3. 量子描述
1 3N 2 H = pi i2Qi2 2 i =1
根据经典力学写出的哈密顿量, 可以直接用来作为量子力学分 析的出发点, 只要把 pi 和 Qi 看作量子力学中的正则共轭算符
3N 1 2 2 2 2 i Qi (Q1 , Q2 ,, Q3 N ) 2 Qi i =1 2 = E (Q1 , Q2 ,, Q3 N )
方程的一般解: un = Aj e
j
i j t naq j
=
1 Nm
Q q, t einaq
q
Q(q, t ) = Nm A j e
i j t
线性变换系数正交条件:
1 N
e
n
ina q q
= q , q
系统的总机械能化为(详细推导过程见后面附录部分)
处理小振动问题时往往选用 位移矢量u (t) 的 3N 个分量 n 与平衡位置的偏离为宗量 写成ui (i=1,2,…,3N)
N 个原子体系的势能函数可以在平衡位置附近展开成泰勒级 数
V 1 3 N 2V V = V0 ui 2 i , j =1 ui u j i =1 ui 0
q=
2π s Na
晶格振动波矢只能取分立的值, 即是量子化的. 为了保证un的单值性, 限制q在一个周期内取值
< q
N N , 0, 1, 2, , 1), ( 2), ( 3), 1, 2 2
N N <s 2 2
2π q= s Na 波矢q也只能取 N 个不同的值, 即
1 2 晶体链的动能: T = mun 2 n 1 2 晶体链的势能: U = un un 1 2 n 1 1 2 2 系统的总机械能: H = mun un un1 2 n 2 n