苏教版数学高一《线性回归方程》 同步教案
- 格式:doc
- 大小:215.00 KB
- 文档页数:3
2019-2020年高中数学 2.4线性回归方程第2课时教案 苏教版必修3【学习导航】学习要求1.进一步了解非确定性关系中两个变量的统计方法;2.进一步掌握回归直线方程的求解方法. 【课堂互动】自学评价1.相关关系: 当自变量一定时,因变量的取值带有一定的随机性的两个变量之间的关系 .2.回归分析: 对具有相关关系的两个变量进行统计分析的方法 .3. 求线性回归方程的步骤:(1)x y (2)x y x y (3)i i i i 计算平均数、,计算与的积,求,计算,,∑∑∑x y i i 22(4)将上述有关结果代入公式,求,写出回归直线方程.【精典范例】例1一个工厂在某年里每月产品的总成本y (万元)与该月产量x (万件)之间由如下一组数据:【解】1)画出散点图:x2)设回归直线方程,利用⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=∑∑==xb y a x x y x y x b i i i i i 121221211212,计算a ,b ,得b ≈1.215, a=≈0.974, ∴回归直线方程为:例2((1)画出上表的散点图;(2)求出回归直线度且画出图形.【解】(1)图略(2)1(45424648423558403950)44.5010x =+++++++++= 1(6.53 6.309.527.50 6.99 5.909.49 6.20 6.558.72)10y =+++++++++= 设回归直线方程为,则10110221100.17510i ii i i x y x y b xx ==-==-∑∑,=所以所求回归直线的方程为追踪训练(1)画出数据的散点图;(2)用最小二乘法估计求线性回归方程,并在散点图中加上回归直线.【解】(1)散点图(略)网](2)55115,545,109,116,23.2,i i i i n x x y y =======∑∑ 5521160952,12952i i i i i xx y ====∑∑ 25129525451160.1962,23.20.1962109 1.8166560952545b a ⨯-⨯=≈=-⨯≈⨯- 所以,线性回归方程为.2、一个工厂在某年里每月产品的总成本y(单位:万元)与月产量x( 单位:万件)之间有如下一组数据:(2)求出月总成本与月产量x 之间的线性回归方程。
2019-2020年高中数学 2.4《线性回归方程》学案 苏教版必修3【目标引领】1.学习目标:了解非确定性关系中两个变量的统计方法;掌握散点图的画法及在统计中的作用,掌握 回归直线方程的求解方法。
2.学法指导:①求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实标意义.否则,求出的回归直线方程毫无意义.因此,对一组数据作线性回归分析时,应先看其散点图是否成线性.②求回归直线方程,关键在于正确地求出系数a 、b ,由于求a 、b 的计算量较大,计算时仔细谨慎、分层进行,避免因计算产生失误.③回归直线方程在现实生活与生产中有广泛的应用.应用回归直线方程可以把非确定性问题转化成确定性问题,把“无序”变为“有序”,并对情况进行估测、补充.因此,学过回归直线方程以后,应增强学生应用回归直线方程解决相关实际问题的意识.【教师在线】1.解析视屏:1.相关关系的概念在实际问题中,变量之间的常见关系有两类:一类是确定性函数关系,变量之间的关系可以用函数表示。
例如正方形的面积S 与其边长之间的函数关系(确定关系);一类是相关关系,变量之间有一定的联系,但不能完全用函数来表达。
例如一块农田的水稻产量与施肥量的关系(非确定关系)相关关系:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。
相关关系与函数关系的异同点:相同点:均是指两个变量的关系。
不同点:函数关系是一种确定关系;而相关关系是一种非确定关系;函数关系是自变量与因变量之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系。
2.求回归直线方程的思想方法观察散点图的特征,发现各点大致分布在一条直线的附近,思考:类似图中的直线可画几条?引导学生分析,最能代表变量x 与y 之间关系的直线的特征:即n 个偏差的平方和最小,其过程简要分析如下:设所求的直线方程为,其中a 、b 是待定系数。
2.4《线性回归方程》教案(1)教学目标:(1)收集现实问题中两个有关联变量的数据作散点图,利用散点图直观认识变量间的相关关系;(2)在两个变量具有线性相关关系时,在散点较长中作出线性直线,用线性回归方程进行预测;(3)理解最小二乘法的含义及思想,能根据给出的线性回归方程系数公式建立线性回归方程。
教学重点:散点图的画法,回归直线方程的求解方法。
教学难点:回归直线方程的求解方法。
教学过程:一、问题情境问题1:客观事物是相互联系的,存在着一种确定性关系,过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系即非确定性关系——相关关系。
