燃气轮机简介.
- 格式:doc
- 大小:178.00 KB
- 文档页数:16
燃气轮机进气口温度1. 简介燃气轮机是一种利用燃料燃烧产生高温高压气体,通过轮叶机械能转换,驱动发电机或直接驱动机械设备的动力装置。
燃气轮机的性能和效率受多个因素影响,其中之一就是进气口温度。
燃气轮机进气口温度是指进入燃气轮机的空气在进气口处的温度。
进气口温度的高低直接影响燃气轮机的性能和效率。
在正常运行条件下,燃气轮机进气口温度通常在600°C到1500°C之间。
2. 影响因素2.1 燃料燃烧温度燃气轮机的进气口温度主要受到燃料燃烧温度的影响。
燃料的燃烧温度越高,产生的热量也就越高,进气口温度也会随之升高。
因此,燃料的选择和燃烧控制对于控制进气口温度至关重要。
2.2 空气压力燃气轮机的进气口温度还受到空气压力的影响。
随着空气压力的增加,进气口温度也会相应升高。
因此,在设计和运行燃气轮机时,需要考虑空气压力的变化对进气口温度的影响。
2.3 进气口设计燃气轮机的进气口设计也对进气口温度起着重要的影响。
合理的进气口设计可以减小进气口温度的波动,提高燃气轮机的性能和效率。
进气口设计需要考虑空气的均匀流动,避免局部过热或过冷。
2.4 环境温度环境温度是另一个影响燃气轮机进气口温度的因素。
在高温环境下,进气口温度会相应升高。
因此,在选择燃气轮机的安装位置时,需要考虑环境温度对进气口温度的影响。
3. 进气口温度的影响3.1 燃气轮机性能进气口温度的升高会导致燃气轮机性能的下降。
高温空气进入燃气轮机后,会使得燃气轮机的燃烧温度升高,导致燃烧效率下降。
同时,高温空气还会使得燃气轮机的叶片受热膨胀,增加叶片的磨损和疲劳,降低燃气轮机的可靠性和寿命。
3.2 燃气轮机效率进气口温度的升高还会导致燃气轮机效率的下降。
高温空气在进入燃气轮机后,会使得燃气轮机的排气温度升高,从而导致热损失的增加。
燃气轮机的效率与热损失成反比,因此进气口温度的升高会降低燃气轮机的效率。
3.3 燃气轮机排放进气口温度的升高还会影响燃气轮机的排放。
燃气机和燃气轮机介绍一、燃气机1、燃气机简介燃气机是通过燃烧天然气或人工煤气产生动力做功,可用于推动汽车及轮船行走和驱动发电机发电。
其优点在于比柴油机或汽油机更加清洁、环保。
可以取代柴油机和汽油机,现广泛应用于公共交通、油田、发电等领域。
2、燃气机分类根据原料燃烧位置不同,分为燃气内燃机(俗称“内燃机”)和燃气外燃机(俗称“外燃机”)。
3、燃气内燃机燃气内燃机通常指活塞式内燃机,活塞式内燃机以往复活塞式最为普遍。
活塞式内燃机将燃料和空气混合,在其气缸内燃烧,释放出的热能使气缸内产生高温高压的燃气。
燃气膨胀推动活塞作功,再通过曲柄连杆机构或其他机构将机械功输出,驱动从动机械工作。
内燃机以其热效率高、结构紧凑,机动性强,运行维护简便的优点著称于世。
燃气内燃机的发电效率通常在30%-40%之间,比较常见的机型一般可以达到35%。
燃气内燃机最突出的优点正是发电效率比较高,其次是设备集成度高,安装快捷,对于气体中的粉尘要求不高,基本不需要水,设备的单位千瓦造价也比较低。
但是内燃机也有一些不足的地方,首先,内燃机燃烧低热值燃料时,机组出力明显下降,此外,内燃机需要频繁更换机油和火花塞,消耗材料比较大,也影响到设备的可用性和可靠性两个主要设备利用指标,对设备利用率影响比较大,有时不得不采取增加发电机组台数的办法,来消除利用率低的影响。
内燃机设备对焦化煤气中的水分子含量和硫化氢比较敏感,可能导致硫化氢和水形成硫酸腐蚀问题,需要采取一些必要措施加以克服。
燃气内燃机代表产品:GE公司的颜巴赫系列,功率输出范围为0.25至3兆瓦。
