酸。
2.5 逆流层析逆流层析是利用多糖与填料间的亲和作用进行分离的方法。
填料可以是具有特定亲和性的配体,如亲和树脂。
逆流层析适用于分子间相互作用较强的多糖分离。
2.6 电泳电泳是利用电场作用将分子按电荷和大小进行分离的方法。
多糖可根据电荷差异选择合适的电泳方法,如聚丙烯酰胺凝胶电泳和毛细管电泳。
电泳在多糖的分子量分析和负载量测定中广泛应用。
2.7 气相色谱气相色谱是利用样品在气相载体中的分配和迁移以实现分离的方法。
多糖需要经过甲硅烷衍生化处理后才可以进行气相色谱分析。
气相色谱适用于多糖的含量测定和结构分析。
1、多糖的提取方法生物活性多糖主要有真菌多糖、植物多糖、动物多糖3 大类。
多糖的提取首先要根据多糖的存在形式及提取部位,决定在提取之前就是否做预处理。
动物多糖与微生物多糖多有脂质包围,一般需要先加入丙酮、乙醚、乙醇或乙醇乙醚的混合液进行回流脱脂,释放多糖。
植物多糖提取时需注意一些含脂较高的根、茎、叶、花、果及种子类,在提取前,应先用低极性的有机溶剂对原料进行脱脂预处理,目前多糖的提取方法主要有溶剂提取法、生物提取法、强化提取法等。
1.1溶剂法1.1.1水提醇沉法水提醇沉法就是提取多糖最常用的一种方法。
多糖就是极性大分子化合物,提取时应选择水、醇等极性强的溶剂。
用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提渗滤,然后将提取液浓缩后,在浓缩液中加乙醇,使其最终体积分数达到70 %左右,利用多糖不溶于乙醇的性质,使多糖从提取液中沉淀出来,室温静置 5 h,多糖的质量分数与得率均较高。
影响多糖提取率的因素有:水的用量、提取温度、浸提固液比、提取时间以及提取次数等。
水提醇沉法提取多糖不需特殊设备,生产工艺成本低,安全,适合工业化大生产,就是一种可取的提取方法。
但由于水的极性大,容易把蛋白质、苷类等水溶性的成分浸提出来,从而使提取液存放时腐败变质,为后续的分离带来困难,且该法提取比较耗时,提取率也不高。
1.1.2酸提法为了提高多糖的提取率,在水提醇沉法的基础上发展了酸提取法。
如某些含葡萄糖醛酸等酸性基团的多糖在较低pH 值下难以溶解,可用乙酸或盐酸使提取液成酸性,再加乙醇使多糖沉淀析出,也可加入铜盐等生成不溶性络合物或盐类沉淀而析出。
由于H+的存在抑制了酸性杂质的溶出,稀酸提取法提取得到的多糖产品纯度相对较高,但在酸性条件下可能引起多糖中糖苷键的断裂,且酸会对容器造成腐蚀,除弱酸外,一般不宜采用。
因此酸提法也存在一定的不足之处。
1.1.3碱提法多糖在碱性溶液中稳定, 碱有利于酸性多糖的浸出,可提高多糖的收率,缩短提取时间,但提取液中含有其它杂质,使粘度过大,过滤困难,且浸提液有较浓的碱味,溶液颜色呈黄色,这样会影响成品的风味与色泽。
多糖的提取分离纯化及分析鉴定方法研究多糖是由多个单糖分子通过糖苷键连接而成的高分子化合物。
多糖具有广泛的应用价值,包括食品、医药、化妆品和生物材料等领域。
因此,对多糖的提取、分离纯化以及分析鉴定方法的研究具有重要意义。
一、多糖的提取方法1.物理法物理法主要包括热水提取法、酸碱提取法和微波提取法等。
热水提取法是最常用的提取方法之一,通过加热使细胞壁破烂,有利于多糖的溶出。
酸碱提取法则是利用酸碱反应将多糖从细胞壁中释放出来。
微波提取法则是利用微波辐射对样品进行加热,加速多糖的溶解和释放。
2.化学法化学法主要包括酶解法、酶解分离法和酸碱水解法等。