你能举出一些这样的事例吗?问题2:某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表:-0C,你能根据这些数据预测这天小卖部卖出热茶的杯数吗?如果某天的气温是5二、学生活动为了了解热茶销量与气温的大致关系,我们以横坐标x表示气温,纵坐标y表示热茶销量,建立直角坐标系,将表中数据构成的6个数对所表示的点在坐标系内标出,得到下图,今后我们称这样的图为散点图(scatterplot).从右图可以看出.这些点散布在一条直线的附近,故可用一个线性函数近似地表示热茶销量与气温之间的关系.选择怎样的直线近似地表示热茶销量与气温之间的关系?我们有多种思考方案:(1)选择能反映直线变化的两个点,例如取(4,50),(18,24)这两点的直线; (2)取一条直线,使得位于该直线一侧和另一侧的点的个数基本相同;(3)多取几组点,确定几条直线方程,再分别算出各条直线斜率、截距的平均值,作为所求直线的斜率、截距; ……………… 怎样的直线最好呢? 三、建构数学 1、最小平方法:用方程为ˆybx a =+的直线拟合散点图中的点,应使得该直线与散点图中的点最接近.那么怎样衡量直线ˆybx a =+与图中六个点的接近程度呢? 我们将表中给出的自变量x 的六个值代入直线方程,得到相应的六个值:26,18,13,10,4,b a b a b a b a b a b a +++++-+它们与表中相应的实际值应该越接近越好.所以,我们用类似于估计平均数时的思想,考虑离差的平方和22222222(,)(2620)(1824)(1334)(1038)(450)(64)12866140382046010172Q a b b a b a b a b a b a b a b a ab b a =+-++-+-++-++-+-+-=++--+ (,)Q a b 是直线ˆybx a =+与各散点在垂直方向(纵轴方向)上的距离的平方和,可以用来衡量直线ˆybx a =+与图中六个点的接近程度。
房地产涨价一直是受关注的民生问题之一,以下是某房地产开发商在2013年前两季度销售的新楼盘中的销售价格y(单位:万元)与房屋面积x(单位:m2)的数据。
x1151108013510 5y 49.643。
238.858.444问题1:在平面直角坐标系中,以x为横坐标,y为纵坐标作出表示以上数据的点.提示:问题2:从上图中发现x,y有何关系?是函数关系吗?提示:从图中发现x逐渐增大时,y逐渐增大,但有个别情况.不是函数关系.1.变量间的常见关系(1)函数关系:变量之间的关系可以用函数表示,是一种确定性关系.(2)相关关系:变量之间有一定的联系,但不能完全用函数来表达.2.散点图从一个统计数表中,为了更清楚地看出变量x 与变量y 是否有相关关系,常将x 的取值作为横坐标,将y 的相应取值作为纵坐标,将表中数据构成的数对所表示的点在坐标系内标出,我们称这样的图形叫做散点图.某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表:气温/℃26 18 13 10 4-1杯数 20 24 34 38 50 64问题1:判断气温与杯数是否有相关关系? 提示:作散点图可知具有相关关系.问题2:若某天的气温是-5℃,能否根据这些数据预测小卖部卖出热茶的大体杯数?提示:可以.根据散点图作出一条直线,求出直线方程后可预测.1.线性相关关系:能用直线错误!=bx+a近似表示的相关关系.2.线性回归方程:设有n对观察数据如下:x x1x2x3…x ny y1y2y3…y n当a,b使Q=(y1-bx1-a)2+(y2-bx2-a)2+…+(y n-bx n-a)2取得最小值时,就称方程错误!=bx+a为拟合这n对数据的线性回归方程,该方程所表示的直线称为回归直线.3.用回归直线进行数据拟合的一般步骤:(1)作出散点图,判断散点是否在一条直线附近.(2)如果散点在一条直线附近,用公式错误!求出a,b,并写出线性回归方程.1.函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系,如试验田的施肥量x与水稻的产量y.当自变量x 每取一确定值时,因变量y的取值带有一定的随机性,即还受其他环境因素的影响.2.用最小平方法求回归直线的方程的前提是先判断所给数据具有线性相关关系(可用散点图判断).否则求出的线性回归方程是无意义的.[例1] 关于人体的脂肪含量(百分比)与年龄关系的研究中,得到如下一组数据:年龄2327394145495053脂肪9。
2.4 线性回归方程 1整体设计教材分析在实际问题中,变量之间关系有两类:一类是确定性关系,变量之间关系可以用函数表示.例如,正方形面积S与边长a之间就是确定性关系,可以用函数s=a2表示.还有一类是非确定性关系,例如“学生数学成绩与物理成绩之间关系〞“粮食产量与施肥量之间关系〞“商品销售额与广告费支出之间关系〞“人体脂肪百分比与年龄之间关系〞等贴近学生实际问题,它不能由一个变量数值准确地确定另一个变量数值.像这种自变量取一定值时,因变量取值带有一定随机性,这样两个变量之间关系,我们称之为相关关系.“线性回归方程〞这一节是为了帮助我们了解变量之间相关关系,使学生学会区别变量之间函数关系与变量相关关系,从而到达正确判断实际生活中两个变量之间相关关系并会作出变量相关关系散点图;通过散点图直观性,看各点是否在某条直线附近摆动来为判断两个变量之间相关关系打下坚实根底.通过对人体脂肪百分比与年龄之间关系散点图分析,引入描述两个变量之间关系线性回归方程〔模型〕,使学生通过探索用多种方法确定线性回归直线,学会类比寻求新突破方法,体会最小二乘法思想,掌握计算回归方程斜率与截距方法,求出回归直线方程.通过典型求解,强化回归思想建立,理解回归直线与观测数据关系. 通过引导学生感受生活中实际问题转化为数学问题,学会类比寻求新突破方法,体会最小二乘法思想,培养学生创新精神,不断收取信息,学会用统计知识对实际问题进展数学分析.通过课堂目标检测到达强化所学知识点,提高学生对现代化教学工具应用能力.三维目标1.通过实例,使学生感受到现实世界中变量之间除了函数关系外,还存在着虽无确定函数关系,但却有一定关联性相关关系,相关关系是一种非确定性关系.2.通过收集实际问题中两个有关联变量数据作出散点图,直观认识变量间相关关系.3.经历用不同估算方法描述两个变量线性相关过程,运用最小二乘法思想,发现可用线性回归方程近似地表示两个具有相关关系变量之间关系,并能根据给出线性回归方程系数公式建立线性回归方程.重点难点教学重点:1.会区别变量之间函数关系与变量相关关系;会举例说明现实生活中变量之间相关关系.2.会作散点图,并由此对变量间关系作出直观判断,会求回归直线.教学难点:1.对变量之间相关关系理解;变量之间函数关系与变量相关关系区别.2.了解最小二乘法思想,能根据给出线性回归方程系数公式建立回归方程.