4、燃气外燃机燃气外燃机(简称外燃机)是一种外燃的闭式循环往复活塞式热力发动机,因它是在1816年为苏格兰的R.斯特林所发明,故又称斯特林发动机。
新型外燃机使用氢气作为工质(传递能量的媒介物质叫工质),在四个封闭的气缸内充有一定容积的工质。
气缸一端为热腔,另一端为冷腔。
工质在低温冷腔中压缩,然后流到高温热腔中迅速加热,膨胀做功。
微型燃气轮机效率摘要:一、微型燃气轮机简介二、微型燃气轮机效率的计算三、微型燃气轮机的优点四、微型燃气轮机与柴油机的效率比较五、微型燃气轮机发电技术的发展正文:一、微型燃气轮机简介微型燃气轮机,又称为微涡轮发电机或微型涡轮发电机组,是一类新近发展起来的小型热力发动机。
其单机功率范围为25~300 千瓦,基本技术特征是采用径流式叶轮机械(向心式透平和离心式压气机)以及回热循环。
近年来,随着全球范围内的能源与动力需求结构的变化,特别是电力系统的放松控制以及环境保护等要求的变化,微型燃气轮机得到了电力、动力等有关部门的高度重视。
二、微型燃气轮机效率的计算微型燃气轮机的效率是指吸收热量与放出热量之比。
其效率的计算需要考虑压气机的效率、燃烧室出口的总温以及回热器的效率等因素。
若压气机效率为100%,可以由进、出口计算得到压气机的压比。
然而,微型燃气轮机的效率并不能简单地用涡轮效率来计算,因为涡轮传给压气机的功并不是就此消耗,总体效率需要综合考虑多个因素。
三、微型燃气轮机的优点微型燃气轮机具有以下优点:1.高效:微型燃气轮机的效率一般在30% 左右,相较于柴油机的40~50% 的效率,虽然较低,但在分布式供电系统中,其效率可以提高到50~60%。
2.环保:微型燃气轮机采用清洁的气体燃料,排放的污染物较少,有助于环境保护。
3.灵活性:微型燃气轮机具有快速启停和调节能力,可以根据负荷需求进行快速调整,适应性强。
4.噪音低:微型燃气轮机的噪音相对较低,有利于降低噪音污染。
四、微型燃气轮机与柴油机的效率比较柴油机的机械效率一般在40~50%,而火电厂的燃气轮机在30%。
如果将热能用于供热,燃气轮机的效率可以在50~60%左右。
然而,微型燃气轮机的效率并不高,一般在30% 左右。
尽管如此,在分布式供电系统中,微型燃气轮机的效率可以提高到50~60%,与柴油机相当。
五、微型燃气轮机发电技术的发展微型燃气轮机发电技术近年来得到了迅猛发展,特别是在美、欧等国。
燃气轮机工作原理燃气轮机是一种利用高速旋转的气流来驱动涡轮机转子工作的热力机械设备。
它是一种将燃气能转化为机械能的动力装置,广泛应用于航空、发电、船舶等领域。
燃气轮机工作原理的了解对于工程师和操作人员来说至关重要,下面我们将详细介绍燃气轮机的工作原理。
首先,燃气轮机的工作原理可以分为三个基本过程,压缩、燃烧和膨胀。
在压缩过程中,空气被压缩并送入燃烧室,然后与燃料混合并燃烧,释放出高温高压的燃气。
最后,这些高温高压的燃气通过涡轮机转子膨胀,驱动涡轮机转子旋转,产生机械能。
其次,燃气轮机的压缩过程是通过压气机完成的。
压气机是由若干个叶片组成的转子,当转子旋转时,叶片将空气压缩并送入燃烧室。
在燃烧室中,燃料被喷入,并在高温高压的环境中燃烧,产生燃气。
这些燃气将通过高速喷射进入涡轮机转子,推动转子旋转。
最后,燃气轮机的膨胀过程是通过涡轮机完成的。
涡轮机转子被燃气推动旋转,产生机械能,驱动发电机或其他设备工作。
最后,燃气轮机的工作原理可以简单概括为“压缩、燃烧、膨胀”。
在实际应用中,燃气轮机通常与发电机相连,利用旋转的涡轮机转子产生的机械能驱动发电机发电。
燃气轮机具有结构简单、启动快速、响应灵活等优点,因此在发电厂、航空、船舶等领域得到广泛应用。
总之,燃气轮机是一种重要的动力装置,其工作原理的了解对于工程师和操作人员来说至关重要。
通过对燃气轮机的压缩、燃烧、膨胀过程的详细介绍,相信读者对燃气轮机的工作原理有了更深入的了解。