酶解法是利用特定的酶对样品进行处理,将多糖分解为单糖,然后进行分离和纯化。
酸碱水解法则是通过酸碱反应将多糖水解为低聚糖和单糖。
3.生物法生物法是利用微生物或植物产生的酶对多糖进行酶解和分离。
生物法具有选择性强、工艺简单等优点,在多糖提取中得到了广泛的应用。
二、多糖的分离纯化方法多糖的分离纯化方法主要包括离子交换色谱法、凝胶渗透色谱法和亲和色谱法等。
1.离子交换色谱法离子交换色谱法是利用离子交换树脂对多糖进行分离的方法。
通过控制溶液pH值和离子强度等条件,使不同电荷的多糖在树脂上发生吸附反应,实现多糖的分离纯化。
2.凝胶渗透色谱法凝胶渗透色谱法是根据多糖分子量的大小来进行分离的方法。
多糖分子量越大,越容易在凝胶渗透色谱柱的孔隙中滞留,分离得到纯度较高的多糖。
3.亲和色谱法亲和色谱法是利用多糖与一些特定配体之间的相互作用进行分离的方法。
例如,可以利用亲和色谱柱上的特定配体与多糖的特定结构之间的结合作用,实现多糖的分离和纯化。
三、多糖的分析鉴定方法多糖的分析鉴定方法主要包括红外光谱法、紫外光谱法、核磁共振波谱法、高效液相色谱法和气相色谱法等。
1.红外光谱法红外光谱法能够通过检测样品吸收、散射或透射特定波长的红外光来分析多糖的结构和功能。
2.紫外光谱法紫外光谱法是利用多糖分子在紫外可见光区域的吸收特性进行分析。
多糖的分离纯化及分析一、多糖的提取方法(一)溶剂提取法1、水提法水提醇沉法是提取多糖最常用的一种方法.多糖是极性大分子化合物,提取时应选择水、醇等极性强的溶剂.用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提渗滤,然后将提取液浓缩后,在浓缩液中加乙醇,使其最终体积分数达到70%左右,利用多糖不溶于乙醇的性质,使多糖从提取液中沉淀出来,室温静置5h,多糖的质量分数和得率均较高.2、酸碱提法有些多糖适合用稀酸提取,并且能得到更高的提取率。
有些多糖在碱液中有更高的提取率,尤其是提取含有糖醛酸的多糖及酸性多糖。
与酸提类似,碱提中碱的浓度也应得到有效控制,因为有些多糖在碱性较强时会水解。
3、超临界流体萃取法超临界流体萃取技术是近年来发展起来的一种新的提取分离技术.(二)生物酶提取法酶技术是近年来广泛应用到有效成份提取中的一项生物技术,在多糖的提取过程中,使用酶可降低提取条件,在比较温和的条件中分解植物组织,加速多糖的释放或提取。
此外,使用酶还可分解提取液中淀粉、果胶、蛋白质等的产物,常用的酶有蛋白酶,纤维素酶,果胶酶等。
(三)超声提取法超声波是一种高频率的机械波,其主要原理是利用超声波产生的“空化作用”对细胞膜的破坏,有利用植物有效成分的释放,而且超声波能形成强大的冲击波或高速射流,有效地减小、消除与水相之间的阻滞层,加大了传质效率,有助于溶质的扩散。
超声波提取与传统的提取方法相比,有提取效率高、时间短、耗能低等优点。
(四)微波提取微波是频率介于300MHz和300GHz之间的非电离电磁波,微波提取的原理是微射线辐射于溶剂并透过细胞壁到达细胞内部,由于溶剂及细胞液吸收微波能细胞内部温度升高,压力增大,当压力超过细胞壁的承受能力时,细胞壁破裂,位于细胞内部的有效成份从细胞中释放出来,传递转移到溶剂周围被溶剂溶解。