课时安排2课时教学过程第1课时导入新课〔多媒体播放四个问题,组织学生分析、思考〕问题1:将汽油以均匀速度注入桶里,注入时间t与注入油量y 如下表:从表里数据得出油量y与时间t之间函数关系式为________________.问题2:圆面积S与半径r之间函数关系式为________________.问题3:小麦产量y千克每亩与施肥量x千克每亩之间关系如下表:从表里数据能得出小麦产量y与施肥量x之间函数关系式吗?问题4:人体重y与身高x之间有什么关系呢?分析问题1:因为是以均匀速度注入桶里,所以注入油量y与注入时间t成正比例关系,由表格数据知,注入油量y与注入时间t之间函数关系式为y=2x(x≥0).因为是实际问题,所以要特别注意自变量取值范围要有实际意义.分析问题2:这是大家熟悉面积公式,所以圆面积S与半径r之间函数关系式为S=πr2(r>0).第1、2两个问题中变量间函数关系是确定,在我们现实生活,两个变量之间存在确定性关系是极少,而两个变量之间存在不确定性关系是很普遍,那么问题3中两个变量之间是确定性函数关系,还是不确定性关系呢?学生甲分析问题3:此问中两个变量之间是确定性函数关系,设为y=kx+b,当x=10时,函数值y为420;当x=20时,函数值y 为440,代入可得函数关系式为y=2x+400(x≥0).学生乙:学生甲答复是错误,假设函数关系式为y=20x+400(x≥0),当x=30时,函数值为460,而不是470.但是可以感觉到施肥量越大,小麦产量就越高.教师分析:从表格里容易发现施肥量越大,小麦产量就越高.但是,施肥量并不是影响小麦产量唯一因素,小麦产量还与土壤质量、降雨量、田间管理等诸多因素影响有关,更何况当施肥量超出一定范围时,还会造成小麦倒塌,以致颗粒无收.这时两个变量之间就不是确定性函数关系,那么这两个变量之间终究是什么关系呢?这就是我们本节课所要研究问题——变量之间相关关系.(引入新课,书写课题)推进新课新知探究由学生举出现实生活中相关关系例子,教师归纳概念!1.变量之间有一定联系,但不能完全用函数来表达,即当自变量一定时,因变量取值带有一定随机性两个变量之间关系称为相关关系.相关关系是非随机变量与随机变量之间关系,函数关系是两个非随机变量之间关系,是一种因果关系,而相关关系不一定是因果关系,所以相关关系与函数关系不同,其变量具有随机性,因此相关关系是一种非确定性关系〔有因果关系,也有伴随关系〕.通过上述三个问题请学生思考相关关系与函数关系有什么区别与联系?相关关系与函数关系异同点如下:一样点:均是指两个变量关系.不同点:函数关系是一种确定关系;而相关关系是一种非确定关系;函数关系是自变量与因变量之间关系,这种关系是两个非随机变量关系;而相关关系是非随机变量与随机变量关系.注意:问题3中小麦产量是在土壤质量、降雨量、田间管理等诸多变量共同作用下结果,本节课只研究其中两个主要变量之间相关关系.我们只能得出经历性结论:施肥量越大,小麦产量就越高.但是经历再丰富,也容易犯经历性错误.施肥量过大,反而容易造成粮食减产.由学生解决问题4, 人体重y与身高x之间是一种非确定关系相关关系,因为,一般说来,身高越高,体重就越重,而无法写出具体函数关系.应用例如例1 某班学生在一次数学测验与物理测验中,学号1到20学生成绩如下表:从表里数据你能得出什么样经历性结论呢?分析:即是考虑两门学科成绩之间是否具有一定相关关系.解:数学成绩好同学那么物理成绩就好,反之,数学成绩差同学那么物理成绩就差.点评:注意,只是问“得出什么样经历性结论〞,并不完全绝对.例2 下面提供四个问题,让各组同学共同探究:第一小组探究问题是:调查一下本组所有成员视力与各自学习成绩关系.第二小组探究问题是:商品销售额与广告费支出之间关系.第三小组探究问题是:调查一下本组所有成员身高与各自体重之间关系.第四小组探究问题是:气温上下与空调销售量间关系.分析:根据变量相关关系讨论.解:第一小组:通过对本组所有成员调查我们得到结论是:学习成绩好同学视力都不太好,都佩带了近视眼镜,但是,我们发现这个结论对我们全班来说就不成立,例如,我们班第一名同学视力却是很棒,所以我们只能说学习成绩好同学视力一般都不太好,人视力还与用眼卫生习惯、遗传因素等有密切关系.第二小组:通过本组所有成员共同探讨,我们得到结论是:商品销售额与广告费支出之间有密切关系,但商品销售额不仅与广告费支出多少有关,还与商品质量、居民收入以及售后效劳质量等诸多因素有关.第三小组:通过对本组所有成员调查我们得到结论是:身材高同学体重一般来说大多都比拟大,但是,人体重还与饮食习惯、遗传因素等有密切关系.第四小组:通过本组所有成员共同探讨,我们得到结论是:气温上下与空调销售量之间有密切关系,但空调销售量不仅与气温上下有关,还与空调质量、居民收入以及售后效劳质量等诸多因素有关.点评:通过此例使学生养成考虑问题要多方面思考习惯.例3 以下两个变量之间关系哪个不是函数关系〔〕解析:利用变量函数关系与相关关系解决问题.角度与它余弦值是一个确定函数关系y=cosx;正方形边长与面积:s=a2;正n边形边数与它内角与:s=(n-2)×180°,而人年龄与身高具有相关关系.答案:D点评:函数关系是一种确定关系,而相关关系是一种非确定关系;函数关系是自变量与因变量之间关系,这种关系是两个非随机变量关系,而相关关系是非随机变量与随机变量关系.例4 “强将手下无弱兵〞可以理解为将军本领越高,他手下士兵本领也越高.那么,将军本领与士兵本领成什么相关关系?你能举出更多描述生活中两个变量相关关系成语吗?分析:这是与生活、生产、工作、学习息息相关相关关系,语言功底好同学更显优势.解:此题与“名师出高徒〞相对应.另外举例有:水涨船高.点评:此题加强了与其他学科联系,学生会对数学很有亲切感.知能训练1.在一次对人体脂肪含量与年龄关系研究中,研究人员获得了一组样本数据:根据上述数据,人体脂肪含量与年龄之间有怎样关系?2.某小卖部为了了解热茶销售量与气温之间关系,随机统计并制作了某6天卖出热茶杯数与当天气温比照表:根据上述数据,气温与热茶销售量之间有怎样关系?解答:1.观察表中数据,大体上来看,随着年龄增加,人体中脂肪百分比也在增加.2.