希望本文能够帮助读者更好地理解燃气轮机的工作原理,为相关领域的工程实践提供帮助。
燃气轮机效率与温比压比关系曲线1. 燃气轮机简介燃气轮机是一种常见的热力发电装置,其通过燃烧燃料产生高温高压气体,然后将气体通过扩张机械转化为旋转动能,最终驱动发电机发电。
燃气轮机具有结构简单、启动快速、效率高等优点,在电力、航空、船舶等领域得到广泛应用。
2. 燃气轮机效率燃气轮机的效率是衡量其能量利用程度的重要指标。
通常情况下,燃气轮机的效率可以分为两部分:压缩功和扩张功之间的比值以及扩张功和输入焓之间的比值。
2.1 压缩功与扩张功之间的比值在燃气轮机中,压缩功是指将空气压缩至工作状态所需消耗的能量,而扩张功是指由于高温高压气体膨胀而产生的能量。
这两者之间的比值被称为压缩功与扩张功比,记作ηc。
2.2 扩张功与输入焓之间的比值扩张功是燃气轮机从高温高压气体中获得的能量,而输入焓是指单位时间内通过燃烧室进入轮机系统的能量。
这两者之间的比值被称为扩张功与输入焓比,记作ηt。
2.3 燃气轮机总效率燃气轮机的总效率是指压缩功和扩张功之间以及扩张功和输入焓之间两个比值的乘积,即ηtotal=ηc×ηt。
3. 温比和压比在讨论燃气轮机效率与温比压比关系之前,我们首先需要了解温比和压比这两个概念。
3.1 温比温比是指工作状态下的绝对温度与参考状态下的绝对温度之间的比值。
通常情况下,参考状态选择大气标准条件下的绝对温度(298K)。
工作状态下的绝对温度可以通过测量得到。
3.2 压比压比是指工作状态下的绝对压力与参考状态下的绝对压力之间的比值。
与温比类似,参考状态一般选择大气标准条件下的绝对压力(101.3kPa)。
4. 燃气轮机效率与温比压比关系曲线燃气轮机效率与温比压比之间存在一定的关系,可以通过绘制效率-温比压比曲线来展示。
4.1 曲线特点燃气轮机效率-温比压比曲线通常呈现以下特点: - 曲线起始于(1,1)点,即在参考状态下,燃气轮机的效率为100%。
- 随着温比的增加,燃气轮机的效率逐渐提高,并逐渐趋近于一个极限值。
QD20燃机轮机机组第 1章概述1.1 燃气轮机简介燃气轮机(Gas Turbine)是以连续流动的气体为工质、把热能转换为机械功的旋转式动力机械,包括压气机、加热工质的设备(如燃烧室)、透平、控制系统和辅助设备等。
走马灯是燃气轮机的雏形我国在11 世纪就有走马灯的记载,它靠蜡烛在空气燃烧后产生的上升热气推动顶部风车及其转轴上的纸人马一起旋转。
15世纪末,意大利人列奥纳多〃达芬奇设计的烟气转动装臵,其原理与走马灯相同。
现代燃气轮机发动机主要由压气机、燃烧室和透平三大部件组成。
当它正常工作时,工质顺序经过吸气压缩、燃烧加热、膨胀做功以及排气放热等四个工作过程而完成一个由热变功的转化的热力循环。
图1-2为开式简单循环燃气轮机工作原理图。
压气机从外界大气环境吸入空气、并逐级压缩(空气的温度与压力也将逐级升高);压缩空气被送到燃烧室与喷入的燃料混合燃烧产生高温高压的燃气;然后再进入透平膨胀做功;最后是工质放热过程,透平排气可直接排到大气、自然放热给外界环境,也可通过各种换热设备放热以回收利用部分余热。
在连续重复完成上述的循环过程的同时,发动机也就把燃料的化学能连续地部分转化为有用功。
燃气轮机动力装臵是指包括燃气轮机发动机及为产生有用的动力(例如:电能、机械能或热能)所必需的基本设备。
为了保证整个装臵的正常运行,除了主机三大部件外,还应根据不同情况配臵控制调节系统、启动系统、润滑油系统、燃料系统等。