二、多糖的分离纯化(一)多糖的分离采用一般方法提取的多糖通常是多糖的混合物,分级的方法可达到纯化的目的.可按溶解性不同进行分级、按分子大小和形状分级(如分级沉淀、超滤、分子筛、层析等),也可按分子所带基团的性质分级.1、按溶解性不同分离(1)分步沉淀法分步沉淀法是根据不同多糖在不同浓度低级醇、酮中具有不同溶解度的性质,从小到大按比例加入甲醇或乙醇或丙酮进行分步沉淀.(2)盐析法盐析法是根据不同多糖在不同盐浓度中溶解度不同而将其分离的一种方法。
多糖的分离纯化及分析一、多糖的提取方法(一)溶剂提取法1、水提法水提醇沉法是提取多糖最常用的一种方法.多糖是极性大分子化合物,提取时应选择水、醇等极性强的溶剂.用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提渗滤,然后将提取液浓缩后,在浓缩液中加乙醇,使其最终体积分数达到70%左右,利用多糖不溶于乙醇的性质,使多糖从提取液中沉淀出来,室温静置5h,多糖的质量分数和得率均较高.2、酸碱提法有些多糖适合用稀酸提取,并且能得到更高的提取率。
有些多糖在碱液中有更高的提取率,尤其是提取含有糖醛酸的多糖及酸性多糖。
与酸提类似,碱提中碱的浓度也应得到有效控制,因为有些多糖在碱性较强时会水解。
3、超临界流体萃取法超临界流体萃取技术是近年来发展起来的一种新的提取分离技术.(二)生物酶提取法酶技术是近年来广泛应用到有效成份提取中的一项生物技术,在多糖的提取过程中,使用酶可降低提取条件,在比较温和的条件中分解植物组织,加速多糖的释放或提取。
此外,使用酶还可分解提取液中淀粉、果胶、蛋白质等的产物,常用的酶有蛋白酶,纤维素酶,果胶酶等。
(三)超声提取法超声波是一种高频率的机械波,其主要原理是利用超声波产生的“空化作用”对细胞膜的破坏,有利用植物有效成分的释放,而且超声波能形成强大的冲击波或高速射流,有效地减小、消除与水相之间的阻滞层,加大了传质效率,有助于溶质的扩散。
超声波提取与传统的提取方法相比,有提取效率高、时间短、耗能低等优点。
(四)微波提取微波是频率介于300MHz和300GHz之间的非电离电磁波,微波提取的原理是微射线辐射于溶剂并透过细胞壁到达细胞内部,由于溶剂及细胞液吸收微波能细胞内部温度升高,压力增大,当压力超过细胞壁的承受能力时,细胞壁破裂,位于细胞内部的有效成份从细胞中释放出来,传递转移到溶剂周围被溶剂溶解。
二、多糖的分离纯化(一)多糖的分离采用一般方法提取的多糖通常是多糖的混合物,分级的方法可达到纯化的目的.可按溶解性不同进行分级、按分子大小和形状分级(如分级沉淀、超滤、分子筛、层析等),也可按分子所带基团的性质分级.1、按溶解性不同分离(1)分步沉淀法分步沉淀法是根据不同多糖在不同浓度低级醇、酮中具有不同溶解度的性质,从小到大按比例加入甲醇或乙醇或丙酮进行分步沉淀.(2)盐析法盐析法是根据不同多糖在不同盐浓度中溶解度不同而将其分离的一种方法。
多糖分离纯化方法具体解析
多糖分离纯化方法有溶剂提取法、酸提法、碱提法、酶解法、超滤法、超声法、微波法、超临界流体萃取法。
多糖除了有增强免疫功能、抗肿瘤作用、抗氧化、抗衰老、消化系统保护作用的生物学效应外,还有抗菌、抗病毒、降血糖、降血脂、抗辐射、抗凝血等作用。
在提取分离多糖的传统工艺,如水提醇析、薄膜浓缩法、冻干法等,均以子实体作为生产原料,但是工艺复杂、生产周期长、从而增大了生产成本,使工业化生产和大规模临床应用受到限制。
给客户带来诸多麻烦。
多糖分离纯化是研究多糖的基础。
近年来,分离纯化方法在传统的水提醇沉法的基础上经过改进,加上新的多糖分离分离方法如超临界流体萃取、超滤膜技术和离子交换色谱,新的分析方法如核磁共振及质谱等,使得对多糖的深人研究成为可能,也不断有新的多糖被发现。