观察表中数据,大体上来看,气温越高,卖出去热饮杯数越少.点评:使学生学会全面考察现实生活中变量之间相关关系,并为下一节课作铺垫.课堂小结(让学生进展小结,帮助他们回忆反思、归纳概括.)1.变量之间相关关系;2.变量之间函数关系与变量相关关系区别;3.学会全面考察现实生活中变量之间相关关系.作业阅读、预习课本中本节下一局部内容.举出生活中具有相关关系例子.设计感想通过生活中存在相关关系一些典型事例,如“学生数学成绩与物理成绩之间关系〞“粮食产量与施肥量之间关系〞“商品销售额与广告费支出之间关系〞等贴近学生实际问题,介绍与函数关系不同两个变量之间相关关系,在教学设计时,通过复习变量之间函数关系引出变量相关关系,由熟悉到生疏过程便于学生理解,同时分成四个小组同学共同探究以下四个问题:〔1〕调查一下本组所有成员视力与各自学习成绩关系;〔2〕商品销售额与广告费支出之间关系;〔3〕调查一下本组所有成员身高与各自体重之间关系;〔4〕气温上下与空调销售量间关系.通过讨论来强化学生对所学内容理解.。
2.4 线性回归方程学 习 目 标核 心 素 养1.了解两个变量之间的相关关系并与函数关系比较. 2.会作散点图,并利用散点图判断两个变量之间是否具有线性相关关系.3.能根据给出的线性回归方程系数公式建立线性回归方程,并能由回归方程对总体进行预测、估计.(重点、难点)通过对已有数量的分析、运算培养学生数据分析、数学运算的核心素养.1.变量之间的两类常见关系在实际问题中,变量之间的常见关系有如下两类:一类是确定性函数关系,变量之间的关系可以用函数表示.另一类是相关关系,变量之间有一定的联系,但不能完全用函数表示.2.相关关系的分类相关关系分线性相关和非线性相关两种. 3.线性回归方程系数公式能用直线方程y ^=bx +a 近似表示的相关关系叫做线性相关关系,该方程叫线性回归方程.给出一组数据(x 1,y 1),(x 2,y 2),…, (x n ,y n ),线性回归方程中的系数a ,b 满足⎩⎪⎨⎪⎧b =n ∑i =1n x i y i -⎝ ⎛⎭⎪⎪⎫∑i =1n x i ⎝ ⎛⎭⎪⎪⎫∑i =1n y i n ∑i =1nx 2i -⎝ ⎛⎭⎪⎪⎫∑i =1n x i2,a =y -b x .上式还可以表示为⎩⎪⎨⎪⎧b =∑i =1nx i y i-n x -y -∑i =1n x 2i -n x 2=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2,a =y -b x .1.有下列关系:①人的年龄与其拥有的财富之间的关系; ②曲线上点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一树木,其横截面直径与高度之间的关系; ⑤学生与其学号之间的关系. 其中具有相关关系的是________. ①③④ [②⑤为确定关系不是相关关系.]2.下面四个散点图中点的分布状态,直观上判断两个变量之间具有线性相关关系的是________.③ [散点图①中的点无规律的分布,范围很广,表明两个变量之间的相关程度很小;②中所有的点都在同一条直线上,是函数关系;③中点的分布在一条带状区域上,即点分布在一条直线的附近,是线性相关关系;④中的点也分布在一条带状区域内,但不是线性的,而是一条曲线附近,所以不是线性相关关系,故填③.]3.工人工资y (元)依劳动生产率x (千元)变化的线性回归方程为y ^=50+80x ,下列判断正确的是________.①劳动生产率为1 000元时,工资为130元; ②劳动生产率提高1 000元时,工资提高80元; ③劳动生产率提高1 000元时,工资提高130元; ④当月工资为250元时,劳动生产率为2 000元.② [回归直线斜率为80,所以x 每增加1,y ^增加80,即劳动生产率提高1 000元时,工资提高80元.]4.下表是广告费用与销售额之间的一组数据:广告费用(千元) 1 4 6 10 14 销售额(千元)1944405253销售额y (千元)与广告费用x (千元)之间有线性相关关系,回归方程为y ^=2.3x +a (a 为常数),现要使销售额达到6万元,估计广告费用约为________千元.15 [x =7,y =41.6,则a =y -2.3x =41.6-2.3×7=25.5. 当y =6万元=60千元时,60=2.3x +25.5,解得x =15(千元).]变量间相关关系的判断【例1】 在下列两个变量的关系中,具有相关关系的是________. ①正方形边长与面积之间的关系;②作文水平与课外阅读量之间的关系;③人的身高与年龄之间的关系;④降雪量与交通事故发生率之间的关系.②④[两变量之间的关系有两种:函数关系与带有随机性的相关关系.①正方形的边长与面积之间的关系是函数关系.②作文水平与课外阅读量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.③人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而他们不具备相关关系.④降雪量与交通事故的发生率之间具有相关关系.]1.函数关系是一种确定的关系,而相关关系是非随机变量与随机变量的关系.函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.2.准确理解变量间的相关关系是解答本题的关键.要准确区分两个变量间的相关关系和函数关系,事实上,现实生活中相关关系是处处存在的,从某种意义上讲,函数关系可以看作一种理想的关系模型,而相关关系是一种普遍的关系.两者区别的关键点是“确定性”还是“不确定性”.1.下列两个变量中具有相关关系的是________(填写相应的序号).①正方体的棱长和体积;②单产为常数时,土地面积和总产量;③日照时间与水稻的亩产量.③[正方体的棱长x和体积V存在着函数关系V=x3;单产为常数a公斤/亩,土地面积x(亩)和总产量y(公斤)之间也存在着函数关系y=ax.日照时间长,则水稻的亩产量高,这只是相关关系,应选③.]2.