互相关函数自相关函数计算和作图
- 格式:docx
- 大小:125.34 KB
- 文档页数:6
自相关与互相关函数的计算与应用自相关函数和互相关函数是信号处理中常用的概念和工具,用于描述信号之间的相关性和相似性。
在本文中,我们将介绍自相关函数和互相关函数的计算方法,并探讨它们在实际应用中的用途。
一、自相关函数的计算与应用自相关函数是描述一个信号与其自身之间的相关程度的函数。
它的计算方法是将信号与其自身进行卷积,然后对结果进行归一化处理。
自相关函数具有以下性质:1. 自相关函数的取值范围是[-1, 1]之间。
当自相关函数的取值接近1时,表示信号之间具有高度的相关性;当取值接近-1时,表示信号之间具有高度的反相关性;当取值接近0时,表示信号之间不存在相关性。
2. 自相关函数的峰值对应着信号的周期。
通过找到自相关函数的峰值,我们可以确定信号的周期,从而对信号进行频域分析和周期性检测等操作。
3. 自相关函数可以用于信号的降噪和滤波。
通过计算信号的自相关函数,我们可以找到信号中的重复模式,并进行滤波操作,从而去除噪声和杂乱的信号成分。
二、互相关函数的计算与应用互相关函数是描述两个信号之间相关程度的函数。
它的计算方法是将两个信号进行卷积,然后对结果进行归一化处理。
互相关函数具有以下性质:1. 互相关函数可以用于信号的相似性匹配和模式识别。
通过计算待匹配信号和参考信号的互相关函数,我们可以找到信号之间的相似性,并进行模式匹配和识别操作。
2. 互相关函数可以用于信号的延时估计。
通过计算信号之间的互相关函数,我们可以估计信号之间的时间延迟,从而实现信号的同步和对齐。
3. 互相关函数可以用于信号的频率测量。
通过计算信号之间的互相关函数的频域分析,我们可以获得信号的频率信息,从而实现信号的频率测量和频域分析。
三、自相关与互相关函数的应用示例自相关和互相关函数在信号处理和模式识别领域有着广泛的应用。
以下是一些常见的应用示例:1. 语音信号处理:通过计算语音信号的自相关函数,可以实现语音信号的周期性检测和降噪操作,从而提高语音识别的准确性。
2.4.3 相关函数1.自相关函数自相关函数是信号在时域中特性的平均度量,它用来描述信号在一个时刻的取值与另一时刻取值的依赖关系,其定义式为(2.4.6)对于周期信号,积分平均时间T为信号周期。
对于有限时间内的信号,例如单个脉冲,当T趋于无穷大时,该平均值将趋于零,这时自相关函数可用下式计算(2.4.7)自相关函数就是信号x(t)和它的时移信号x(t+τ)乘积的平均值,它是时移变量τ的函数。
例如信号的自相关函数为若信号是由两个频率与初相角不同的频率分量组成,即,则对于正弦信号,由于,其自相关函数仍为由此可见,正弦(余弦)信号的自相关函数同样是一个余弦函数。
它保留了原信号的频率成分,其频率不变,幅值等于原幅值平方的一半,即等于该频率分量的平均功率,但丢失了相角的信息。
自相关函数具有如下主要性质:(1)自相关函数为偶函数,,其图形对称于纵轴。
因此,不论时移方向是导前还是滞后(τ为正或负),函数值不变。
(2)当τ=0时,自相关函数具有最大值,且等于信号的均方值,即(2.4.8)(3)周期信号的自相关函数仍为同频率的周期信号。
(4)若随机信号不含周期成分,当τ趋于无穷大时,趋于信号平均值的平方,即(2.4.9)实际工程应用中,常采用自相关系数来度量其不同时刻信号值之间的相关程度,定义式为(2.4.10)当τ=0时,=1,说明相关程度最大;当τ=∞时,,说明信号x(t)与x(t+τ)之间彼此无关。
由于,所以。
值的大小表示信号相关性的强弱。
自相关函数的性质可用图2.4.3表示。
图2.4.3 自相关函数的性质常见四种典型信号的自相关函数如图2.4.4所示,自相关函数的典型应用包括:(1)检测信号回声(反射)。
若在宽带信号中存在着带时间延迟的回声,那么该信号的自相关函数将在处也达到峰值(另一峰值在处),这样可根据确定反射体的位置,同时自相关系数在处的值将给出反射信号相对强度的度量。
时间历程自相关函数图形图2.4.4 四种典型信号的自相关函数(2)检测淹没在随机噪声中的周期信号。
相关函数1.自相关函数自相关函数就是信号在时域中特性的平均度量,它用来描述信号在一个时刻的取值与另一时刻取值的依赖关系,其定义式为(2、4、6)对于周期信号,积分平均时间T为信号周期。