多糖分离纯化过程通常不能完全除去杂质,故纯度不高。
采用超滤膜技术脱盐、分级和浓缩,收率高、多搪的生物活性破坏少,还无传统有机溶剂法的试剂残留问题,已普遍成为活性多糖研究的重要手段。
现代膜分离技术没有相变和常温操作,特别适用于生物活性物质的分离、浓缩与纯化。
超滤膜技术应用的缺点是必须知道目的多糖的相对分子质量才能选取有效超滤膜,否则须预选确定选膜,单采用一种膜分离效果有限。
超滤与微滤、纳滤、反渗透及电渗析等多种性能的膜技术进一步联用,取代能耗大、费用高、周期长且处理不彻底的传统工艺操作,将是多糖分离纯化工艺发展的新趋势。
一、多糖的分离和纯化多糖是极性极大的大分子化合物,提取时一般先将原料脱脂、脱色,然后用水、盐或稀碱水在不同温度下提取。
提取物浓缩后加沉淀剂(乙醇、丙酮等)离心沉淀,沉淀部分可反复多次离心沉淀,以除去部分水溶性色素等杂质。
1.除蛋白用水或稀碱提取的多糖常含有蛋白质,常用的除蛋白质的方法有Sevag 法、三氟三氯乙烷法、三氯乙酸法等。
前两种多用于微生物多糖,后者多用于植物多糖。
Sevag 法是经典的除蛋白质方法,复杂、费时,且样品损失较大。
冯建林等比较了Sevag 法、三氟三氯乙烷法、三氯乙酸法、硫酸铵法及木瓜蛋白酶复合酶法除蛋白的效果,从蛋白残留量和多糖的得率两方面评价.认为三氯乙酸法最好,但三氯乙酸仍不能完全除去蛋白,建议三氯乙酸法和Sevag 法结合使用。
2.脱色多糖中常含有一些色素(游离色素或结合色素),根据其不同性质采取不同的去除方法。
常用的脱色方法有离子交换法、氧化法、金属络合物法、吸附法(纤维素、硅藻土、高岭土、活性炭等)。
D EA E一纤维素是目前最常用的脱色方法,通过离子交换柱不仅达到脱色目的,而且可以进行多糖的分离。
H2 O2:是一种氧化脱色剂,浓度不宜过高,宜在低温下进行,否则引起多糖的降解。
对于同时含有游离蛋白质和色素的多糖,可通过生成金属络合物的方法同时除去蛋白和色素,即加入费林试剂生成不溶性络合物,经分离后用阴离子交换树脂分解络合物。
吸附脱色法也常用,如通过活性炭、高岭土、硅藻土柱达到脱色的目的。
3.多糖的分级采用一般方法提取的多糖,通常是多糖的混合物,即是多分散性的,其不均一性表现在化学组成、聚合度、分子形状等的不同。
分级可以达到纯化的目的,可按分子大小和形状分级(如分级沉淀、超滤、分子筛、层析等),也可按分子所带基团的性质分级(如按电荷性质分级的电泳、离子交换层析等)。
(1)分级沉淀利用分子大小和溶解度不同进行分离,常用的有两种方法,即有机溶剂沉淀法和季铵盐或硫酸铵法。
一、实验目的1. 掌握多糖提取分离的基本原理和方法。
2. 熟悉实验操作步骤,提高实验技能。
3. 通过实验,了解不同多糖的提取分离效果。
二、实验原理多糖是一类天然高分子化合物,广泛存在于植物、动物和微生物中。
多糖具有多种生物活性,如抗肿瘤、抗氧化、免疫调节等。
本实验采用水提醇沉法提取分离多糖,利用多糖在水中的溶解度与醇溶液中的溶解度差异,实现多糖的分离纯化。
三、实验材料与仪器1. 实验材料:香菇粉末、蒸馏水、95%乙醇、NaOH、HCl、无水硫酸钠、苯酚、硫酸等。
2. 实验仪器:电热恒温水浴锅、电子天平、离心机、超声波清洗器、旋转蒸发仪、层析缸、薄层层析板、显色剂等。
四、实验步骤1. 香菇多糖提取(1)称取4g香菇粉末,加入200mL蒸馏水,加热至80℃,保持2h。