下列命题:①任何两个变量都具有相关关系;②圆的周长与该圆的半径具有相关关系;③某商品的需求量与该商品的价格是一种非确定性关系;④根据散点图求得的回归直线方程可能是没有意义的;⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进行研究.其中正确的命题为________.③④⑤[两个变量不一定是相关关系,也可能是确定性关系,故①错误;圆的周长与该圆的半径具有函数关系,故②错误;③④⑤都正确.]散点图的画法及应用学生A B C D E学科数学8075706560物理7066686462利用散点图判断它们是否具有线性相关关系?如果有线性相关关系,是正相关还是负相关?思路点拨:本题涉及两个变量(数学成绩与物理成绩),以x轴表示数学成绩、y轴表示物理成绩,可得相应的散点图,再观察散点图得出结论.[解] 把数学成绩作为横坐标,把相应的物理成绩作为纵坐标,在平面直角坐标系中描点(x i,y i)(i=1,2,…,5).从图中可以直观地看出数学成绩和物理成绩具有线性相关关系,且当数学成绩减小时,物理成绩也由大变小,即它们正相关.1.判断两个变量x和y之间是否具有线性相关关系,常用的简便方法就是绘制散点图,如果图上发现点的分布从整体上看大致在一条直线附近,那么这两个变量就是线性相关的,注意不要受个别点的位置的影响.如果变量的对应点分布没有规律,我们就可以认为这两个变量不具有相关关系.2.正相关、负相关线性相关关系又分为正相关和负相关.正相关是指两个变量具有相同的变化趋势,即从整体上来看,一个变量会随另一个变量变大而变大.从散点图上看,因变量随自变量的增大而增大,图中的点分布在左下角到右上角的区域.负相关是指两个变量具有相反的变化趋势,即从整体上来看,一个变量会随另一个变量变大而变小.从散点图上看,因变量随自变量的增大而减小,图中的点分布在左上角到右下角的区域.提醒:画散点图时应注意合理选择单位长度,避免图形过大或偏小,或者是点的坐标在坐标系中画不准,使图形失真,导致得出错误结论.3.如图是两个变量统计数据的散点图,判断两个变量之间是否具有相关关系?思路点拨:观察图中点的分布情况作出判断.从散点图上看,点的分布散乱无规律,故不具有相关关系.[解] 不具有相关关系,因为散点散乱地分布在坐标平面内,不呈线形.4.有个男孩的年龄与身高的统计数据如下:思路点拨:描点(1,78),(2,87),(3,98),(4,108),(5,115),(6,120).观察点的分布,作出判断.[解] 作出散点图如图:由图可见,具有线性相关关系,且是正相关.线性回归方程的求法及应用【例3】 某产品的广告支出x (单位:万元)与销售收入y (单位:万元)之间有下表所对应的数据.广告支出x /万元 1 2 3 4 销售收入y /万元12284256(1)画出表中数据的散点图;(2)求出y 对x 的回归直线方程y ^=bx +a ,并解释b 的意义; (3)若广告费为9万元,则销售收入约为多少万元? 思路点拨:画散点图→列表处理数据→计算x ,y ,n ∑i =14x 2i ,∑i =14x i y i →计算b →计算a →线性回归方程→销售收入[解] (1)散点图如图.(2)观察散点图可知各点大致分布在一条直线附近,列出下列表格,以便计算回归系数a ,B .序号 xyx 2y 2xy1 1 12 1 144 12 2 2 28 4 784 563 3 42 9 1 764 126 4 4 56 16 3 136 224 ∑10138305 828418于是x =52,y =692,∑i =14x 2i =30,∑i =14y 2i =5 828,∑i =14x i y i =418,代入公式得,b =∑i =14x i y i -4xy∑i =14x 2i -4x 2=418-4×52×69230-4×⎝ ⎛⎭⎪⎫522=735,a =y -b x =692-735×52=-2.故y 对x 的回归直线方程为y ^=735x -2,其中回归系数b =735,它的意义是:广告支出每增加1万元,销售收入y 平均增加735万元.(3)当x =9万元时,y ^=735×9-2=129.4(万元),即若广告费为9万元,则销售收入约为129.4万元. 1.求样本数据的线性回归方程,可按下列步骤进行: 第一步,计算平均数x ,y ;第二步,求和∑i =1nx i y i ,∑i =1nx 2i ;第三步,计算b =∑i =1n (x i -x )(y i -y)∑i =1n(x i -x)2=∑i =1nx i y i -n xy∑i =1nx 2i -n x 2,a =y -b x ;第四步,写出线性回归方程y ^=bx +A .2.对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具有线性相关关系,即不存在回归直线,那么所得的“回归方程”是没有实际意义的.因此,对一组样本数据,应先作散点图,在具有线性相关关系的前提下再求回归方程.提醒:(1)对一组数据进行线性回归分析时,应先画出其散点图,判断变量之间是否线性相关,再由系数a ,b 的计算公式,计算出a ,b ,由于计算量较大,在计算时应借助计算器,仔细计算,以防出现错误.(2)为了方便,常制表对应算出x i y i ,x 2i ,以便于求和.(3)研究变量间的相关关系,求得回归直线方程能帮助我们发现事物发展的一些规律,估计、预测某些数据,为我们的判断和决策提供依据.5.如图是我国2012年至2018年生活垃圾无害化处理量(单位:亿吨)的折线图. 注:年份代码1-7分别对应年份2012-2018.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2018年我国生活垃圾无害化处理量.参考数据:∑ 7i =1y i =9.32,∑7i =1t i y i =40.17,∑ 7i =1(y i -y )2=0.55,7≈2.646.