第7章 轴向拉压杆件的强度与变形计算
- 格式:ppt
- 大小:2.18 MB
- 文档页数:74
第七章轴向拉伸和压缩一、内容提要轴向拉伸与压缩是杆件变形的基本形式之一,是建筑工程中常见的一种变形。
(一)、基本概念1. 内力 由于外力的作用,而在构件相邻两部分之间产生的相互作用力。
这里要注意产生内力的前提条件是构件受到外力的作用。
2. 轴力 轴向拉(压)时,杆件横截面上的内力。
它通过截面形心,与横截面相垂直。
拉力为正,压力为负。
3. 应力 截面上任一点处的分布内力集度称为该点的应力。
与截面相垂直的分量σ称为正应力,与截面相切的分量τ称为切应力。
轴拉(压)杆横截面上只有正应力。
4. 应变 单位尺寸上构件的变形量。
5. 轴向拉(压) 杆件受到与轴线相重合的合外力作用,产生沿着轴线方向的伸长或缩短的变形,称为轴向拉(压)。
6. 极限应力 材料固有的能承受应力的上限,用σ0表示。
7. 许用应力与安全系数 材料正常工作时容许采用的最大应力,称为许用应力。
极限应力与许用应力的比值称为安全系数。
8. 应力集中 由于杆件截面的突然变化而引起局部应力急剧增大的现象,称为应力集中。
(二)、基本计算1. 轴向拉(压)杆的轴力计算求轴力的基本方法是截面法。
用截面法求轴力的三个步骤:截开、代替和平衡。
求出轴力后要能准确地画出杆件的轴力图。
画轴向拉(压)杆的轴力图是本章的重点之一,要特别熟悉这一内容。
2. 轴向拉(压)杆横截面上应力的计算任一截面的应力计算公式 AF N =σ 等直杆的最大应力计算公式 AF max N max =σ 3. 轴向拉(压)杆的变形计算虎克定律 A E l F l N =∆εσE =或 虎克定律的适用范围为弹性范围。
泊松比 εε=μ'4. 轴向拉(压)杆的强度计算强度条件塑性材料: σma x ≤[σ] 脆性材料: σt ma x ≤[σt ] σ c ma x ≤[σc ] 强度条件在工程中的三类应用(1)对杆进行强度校核在已知材料、荷载、截面的情况下,判断σma x是否不超过许用值[σ],杆是否能安全工作。
教学课题 轴向拉伸与压缩的变形、虎克定律课时教学目标或要求 1纵向变形与横向变形2绝对变形与相对变形(应变)3虎克定律4教学重点、难点教学方法、手段教学过程及内容轴向拉伸与压缩的变形计算一、变形和应变杆件在轴向拉伸压缩过程中,其轴向尺寸和横向尺寸都要发生变化,设等截面直杆的原长为l ,横向尺寸为b 。
发生轴向拉伸后的长度为1l ,横向尺寸为1b 。
下面讨论杆件的变形。
1.绝对变形杆件长度的伸长量称为纵向绝对变形,用l ∆表示,则 l l l -=∆1横向绝对变形用b ∆表示,其计算为:b b b -=∆12.相对变形绝对变形的大小与杆件的长度有关,为消除长度对变形量的影响,引入相对变形的概念。
相对变形指单位长度的变形,又称线应变,用ε表示,则纵向的线应变: l l∆=ε图13.1.1横向线应变用1ε表示,其计算为 : b b∆=1ε3.泊松比杆件的横向变形和纵向变形是有一定的联系的,大量的实验证明,对于同一种材料,在弹性变形范围内,其横向相对变形与纵向相对变形的比值为一常数,称为泊松比,用表示。
因为横向应变与纵向应变恒为相反数,故比值为负,因此泊松比取其绝对值。
即εεμ1=二、虎克定律实验表明,杆件在轴向拉伸和压缩过程中,当应力不超过一定的限度时,杆件的轴向变形与轴力及长度成正比,与杆件的横截面面积成反比,这一关系称为虎克定律。
即A Nll ∝∆引入比例常数E ,则有EA Nll =∆ εσ⋅=E表明在弹性限度内,应力和应变成正比。
E---为弹性模量,表明了材料抵抗拉压变形的能力,其单位与应力的单位相同。
EA---抗拉刚度应用注意:1.虎克定律只在弹性范围内成立;2.应用公式时在杆长l 内,轴力N 、弹性模量E 及截面面积A 都应为常数,如果不满足的话,应分段考虑。
具体分析见下面的例子。
例:一阶梯钢杆如图,已知AC 段的截面面积为A=500mm 2,CD 段的截面面积为A200mm 2,杆的受力情况及各段长度如图13.1.2所示,材料的弹性模量为E=200GPa ,试求杆的总变形量。