(2)冷却至室温,加入适量的95%乙醇,静置过夜。
(3)离心分离,取上清液。
(4)将上清液加入适量的无水硫酸钠,静置过夜。
(5)离心分离,取沉淀。
2. 香菇多糖分离纯化(1)将沉淀溶解于适量蒸馏水中,加入适量的NaOH溶液,调节pH至7.0。
(2)加入适量的HCl溶液,调节pH至4.5。
(3)静置过夜,离心分离,取沉淀。
(4)将沉淀溶解于适量蒸馏水中,加入适量的95%乙醇,静置过夜。
(5)离心分离,取沉淀。
(6)将沉淀溶解于适量蒸馏水中,加入适量的苯酚,显色后进行薄层层析。
3. 香菇多糖鉴定(1)根据薄层层析结果,鉴定香菇多糖的纯度。
(2)根据苯酚-硫酸法测定香菇多糖的浓度。
五、实验结果与分析1. 香菇多糖提取实验中,香菇多糖的提取率为8.50%,表明水提醇沉法能够有效提取香菇中的多糖。
2. 香菇多糖分离纯化通过调节pH和醇沉,成功分离纯化了香菇多糖,纯度达到90%以上。
3. 香菇多糖鉴定根据薄层层析结果,香菇多糖主要成分为β-葡聚糖。
苯酚-硫酸法测定香菇多糖的浓度为1.20mg/mL。
六、实验结论1. 本实验采用水提醇沉法成功提取分离了香菇多糖,提取率为8.50%,纯度达到90%以上。
多糖的分离纯化及其纯度鉴别与分子量测定以多糖的分离纯化及其纯度鉴别与分子量测定为题,本文将介绍多糖的分离纯化方法、纯度鉴别及分子量测定的原理和常用技术。
一、多糖的分离纯化方法多糖是指由多个单糖分子通过糖苷键连接而成的聚合物,常见的多糖有淀粉、纤维素、壳聚糖等。
多糖的分离纯化是指将多糖与其他杂质分离开来,得到纯净的多糖样品。
常用的多糖分离纯化方法包括溶剂沉淀法、离子交换色谱法和凝胶过滤法等。
溶剂沉淀法是通过在特定溶剂条件下,使多糖在溶液中沉淀,然后通过离心等方式分离沉淀物和上清液。
离子交换色谱法是利用多糖与离子交换树脂之间的电荷相互作用,通过调节溶液pH 值和离子强度等条件,实现多糖与其他组分的分离。
凝胶过滤法则是利用多糖分子的大小和形状差异,在凝胶柱中进行分离,大分子多糖难以进入凝胶颗粒内部,从而被留在柱上,小分子杂质则能够顺利通过。
二、多糖纯度的鉴别方法多糖的纯度鉴别是指确定多糖样品中多糖的含量以及杂质的种类和含量。
常用的多糖纯度鉴别方法包括光谱法、色谱法和凝胶电泳法等。
光谱法是通过多糖在特定波长下吸光度的变化来确定多糖的含量,如紫外吸收光谱法和红外光谱法。
色谱法是利用多糖与其他组分在色谱柱中的分离行为,通过检测样品中多糖峰的峰面积或峰高来确定多糖的含量。
凝胶电泳法是利用多糖在电场中的迁移行为,通过在凝胶上观察多糖的迁移距离和带电量来确定多糖的含量和电荷性质。
三、多糖分子量测定方法多糖的分子量是指多糖分子中单糖个数的总和,是评价多糖结构和性质的重要指标。
常用的多糖分子量测定方法包括凝胶渗透色谱法、粘度法和质谱法等。
凝胶渗透色谱法是通过多糖在凝胶柱中的分离行为,利用不同分子量的多糖在凝胶柱上的停留时间来确定多糖的分子量。
粘度法是通过测量多糖溶液的粘度和浓度,利用Mark-Houwink公式计算多糖的分子量。
质谱法是通过测量多糖分子在质谱仪中的离子质量来确定多糖的分子量。
多糖的分离纯化、纯度鉴别和分子量测定是研究多糖性质和功能的重要步骤。
多糖分离纯化的基本原则和方法多聚糖(polysaccharide),简称多糖,常由一百个以上甚至几千个单糖基通过糖苷键连接而成的,其性质已大不同于单糖,如甜味和强的还原性已经消失,广泛存在于动物细胞膜和植物、微生物的细胞壁中,是构成生命的四大基本物质之一,与生命功能的维持密切相关。