参考公式:相关系数r =∑ni =1 (t i -t )(y i -y )∑ ni =1(t i -t )2∑ ni =1(y i -y )2,回归方程y ^=a +bt 中斜率和截距的最小二乘估计公式分别为b =∑ ni =1 (t i -t )(y i -y )∑ ni =1(t i -t )2,a =y --b t . 思路点拨:(1)利用相关系数的大小――→确定y 与t 的线性相关程度 (2)求出回归方程→利用方程进行估计[解] (1)由折线图中的数据和附注中的参考数据得 t =4,∑ 7i =1(t i -t )2=28,∑ 7i =1(y i -y )2=0.55,∑ 7i =1(t i -t )(y i -y )=∑ 7i =1t i y i -t ∑7i =1y i =40.17-4×9.32=2.89,∴r ≈ 2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当大,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =9.327≈1.331及(1)得b =∑ 7i =1(t i -t )(y i -y )∑ 7i =1 (t i -t )2=2.8928≈0.103. a =y -b t ≈1.331-0.103×4≈0.92.所以y 关于t 的回归方程为y ^=0.92+0.10t .将2016年对应的t =9代入回归方程得y ^=0.92+0.10×9=1.82. 所以预测2020年我国生活垃圾无害化处理量约为1.82亿吨.1.本节课的重点是会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系,能根据给出的线性回归方程系数公式建立线性回归方程.难点是了解相关关系、线性相关、回归直线的概念.2.本节课要掌握以下几类问题 (1)准确区分相关关系与函数关系.(2)会利用散点图判断两个变量间的相关关系. (3)掌握用线性回归方程估计总体的一般步骤.1.在如图所示的四个散点图中,两个变量具有相关性的是( ) A .①②B .①④C .②③D .②④D [由图可知①中变量间是一次函数关系,不是相关关系;②中的所有点在一条直线附近波动,是线性相关的;③中的点杂乱无章,没有什么关系;④中的所有点在某条曲线附近波动,是非线性相关的.故两个变量具有相关性的是②④.]2.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得线性回归方程,分别得到以下四个结论:①y 与x 负相关且y ^=2.347x -6.423; ②y 与x 负相关且y ^=-3.476x +5.648; ③y 与x 正相关且y ^=5.437x +8.493; ④y 与x 正相关且y ^=-4.326x -4.578. 其中一定不正确的结论的序号有( ) A .①③ B .①④ C .②③D .②④B [由正、负相关性的定义知①④一定不正确.]3.某工厂生产某种产品的产量x (吨)与相应的生产能耗y (吨标准煤)有如下几组样本数据:的斜率为0.7,则这组样本数据的线性回归方程是________.y ^=0.7x +0.35 [∵x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5,∴a =y -b x =3.5-0.7×4.5=0.35. ∴线性回归方程为y ^=0.7x +0.35.]4.2019年元旦前夕,某市统计局统计了该市2018年10户家庭的年收入和年饮食支出的统计资料如下表:(2)若某家庭年收入为9万元,预测其年饮食支出.(参考数据:∑i =110x i y i =117.7,∑i =110x 2i =406)思路点拨:按照求线性回归方程的一般步骤,求出线性回归方程,再根据回归方程作出预测.[解] (1)依题意可计算得:x =6,y =1.83,x 2=36,x y =10.98,又∵∑i =110x i y i =117.7,∑i =110x 2i =406,∴b =∑i =110x i y i -10xy∑i =110x 2i -10x 2≈0.17,a =y -b x =0.81,∴y ^=0.17x +0.81.∴所求的线性回归方程为y ^=0.17x +0.81. (2)当x =9时,y ^=0.17×9+0.81=2.34(万元),可估计大多数年收入为9万元的家庭每年饮食支出约为2.34万元.。
线性回归方程第1课时【学习导航】学习要求1.理解线性回归的基本思想和方法,体会变量之间的相关关系。
线性回归方程的求法。
2.会画出一组数据的散点图,并会通过散点图判断出这组数据是否具有线性关系。
【课堂互动】自学评价在实际问题中,变量之间的常见关系有两类:一类是确定性函数关系,变量之间的关系可以用函数表示,另一类是相关关系,变量之间有一定的联系,但不能完全用函数来表达2.建立平面直角坐标系,将数据构成的数对所表示的点在坐标系内标出,这样的图称为散点图(scatter diagram)3.在散点图中如果点散布在一条直线的附近,可用线性函数近似地表示x 和y 之间的关系。
选择怎样的直线我们有下列思考方案: (1)选择能反映直线变化的两个点(2)取一条直线,使得位于该直线一侧和另一侧点的个数基本相同(3)多取几组点,确定几条直线方程,再分别 算出各条直线斜率、截距的平均值,作为所求直线的斜率、截距4.用方程为a bx y+=ˆ的直线拟合散点图中的点,应使得该直线与散点图中的点最接近。
用最小二乘法来求a 、b 的原理和方法 见教科书P725.能用直线方程a bx y+=ˆ近似表示的相关关系叫做线性相关关系(linear correlation) 6.设有(x,y)的n 对观察数据如下:当a,b 使+--=211)(a bx y Q2222)()(a bx y a bx y n n --+⋯+--取得最小值时,就称a bx y+=ˆ为拟合这n 对数据的线性回归方程(linear regression equation),将该方程所表示的直线称为回归直线。