燃气轮机区别于活塞式内燃机有两大特征:一是发动机部件运动方式,它为高速旋转、且工质气流朝一个方向流动(不必来回吞吐),使它摆脱了往复式动力机械功率受活塞体积与运动速度限制的制约,在同样大小的机器内每单位时间内通过的工质量要大得多,产生的功率也大得多,且结构简单、运动平稳、润滑油耗少;二是主要部件的功能,其工质经历的各热力过程是在不同的部件中进行的,故可方便地把它们加以不同组合处理,来满足各种用途的要求。
燃气轮机区别于汽轮机有三大特征:一是工质,它采用空气而不是水,可不用或少用水;另是多为内燃方式,使它免除庞大的传热与冷凝设备,因而设备简单,启动和加载时间短,电站金属消耗量、厂房占地面积与安装周期都成倍地减少;再是高温加热高温放热,使它有更大的提高系统效率的潜力,但也使它在简单循环时热效率较低,且高温部件需更多的镍、铬、钴等高级合金材料,影响了使用经济性与可靠性。
我国工业燃气轮机的现状与前景一、世界工业燃气轮机的发展趋势1、世界工业燃气轮机的发展途径与现状自1939年瑞士BBC公司制成世界上第一台工业燃气轮机以来,经过60多年的发展,燃气轮机已在发电、管线动力、舰船动力、坦克和机车动力等领域获得了广泛应用。
由于结构上的分野,工业燃气轮机分为重型燃气轮机和轻型燃气轮机(包括航机改型燃气轮机)。
80年代以后,燃气轮机及其联合循环技术日臻成熟。
由于其热效率高、污染低、工程总投资低、建设周期短、占地和用水量少、启停灵活、自动化程度高等优点,逐步成为继汽轮机后的主要动力装置。
为此,美国、欧洲、日本等国政府制定了扶持燃气轮机产业的政策和发展计划,投入大量研究资金,使燃气轮机技术得到了更快的发展。
80年代末到90年代中期,重型燃气轮机普遍采用了航空发动机的先进技术,发展了一批大功率高效率的燃气轮机,既具有重型燃气轮机的单轴结构、寿命长等特点,又具有航机的高燃气初温、高压比、高效率的特点,透平进口温度达1300℃以上,简单循环发电效率达36%~38%,单机功率达200MW以上。
90年代后期,大型燃气轮机开始应用蒸汽冷却技术,使燃气初温和循环效率进一步提高,单机功率进一步增大。
透平进口温度达1400℃以上,简单循环发电效率达37%~39.5%,单机功率达300MW以上。
这些大功率高效率的燃气轮机,主要用来组成高效率的燃气-蒸汽联合循环发电机组,由一台燃气轮机组成的联合循环最大功率等级接近500MW,供电效率已达55%~58%,最高60%,远高于超临界汽轮发电机组的效率(约40%~45%)。
而且,其初始投资、占地面积和耗水量等都比同功率等级的汽轮机电厂少得多,已经成为烧天然气和石油制品的电厂的主要选择方案。
由于世界天然气供应充足,价格低廉,所以,最近几年世界上新增加的发电机组中,燃气轮机及其联合循环机组在美国和西欧已占大多数,亚洲平均也已达36%,世界市场上已出现了燃气轮机供不应求的局面。
目前,美、英、俄等国的水面舰艇已基本上实现了燃气轮机化,现代化的坦克应用燃气轮机为动力,输气输油管线增压和海上采油平台动力也普遍应用了轻型燃气轮机。
先进的轻型燃气轮机简单循环热效率达41.6%。
采用间冷—回热循环的燃气轮机在110%~30%工况下,热效率下降很少,可保持在41%。
现正在开发功率大于40MW,涡轮前温度为1427℃~1480℃,简单循环热效率达45℃~50℃的轻型燃气轮机。
微型燃气轮机作为分布式电源也取得显著进展。
近20余年来,洁净燃煤发电技术已取得重要进展,最有希望的两种解决途径为:整体煤气化联合循环(IGCC)和增压流化床联合循环(PFBC),燃气轮机均是其中的关键设备。
至今,全世界已投过了10余座各种功率等级的IGCC电厂,还有一批IGCC电厂正在筹建之中,IGCC电厂已开始进入商业化应用阶段。
PFBC 电站已投运5座,成功地进行了示范运行,正逐步进入商业化运行阶段。
