N N
1
,
即为所求概率的近似值.
提醒:用随机模拟的方法估计事件的概率,首先要确定
所求的几何概型与哪个量有关系,然后产生相应的随机
数,并严格按照试验步骤进行.
【变式训练】在区间[0,3]内任取一个实数,求该实数 大于2的概率.
【解析】(1)利用计算器或计算机产生n个0~1之间 的均匀随机数,x=RAND; (2)作伸缩变换:y=x*(3-0),转化为[0,3]上的均匀 随机数; (3)统计出(2,3]内均匀随机数的个数m; (4)则概率的近似值为 m .
2.下列关于随机数的说法:
①计算器只能产生(0,1)之间的随机数;
②计算器能产生指定两个整数值之间的均匀随机数;
③计算器只能产生均匀随机数;
④我们通过命令RAND*(b-a)+a来得到两个整数值之间
的随机数.其中正确的是
.
【解析】
序号
判断
原因分析
①
×
计算器可以产生[0,1]上的均匀随机数和[a,b]上的整数值随机数
(2)应用模拟试验近似计算概率的方法要点分析 用均匀随机数模拟试验时,首先把实际问题转化为
可以用随机数来模拟试验结果的概率模型,也就是怎样 用随机数刻画影响随机事件结果的量.从以下几个方面 考虑:
①由影响随机事件结果的量的个数确定需要产生的随 机数组数.如长度型、角度型只用一组,面积型需要两 组; ②由所有基本事件总体对应的区域确定产生随机数的 范围; ③由事件A发生的条件确定随机数所应满足的关系式, 求事件A的概率.
【自我检测】 1.用均匀随机数进行随机模拟,可以解决 ( ) A.只能求几何概型的概率,不能解决其他问题 B.不仅能求几何概型的概率,还能计算图形的面积 C.不但能估计几何概型的概率,还能估计图形的面积 D.最适合估计古典概型的概率