6.用书上的方法3,可求得线性回归方程a bx y+=ˆ中的系数: 2112111)())((∑∑∑∑∑=====--=ni i n i i ni i n i i n i i i x x n y x y x n ba =xb y - (*)7.用回归直线进行拟合的一般步骤为:(1)作出散点图,判断散点是否在一条直线附近(2)如果散点在一条直线附近,用上面的公式求出a,b,并写出线性回归方程【精典范例】例1 下表为某地近几年机动车辆数与交通事故数的统计资料,请判断机动车辆数与交通事故数之间是否具有线性相关关系,如果具有线性相关关系,求出线性回归方程;如果不具有线性相关关系,说明理由。
2014高中数学 2.4.2 线性回归方程的应用教案 苏教版必修3总 课 题 统 计 总课时 第19课时 分 课 题 线性回归方程的应用分课时第 2 课时教学目标 会求解回归直线方程,并学会做出估计. 重点难点求解回归直线方程.例题剖析每立方米混凝土的水泥用量x (单位:kg )与28天后混凝土的抗压强度y (单位:3/cm kg )之间有如下对应数据:x150 160 170 180 190 200 y56.9 58.3 61.1 64.6 68.1 71.3 x210 220 230 240 250 260 y74.177.480.282.686.489.7(1)画出散点图; (2)求线性回归方程.巩固练习1.对于给定的两个变量的统计数据,下列说法正确的是________________. ①都可以分析出两个变量的关系;②都可以用一条直线近似地表示两者的关系; ③都可以作出散点图;④都可以用确定的表达式表示两者的关系.2.假设关于某设备的使用年限x (年)和所支出的维修费用y (万元), 使用年限x (年) 2 3 4 5 6 维修费用y (万元)2.23.85.56.57.0(2)估计使用年限为10年时,维修费用是多少?课堂小结会求解回归直线方程,并学会做出估计.课后训练一基础题1.在研究硝酸钠的可溶性程度时,对不同的温度观测它在水中的溶解度,得观察数据:温度x0 10 20 50 70 溶解度y66.7 76.0 85.0 112.3 128.0则由此得到的回归直线的斜率是______________.2.以下是收集到的新房屋的销售价格y与房屋的大小x的数据:m)115 110 80 135 105 房屋大小x(2销售价格y(万元)24.8 21.6 18.4 29.2 22120m的新房的费用.(2)求线性回归方程,并估计买2二提高题3.以家庭为单位,某中商品年需求量与该商品价格之间的一组调查数据如下表:价格x(元) 5 2 2 2.3 2.5 2.6 2.8 3 3.3 3.5 需求量y(kg) 1 3.5 3 2.7 2.4 2.5 2 1.5 1.2 1.2 (2)求线性回归方程,并估计价格为9.2元时该商品的需求量.。
2.4 线性回归方程学习目标 1. 了解相关关系、线性相关的概念;2.会根据散点图判断数据是否具有相关关系;3.会求线性回归方程,并能根据线性回归方程做出合理判断.知识点一 相关关系思考 数学成绩y 与学习数学所用时间t 之间的关系,能否用函数关系刻画?梳理 相关关系:与函数关系不同,相关关系是一种变量之间__________的联系,但不是__________的关系. 知识点二 散点图1.散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形. 2.利用散点图可以大致确定两个变量是不是有相关关系,以及相关性强弱. 知识点三 最小平方法及线性回归方程思考1 若散点大致分布在一条直线附近,如何确定这条直线比较合理?思考2 任何一组数据都可以由最小二乘法得出线性回归方程吗?梳理 线性回归方程:能用直线方程________________近似表示的相关关系叫做____________关系,该方程叫________________.最小平方法是一种求回归直线的方法,用这种方法求得的回归直线能使样本数据的点到回归直线的距离的平方和最小.给出一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),用最小平方法求得线性回归方程的系数a ,b 满足⎩⎪⎨⎪⎧b = ,a = .上式还可以表示为⎩⎨⎧b = = ,a = .类型一变量之间相关关系的判断例1 在下列两个变量的关系中,哪些是相关关系?(1)正方形边长与面积之间的关系;(2)作文水平与课外阅读量之间的关系;(3)人的身高与年龄之间的关系;(4)降雪量与交通事故发生率之间的关系.反思与感悟如果能够从两个变量的观察数据之间发现相关关系是极为有意义的,由此可以进一步研究二者之间是否蕴涵因果关系,从而发现引起这种相关关系的本质原因是什么.跟踪训练1 有下列关系:①老师的执教水平与学生的学习成绩之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其横截面直径与高度之间的关系;⑤学生与其学号之间的关系.其中有相关关系的是________.(填序号)类型二散点图及应用例2 在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:画出散点图,分析年龄与人体脂肪含量的关系.反思与感悟画散点图时应注意合理选择单位长度,避免图形过大或过小,或者是点的坐标在坐标系中画不准,使图形失真,导致得出错误结论.相关关系的散点图不一定分布在一条直线附近,也可能是曲线.跟踪训练2 下表为我国在公元1000年到2000年间的人口数量.(1)试画出散点图;(2)年份与人口是相关关系吗?如果是,是正相关还是负相关?你觉得用什么函数模型模拟效果比较好?反思与感悟函数关系与相关关系之间有密切联系,可以用函数关系来模拟相关关系,也可借助散点图来发现两变量之间的函数关系,在一定条件下,两种关系还可相互转化.类型三线性回归方程的求法及应用例3 下表为某地近几年机动车辆数与交通事故数的统计资料,请判断机动车辆数与交通事故数之间是否具有线性相关关系.如果具有线性相关关系,求出线性回归方程;如果不具有线性相关关系,说明理由.