世界重型燃气轮机制造业经过60多年的研制、发展和竞争,目前已形成了高度垄断的局面,即以GE、西门子/西屋、原ABB等主导公司为核心,其它制造公司多数与主导公司结成伙伴关系,合作生产或购买制造技术生产。
日本的三菱公司值得关注,它最初应用西屋的技术生产燃气轮机,后来发展为与西屋联合开发新型燃气轮机。
1998年三菱与西屋分手,成为拥有独立制造技术的世界重型燃气轮机制造企业之一。
燃气轮机与内燃机相比,具有重量轻、体积小、单机功率大、运行平稳、寿命长、维修方便等优点,它早已在飞机发动机中取得了独占地位。
由于美、英、俄等国对航空技术高度重视,投入了大量研究开发资金,因此,航空的燃气轮机技术比工业燃气轮机发展更迅速。
目前,世界的轻型燃气轮机制造业也形成了GE、R.R(罗尔斯.罗伊斯)、P&W(普惠)三大主导企业。
近年来,俄罗斯、乌克兰等国借助前苏联强大的航空工业基础,也在加紧进行航机改型工作,推出了一批轻型燃气轮机。
2、工业燃气轮机技术发展的四代技术燃气轮机是一项多种技术集成的高技术,按技术特征,工业型燃气轮机可分为四代:过去的半个世纪,世界发展了头两代工业燃气轮机,其传统的提高性能途径是:不断地提高透平初温,相应地增大压气机压比和完善有关部件。
未来五十年,可能主要利用新材料和新技术的突破,再开发出两代新的燃气轮机。
(1)第一代始自四、五十年代1939年秋,瑞士研制出世界首台4MW燃气轮机发电机组。
1949年世界首套燃气蒸汽联合循环发电装置投入运行。
五十年代初,透平初温只有600~700℃,那时主要靠耐热材料性能的改善,平均每年上升约10℃。
六十年代后,还藉助于空气冷却技术,透平初温平均每年升20℃。
到了八十年代,已把初温升至850~1000℃。
第一代技术的特点是:单轴重型结构(航空移植除外),初期高温合金,简单空冷技术,亚音速压气机,机械液压式或模拟式电子调节系统。
性能参数特征:透平初温小于1000℃,压比在4-10,简单循环效率小于30%。
(2)第二代已达当今最高水平从七十年代开始,充分吸收先进航空技术和传统汽轮机技术,沿着传统的途径不断提高性能,现已开发出一批“F”、“FA”、“3A”型技术的新产品,它代表着当今工业燃气轮机的最高水平:透平初温达到1260-1300℃,压比10-30,简单循环效率36-40%,联合循环效率55-58%。
第二代技术特征:轻重结合结构,超级合金和保护涂层,先进的空冷技术,低污染燃烧,数字式微机控制系统,联合循环总能系统。
性能参数特征透平初温小于1430℃,简单循环效率小于40%,联合循环效率小于60%。
(3)第三代正在开制其主要特征是采用更有效的蒸汽冷却技术,高温部件的材料仍以超级合金为主,采用先进工艺(定向结晶,单晶叶片等)进一步改善合金性能,部分静部件可能采用陶瓷材料。
应用智能型微机控制系统也是一个方向。
GE公司的GE37是相当于第三代水平的喷气发动机,正在研制,它使用现有超级合金和少量可提供的陶瓷材料,透平初温在1400℃~1500℃,短时达到1600℃。
正在研制第三代工业燃气轮机的典型代表是许多公司的H型技术产品,它们采用蒸汽冷却,以保证达到1430℃以上的初温。
(4)第四代正在构思对第四代燃气轮机的构思是基于采用革命性的新材料,发动机处于或接近理论燃烧空气量条件下工作,透平初温将大于1600-1800℃,冷却系统可能被取消,现采用的熔点1200℃、密度为8g/cm3的超级合金将被淘汰,新的高级材料应是小密度(<5g/cm3)的、有更好的综合高温性能,也许陶瓷材料是一种选择。
美国工业燃气轮机在总体上处于世界领先地位,已开发出“FA”型产品,正在开发“G”型和“H”型(透平初温1430℃,单机功率280MW,单机联合循环功率480MW,系统效率将突破60%),正在实施多项大的发展计划,如先进动力透平系统(ATS)等,还和欧洲合作执行将高性能航空发动机改型为先进工业燃气轮机的先进燃气轮机合作计划(CAGT)。