对于有限时间内的信号,例如单个脉冲,当T趋于无穷大时,该平均值将趋于零,这时自相关函数可用下式计算(2、4、7)自相关函数就就是信号x(t)与它的时移信号x(t+τ)乘积的平均值,它就是时移变量τ的函数。
例如信号的自相关函数为若信号就是由两个频率与初相角不同的频率分量组成,即,则对于正弦信号,由于,其自相关函数仍为由此可见,正弦(余弦)信号的自相关函数同样就是一个余弦函数。
它保留了原信号的频率成分,其频率不变,幅值等于原幅值平方的一半,即等于该频率分量的平均功率,但丢失了相角的信息。
自相关函数具有如下主要性质:(1)自相关函数为偶函数,,其图形对称于纵轴。
因此,不论时移方向就是导前还就是滞后(τ为正或负),函数值不变。
(2)当τ=0时,自相关函数具有最大值,且等于信号的均方值,即(2、4、8)(3)周期信号的自相关函数仍为同频率的周期信号。
(4)若随机信号不含周期成分,当τ趋于无穷大时,趋于信号平均值的平方,即(2、4、9)实际工程应用中,常采用自相关系数来度量其不同时刻信号值之间的相关程度,定义式为(2、4、10)当τ=0时,=1,说明相关程度最大;当τ=∞时,,说明信号x(t)与x(t+τ)之间彼此无关。
由于,所以。
值的大小表示信号相关性的强弱。
自相关函数的性质可用图2、4、3表示。
图2、4、3 自相关函数的性质常见四种典型信号的自相关函数如图2、4、4所示,自相关函数的典型应用包括:(1)检测信号回声(反射)。
若在宽带信号中存在着带时间延迟的回声,那么该信号的自相关函数将在处也达到峰值(另一峰值在处),这样可根据确定反射体的位置,同时自相关系数在处的值将给出反射信号相对强度的度量。
时间历程自相关函数图形正弦波正弦波加随机噪声窄带随机噪声宽带随机噪声图2、4、4 四种典型信号的自相关函数(2)检测淹没在随机噪声中的周期信号。
自相关与互相关函数的性质与应用自相关函数和互相关函数是信号处理领域中常用的工具,它们能够描述信号与自身或其他信号之间的相互关系。
本文将介绍自相关函数和互相关函数的性质及其在不同领域中的应用。
一、自相关函数自相关函数是用来衡量信号与自身之间的相似程度。
在时域上,自相关函数定义为信号与其自身的延迟版本的乘积的积分。
数学表达式如下:Rxx(tau) = ∫[x(t)*x(t-tau)]dt在自相关函数中,tau表示延迟的时间。
自相关函数具有以下性质:1. 对称性:自相关函数关于tau=0对称,即Rxx(-tau) = Rxx(tau)。
2. 零延迟:在tau=0时,自相关函数达到最大值,即Rxx(0) =∫[x(t)^2]dt。
3. 正则性:自相关函数的取值范围在0和Rxx(0)之间。
自相关函数在信号处理中有广泛的应用,包括时序分析、噪声滤除和谱估计等。
例如,在时序分析中,自相关函数可用于检测信号的周期性和重复性,帮助确定信号的周期。
二、互相关函数互相关函数用于衡量两个信号之间的相似程度。
在时域上,互相关函数定义为一个信号与另一个信号的延迟版本的乘积的积分。
数学表达式如下:Rxy(tau) = ∫[x(t)*y(t-tau)]dt在互相关函数中,tau表示延迟的时间。
互相关函数具有以下性质:1. 非对称性:互相关函数通常不满足对称性,即Rxy(-tau) ≠Rxy(tau)。
2. 特定延迟下的相似性:当tau等于信号y的延迟时间时,互相关函数达到最大值,即Rxy(tau) = ∫[x(t)*y(t)]dt。
3. 互相关峰值:互相关函数的最大值表示信号x和信号y之间的最佳匹配程度。
互相关函数在信号处理和图像处理领域具有广泛应用。
例如,在音频处理中,互相关函数可用于音频识别和音频匹配;在图像处理中,互相关函数可用于图像匹配和模式识别。
三、自相关与互相关函数的应用1. 语音识别:自相关和互相关函数可用于语音信号的特征提取和语音识别算法的设计。
互相关函数,自相关函数计算和作图1.自相关和互相关的概念。
●互相关函数是描述随机信号x(t),y(t)在任意两个不同时刻t1,t2间的相关程度。
●自相关函数是描述随机信号x(t)在任意两个不同时刻t1,t2间的相关程度。
互相关函数是在频域内两个信号是否相关的一个判断指标,把两测点之间信号的互谱与各自的自谱联系了起来。