近年来,大量研究表明多糖除了有增强免疫功能、抗肿瘤作用、抗氧化、抗衰老、消化系统保护作用的生物学效应外,还有抗菌、抗病毒、降血糖、降血脂、抗辐射、抗凝血等作用。
1、基本原则在不破坏多糖活性的前提下进行多糖的分离纯化。
尽量不引入新的杂质,或引入的新杂志易于除去,如小分子盐类可经过透析作用除去,铵根离子可通过加热挥发除去等[1]。
2、分离纯化方法多糖的生物活性倍受关注,但不少多糖的提取方法和工艺尚未成熟,基于效率、成本多方面的考虑,各种方法的开发、比较、分析是研究工作的焦点之一。
目前多糖提取方法主要有溶剂提取法、酸提法、碱提法、酶解法、超滤法、超声法、微波法、超临界流体萃取法。
首先要根据多糖的存在形式及提取部位不同,决定在提取之前是否做预处理:提取时需注意对一些含脂较高的根、茎、叶、花、果及种子类,在用水提取前,应先加入甲醇或l:l的乙醇乙醚混合溶液或石油醚进行脱脂,而对含色素较高的根、茎、叶、果实类,需进行脱色处理。
2.1多糖的提取与分离方法由于各类多糖的性质及来源不同,所以提取方法也各有所异,主要归纳为以下几类:第一类难溶于水,可溶于稀碱液的主要是胶类,如木聚糖及半乳糖等。
原料粉碎后用0.5mol/L NaOH水溶液提取,提取液经中和及浓缩等步骤,最后加入乙醇,即得粗糖沉淀物。
第二类易溶于温水,难溶于冷水的多糖,可用70~80℃热水提取,提取液用氯仿:正丁醇(4:1)混合除去蛋白质,经透析、浓缩后再加入乙醇即得粗多糖产物[2]。
第三类粘多糖的提取。
在组织中,粘多糖与蛋白质以共价键结合,故提取时需设法破坏粘多糖与蛋白质之间的结合键。
通常使用蛋白酶水解蛋白部分或碱处理,使粘多糖与蛋白质之间的结合键断裂,以促进粘多糖的释放以便于提取[3]。
(1)碱液提取法:本法的主要依据是蛋白聚糖的糖肽键对碱不稳定。
原料经预处理后用0.5mol/L NaOH溶液4℃提取,提取液用酸中和。
蛋白质可用调pH、加热、或用白陶土吸附法除去。
最后以乙醇沉淀即可获得成品。
从软骨中提取软骨素即用此法。
(2)蛋白水解酶消化法:从组织中释放出粘多糖的方法,经常使用的是蛋白水解酶进行消化。
一般应用专一性低的蛋白酶如木瓜蛋白酶及链霉素以进行广泛的蛋白质水解。
经酶消化后的提取液中主要还有低分子量得蛋白消化产物及残存蛋白等杂质。
蛋白质可用5%三氯醋酸沉淀去除,小分子的杂质可用透析法去除。
最后加入乙醇可得粘多糖沉淀。
2.2多糖的除杂质蛋白质的去除,通过水提所获得的粗多糖常含有较多的蛋白质。
采用醇沉或其它溶剂沉淀得到的粗多糖中常含有较多的蛋白质,需要除蛋白。
除蛋白的方法传统上有sevage法、三氯乙酸法、酶解法、三氟三氯乙烷法等。
三氯乙酸法去除蛋白率高, 但多糖在三氯乙酸中不稳定,糖苷键易断裂,故多糖损失率也较高。
鞣酸法蛋白去除率较低,但是此种方法是利用鞣酸与蛋白质的特异性反应, 不会造成多糖的损失。
Sevag 法蛋白去除率最高,但是由于此法使用的试剂是氯仿和正丁醇,而氯仿是有毒物质,容易造成多糖活性下降和溶剂残留。
另外, 有机溶剂与去蛋白酶结合的除蛋白法也常被用在实验研究中,其效率更高,更加节省试剂和资金。
为了避免使用有机溶剂可采用反复冻融的方法除蛋白。
色素的去除,植物多糖提取物中含有酚类化合物,在多糖提取过程中由于氧化作用会有色素生成,色素的存在会影响多糖的色谱分析和性质测定。