欧洲在发电用大型燃气轮机方面不比美国逊色。
德国、瑞士和瑞典有自己研制的高性能燃气轮机。
日本、英国、意大利、法国等国都生产当今性能最好的“FA”型燃气轮机,但都沿用外国的技术。
英国和法国有航机陆用领域有很大进展。
日本在开发高温的陶瓷燃气轮机上进展迅速。
注:⑴美国IHPTETT和ATS计划:在国际市场上,美国燃气轮机在技术水平和产量方面均具有领先地位,是其在贸易方面保持大量顺差的主要产业之一。
为了保持在军务和商业竞争方面的领先地位,美国对下一代燃气轮机的发展,正在投入大量资金,实施多项大的发展计划。
如:·IHPTET计划:这项为期16年(1987~2003年)的计划是针对航空的要求提出的,要使航空发动机的推重比现有最高水平的基础翻一番,达到20。
该项计划的投资为45亿美元。
除此之外,近年来美国还有4~5个大中型航空发电动机研制项目。
这些,都为美国先进燃气轮机技术的发展提供了技术基础。
·ATS计划:即先进透平动力系统(Advanced Tubine Systems)计划。
由美国能源部主持,政府与工业界共同投资7亿美元历时8年(1992~2000年)的计划,主要目标是:透平初温1427℃,系统效率约60%,以煤为燃料,更好的RAM性能,低水耗,低污染(Nox<9ppm,CO<10ppm)。
⑵美国和欧洲合作的CAGT计划:即先进燃气轮机(Collaborative Advanced Gas Turbine)合作计划。
是一项由美国牵头,美、欧22个部门和公司参加的多国计划,主要是将波音777飞机配装的三种超级风扇发动机(GE90,PW4000和Trent)改为先进的燃气轮机。
当前首要项目是ICAD(中间冷却)方案,透平转子前温度为1700~1755K,简单循环效率为45~47%。
ICAD是实现更先进的循环-HAT的第一步。
HAT循环的热效率可达61~63%。
⑶欧共体EC-ATS计划:从80年代中期起,欧共体赞助研究新一代高效率(简单循环效率为40%,联合循环效率为>60%)的先进燃气轮机(EC-ATS)计划。
其研究内容和美国ATS计划的第1和2阶段研究内容相仿。
这个计划由一个叶轮机械研究协会(Turbo AG)来协调和组织,成员包括ABB,BMW,Daimler Benz,Rolls-Royce,和Siemens。
⑷日本发展高效率燃气轮机:一九七八年,日本通产省工业技术院制订了主要内容为能源技术研究和开展“月光计划”,共有五个项目,第一个就是“先进燃气轮机”。
日本的燃气轮机是靠与美国进行技术协作发展起来的,即购买生产许可证仿制美国的产品,而“月光计划”研制的高温高效燃气轮机则完全依靠日本自己掌握的技术来赶超国际水平了,这是日本燃气轮机行业的一个新的起点。
另外,日本在开发高温的陶瓷燃气轮机上进展迅速。
二、我国燃气轮机工业现状1、我国重型燃气轮工业的现状我国重型燃气轮机制造业始于五十年代末。
六十年代至七十年代初,上海汽轮机厂股份有限公司(原上汽厂)、哈尔滨汽轮机厂有限责任公司(原哈汽厂)、东方汽轮机厂和南京汽轮电机(集团)有限责任公司(原南汽厂)都曾以厂所校联合的方式,自行设计和生产过燃气轮机,透平进气初温为700℃等级,与当时的世界水平差距不大。
典型机型有1MW、1.5MW、3MW、6MW发电机组,6MW船用机组,3500hp、4500hp机车用机组。
七十年代中期,为配合川沪输气管线的建设,由国家计委批准,以南汽为基础,投资1.4亿,并将各地燃机专业人员200余人调入南汽,建设了我国重型燃气轮机科研生产基地。
并由原第一机械工业部负责在南汽组织了由全国近百个单位参加的“2万3千千瓦燃机”大会战,透平进气初温990℃等级。