反思与感悟对一组数据进行线性回归分析时,应先画出其散点图,看其是否呈直线形,若呈直线形,再依系数a,b的计算公式,算出a,b.求a,b时,先计算平均数x,y;接着计算x i与y i的积,然后求∑x i y i及∑x2i;最后将结果代入公式求b;用a=y-b x求a.跟踪训练3 下表数据是退水温度x(℃)对黄酮延长性y(%)效应的试验结果,y是以延长度计算的,且对于给定的x,y为正态变量,其方差与x无关.(1)画出散点图;(2)指出x,y是否线性相关;(3)若线性相关,求y关于x的线性回归方程;(4)估计退水温度是1 000℃时,黄酮延长性的情况.1.下列两个变量之间的关系,哪个不是函数关系________.①正方体的棱长和体积;②圆半径和圆的面积;③正n边形的边数和内角度数之和;④人的年龄和身高.2.如图所示的五组数据(x ,y )中,去掉__________后,剩下的4组数据相关性增强.3.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小平方法建立的线性回归方程为y ^=0.85x -85.71,则下列结论中不正确的是________. ①体重y 与身高x 具有函数间的关系; ②回归直线过(x ,y )点;③若该大学某女生身高增加1 cm ,则其体重约增加0.85 kg ; ④若该大学某女生身高为170 cm ,则可判定其体重必为58.79 kg. 4.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得线性回归方程y^=bx +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为________万元.1.求样本数据的回归方程,可按下列步骤进行: 第一步 计算平均数x ,y .第二步 求和∑i =1nx i y i ,∑i =1nx 2i .第三步 计算b =∑i =1nx i -xy i -y∑i =1nx i -x2=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2,a =y -b x .第四步 写出回归方程y ^=bx +a .2.回归方程被样本数据唯一确定,各样本点大致分布在回归直线附近.对同一个总体,不同的样本数据对应不同的回归直线,所以回归直线也具有随机性.3.对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具有线性相关关系,即不存在回归直线,那么所得的“回归方程”是没有实际意义的.因此,对一组样本数据,应先作散点图,在具有线性相关关系的前提下再求回归方程.答案精析问题导学 知识点一思考 一般来说,学数学的时间越长,成绩越好.但用时10小时,数学成绩却不是一个确定的数字.故不能用函数关系刻画. 梳理 有一定 确定性 知识点三思考1 应该使散点整体上最接近这条直线.思考 2 用最小二乘法求线性回归方程的前提是先判断所给数据是否具有线性相关关系(可利用散点图来判断),否则求出的线性回归方程是无意义的.梳理 y ^=bx +a 线性相关 线性回归方程n ∑ni =1x i y i -∑n i =1x i ∑n i =1y in ∑ni =1x 2i -∑ni =1x i2y -b x ∑ni =1x i y i -n x y ∑n i =1x 2i -n x2∑ni =1x i -xy i -y∑n i =1x i -x2y -b x题型探究例1 解 两变量之间的关系有:函数关系与带有随机性的相关关系.(1)正方形的边长与面积之间的关系是函数关系.(2)作文水平与课外阅读量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.(3)人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而它们不具备相关关系.(4)降雪量与交通事故发生率之间具有相关关系. 跟踪训练1 ①③④ 例2 解 散点图如下:在散点图中,点分布在从左下角到右上角的区域,故人的年龄与人体脂肪含量是相关关系. 跟踪训练2 解 (1)散点图如下:(2)由图可知,我国在1000年到2000年间的人口数量与年份是相关关系,且为正相关.因为增长速度越来越快, 用指数模型模拟效果比较合适.例3 解 在直角坐标系中画出数据的散点图如图:直观判断散点在一条直线附近,故具有线性相关关系. 从而计算相应的数据之和:∑i =18x i =1 031,∑i =18y i =71.6,∑i =18x 2i =137 835,∑i =18x i y i =9 611.7.将它们代入公式计算得b ≈0.077 4,a ≈-1.024 1,所以,所求线性回归方程为y ^=0.077 4x -1.024 1. 跟踪训练3 解 (1)散点图如图:(2)由散点图可以看出样本点分布在一条直线的附近,可见y 与x 线性相关. (3)列出下表并用科学计算器进行有关计算.于是可得b =∑6i =1x i y i -6x y∑6i =1x 2i -6x2=198 400-6×550×571 990 000-6×5502≈0.058 86,a =y -b x =57-0.058 86×550=24.627.因此所求的线性回归方程为y ^=0.058 86x +24.627.(4)将x =1 000代入线性回归方程得y ^=0.058 86×1 000+24.627=83.487,即退水温度是1 000℃时,黄酮延长性大约是83.487%. 当堂训练 1.④解析 ①②③都是函数关系,人的年龄和身高是一种不确定的关系,故④不是函数关系. 2.(4,10)解析 去除(4,10)后,其余四点大致分布在一条直线附近,相关性增强. 3.①④解析 体重与身高的关系不确定,不是函数关系.当x =170时,y ^=0.85×170-85.71=58.79,体重的估计值为58.79 kg. 4.65.5解析 由题意可知x =3.5,y =42,则42=9.4×3.5+a ,a =9.1,y ^=9.4×6+9.1=65.5.。