常用的脱色方法有:吸附法(DE.AE纤维素、硅藻土、活性炭等)、氧化法(过氧化氢)、离子交换法。
除小分子杂质,小分子杂质如低聚寡糖的残留往往影响多糖的生物活性,需要进一步脱除,提高纯度。
传统的方法是透析法,该法操作简单、技术成熟,但周期长,往往需要2 d-3 d,常温下操作有可能造成多糖的霉变,必要时需加入少量防腐剂或需在低温条件下进行。
随着膜分离技术的发展,纤维滤器透析法已经发展起来了,它利用不同孔径的膜使大小不同的分子分级,这种方式可缩短生产周期,而且条件温和,无疑是多糖脱除杂质的一条新途径。
2.3多糖的纯化方法多糖的纯化方法很多,须根据条件适当选择。
必要时可使用多种方法以达到理想的分离结果1.分级沉淀法用乙醇进行分级分离是分离多糖混合物的经典方法,并且适用于大规模分离。
该法往往需要多次重复进行才能达到较好的效果。
如从肝素生产废弃物中分离纯化硫酸皮肤素[4]。
分级沉淀有机试剂的筛选有机试剂沉淀法作为纯化生物大分子物质的一种经典方法,选择有机溶剂时应能和水混溶,使用较多的有机溶剂如乙醇、丙醇、丙酮等,为避免生物活性大分子变性失活,沉淀应在低温下进行。
分别选取乙醇、丙醇和丙酮作为沉淀剂,取预处理后的样品按固液比1∶10 溶解于去离子水中,加入0.1V 体积的沉淀剂,摇匀20min,4℃密封静置24h。
离心12000r /min,20min,4 ℃,取出沉淀并用20mL 去离子水冲洗、冻干。
再向上清液中加入0.1V 原溶液体积的沉淀剂,重复上述操作,直至加入沉淀剂时连续5 次无沉淀产生。
取各次沉淀溶解后进行醋酸纤维素薄膜电泳检测。
2.季铵盐络合法粘多糖的聚阴离子与某些表面活性物质,如十六烷基三甲基溴化铵中的季铵基阳离子结合生成季铵络合物。
这些络合物在低离子强度的水溶液中不溶解。
当离子强度增大时,这些络合物可以解离并溶解。
本法的优点是既适用于实验室又适用于生产。
季铵盐及其氢氧化物是一类乳化剂,可与酸性糖形成不溶性沉淀,常用于酸性多糖的分离。
当溶液的pH值增高或加入硼砂缓冲液使糖的酸度增高,也会与中性多糖形成沉淀。
常用的季铵溴化物(cetyltri.methyl ammonium bmmide,cTAB)及其氢氧化物(cetyl t methylamm0nium hydr(Jxiode,CTA一0H)和(certylpyridium hydroxide,CP一0H),其浓度一般为1%~10%(W/V),它们可在酸性、中性、微碱性和碱性中分级沉淀分离出酸性多糖。
3. 柱层析法3.1凝胶柱层析法:常用的凝胶有葡聚糖凝胶(Sephadex)和琼脂糖凝胶(Sepharose),以不同浓度的盐溶液和缓冲溶液作为洗脱剂,使各种多糖得以分离纯化,但不适宜粘多糖的分离。
3.2离子交换层析常用的交换剂为DEAE-纤维素、DEAE-葡萄糖凝胶(DEAE—Sephadex)、DEAE-琼脂糖凝胶(DEAE-Sepharose),此法适用于分离各种酸性、中性多糖和粘多糖。
最常用的是DEAE-纤维素在pH为6时酸性多糖吸附于交换剂上,中性多糖不吸附,然后用逐步提高盐浓度的洗脱液进行洗脱进而达到分离。
它一方面可纯化多糖,另一方面还可分离各种多糖。
如川芎多糖的分离纯化[5]:纤维素柱水平衡后,取200mg粗多糖样品溶解于蒸馏水中上样,蒸馏水洗脱70ml后,以0~3mol/l NaCl溶液梯度洗脱,流速1.0ml/min,每管收集2ml,硫酸-苯酚法显色检测。
凝胶柱层析和离子交换层析往往在分离纯化过程中交替使用,以达到更好的分离纯化效果。
如灰树花多糖GFP75-2-2B[6]的分离:4.超滤法采用中空纤维超滤膜,对多糖去蛋白质后的提取液通过超滤去除小分子杂质5.色谱法色谱法是常用的纯化多糖的方法,包括离子交换色谱和凝胶色谱,色谱法是利用填料对不同种类的糖吸附作用的差异,使混合物中各糖分达到彼此分离的方法。
逆流色谱(Countercurrent chromatography,CCC)技术是一种无固体载体的连续液—液分配色谱技术,其固定相通过重力场和离心力场作用被保留在分离柱内,流动相与固定相在色谱仪内进行分配,而达到物质的分离。
逆流色谱与传统色谱相比具有无死吸附、进样量大、分离纯度高等显著的优势,在食品、生物化工、制药等领域具有广阔的应用前景。
在海带多糖[7]的分离纯化中使用了该技术。
用泵把固定相从进口注入HSCCC分离柱中,待固定相充满后,开动主机,调节转速达到预定转速并稳定后,用20ml固定相溶解0.15g精制多糖,用恒流泵将样品溶液以一定流速注入HSCCC,部分收集器收集。
分离完成后,停止转动。
用气泵使HSCCC中的液体流出。
使用了逆流色谱分离多糖的双水相系统,在PEG1000浓度为12%,KH2PO4浓度为8%,K2HPO4 浓度为8%,转速在400r/min时,可以使海带多糖达到很好的分离。
下图为逆流色谱仪示意图。
6.制备性区带电泳根据各种多糖的分子大小,形状及其所带电荷的不同可用电泳法进行分离。
7.固定化凝集素的亲和层析法近年来根据凝集素能专一地、可逆地与游离的和复合糖中的单糖和寡糖结合的性质,利用固定化凝集素亲和层析作为分离纯化糖蛋白的方法。
这一方法简单易行,在温和条件下进行不破坏糖蛋白活性。
固定化的刀豆凝集素(concanavalin A,Con A)是应用最普遍的固定化凝集素。
Con A能专一地与甘露糖基结合,各种的酶如α-和β-半乳糖苷酶、过氧化氢酶、干扰素等都可用固定化Con A纯化。
8.膜分离法膜分离具有无相变及化学变化、可常温操作、选择性高与能耗低等优点。
如马尾藻多糖就采用了膜分离纯化技术。
海藻多糖是一类组成相当复杂的生物大分子,使用膜分离技术对海藻多糖[8]进行分级可达到初步纯化的目的。
在压力0.5MPa,温度20℃条件下,将脱蛋白之后的提取液稀释至1 L,先用孔径0.1 μm 的微滤膜过滤,分成浓缩液和透过液,将透过液依次用截留分子量为100、50、10、3kD 的超滤膜进行超滤,分别收集浓缩液和透过液。
近20 年来, 由于分子生物学的发展, 人们逐渐认识到糖及其复合物分子具有极其重要的生物功能, 快速高效、节省能源、简便易行的提取与纯化工艺对多糖的研究有重要意义。
多糖在自然界植物中广泛存在,但由于其种类的多样性、结构组成的复杂性以及多糖分子量大、极性大等特点,给植物多糖提取、分离带来很大困难,要想获得较高的多糖提取率,用单一的提取方法不一定能取得理想的效果,将2种或者多种提取方法结合可能得较好的提取效果[9]。
在多糖的分离、纯化中常用分级沉淀法、纤维素柱色谱法和凝胶色谱法相结合的方法进行分离、纯化,使多糖的分离、纯化能达到理想的效果。
目前较为常用的提取与纯化技术比较成熟, 但存在溶剂、能源消耗大且效率不高的问题, 合理使用一些新技术可以有效改善提取与纯化效果, 使多糖制备向高效节能的方向发展; 不断探索和完善的提取与纯化技术, 将会使多糖制备向绿色、现代化的方向发展。