它能用来确定输出信号有多大程度来自输入信号,对修正测量中接入噪声源而产生的误差非常有效。
----------------------------------------------------------------------------------- 事实上,在图象处理中,自相关和互相关函数的定义如下:设原函数是f(t),则自相关函数定义为R(u)=f(t)*f(-t),其中*表示卷积;设两个函数分别是f(t)和g(t),则互相关函数定义为R(u)=f(t)*g(-t),它反映的是两个函数在不同的相对位置上互相匹配的程度。
2.利用matlab中实现这两个相关并用图像显示:自相关函数:dt=.1;t=[0:dt:100];x=cos(t);[a,b]=xcorr(x,'unbiased');plot(b*dt,a)互相关函数:把[a,b]=xcorr(x,'unbiased');改为[a,b]=xcorr(x,y,'unbiased');便可。
3. 实现过程:在Matalb中,求解xcorr的过程事实上是利用Fourier变换中的卷积定理进行的,即R(u)=ifft(fft(f)×fft(g)),其中×表示乘法,注:此公式仅表示形式计算,并非实际计算所用的公式。
当然也可以直接采用卷积进行计算,但是结果会与xcorr的不同。
事实上,两者既然有定理保证,那么结果一定是相同的,只是没有用对公式而已。
下面是检验两者结果相同的代码:dt=.1;t=[0:dt:100];x=3*sin(t);y=cos(3*t);subplot(3,1,1);plot(t,x);subplot(3,1,2);plot(t,y);[a,b]=xcorr(x,y);subplot(3,1,3);plot(b*dt,a);yy=cos(3*fliplr(t)); % or use: yy=fliplr(y);z=conv(x,yy);pause;subplot(3,1,3);plot(b*dt,z,'r');即在xcorr中不使用scaling。
相关函数1.自相关函数自相关函数是信号在时域中特性的平均度量,它用来描述信号在一个时刻的取值和另一时刻取值的依赖关系,其定义式为(2.4.6)对于周期信号,积分平均时间T为信号周期。
对于有限时间内的信号,例如单个脉冲,当T趋于无穷大时,该平均值将趋于零,这时自相关函数可用下式计算(2.4.7)自相关函数就是信号x(t)和它的时移信号x(t+τ)乘积的平均值,它是时移变量τ的函数。
例如信号的自相关函数为若信号是由两个频率和初相角不同的频率分量组成,即,则对于正弦信号,由于,其自相关函数仍为由此可见,正弦(余弦)信号的自相关函数同样是一个余弦函数。
它保留了原信号的频率成分,其频率不变,幅值等于原幅值平方的一半,即等于该频率分量的平均功率,但丢失了相角的信息。
自相关函数具有如下主要性质:(1)自相关函数为偶函数,,其图形对称于纵轴。
因此,不论时移方向是导前还是滞后(τ为正或负),函数值不变。
(2)当τ=0时,自相关函数具有最大值,且等于信号的均方值,即(2.4.8)(3)周期信号的自相关函数仍为同频率的周期信号。
(4)若随机信号不含周期成分,当τ趋于无穷大时,趋于信号平均值的平方,即(2.4.9)实际工程使用中,常采用自相关系数来度量其不同时刻信号值之间的相关程度,定义式为(2.4.10)当τ=0时,=1,说明相关程度最大;当τ=∞时,,说明信号x(t)和x(t+τ)之间彼此无关。
由于,所以。
值的大小表示信号相关性的强弱。
自相关函数的性质可用图2.4.3表示。
图2.4.3 自相关函数的性质常见四种典型信号的自相关函数如图2.4.4所示,自相关函数的典型使用包括:(1)检测信号回声(反射)。
若在宽带信号中存在着带时间延迟的回声,那么该信号的自相关函数将在处也达到峰值(另一峰值在处),这样可根据确定反射体的位置,同时自相关系数在处的值将给出反射信号相对强度的度量。
时间历程自相关函数图形正弦波正弦波加随机噪声窄带随机噪声宽带随机噪声图2.4.4 四种典型信号的自相关函数(2)检测淹没在随机噪声中的周期信号。
相关函数1.自相关函数ﻫ自相关函数就是信号在时域中特性得平均度量,它用来描述信号在一个时刻得取值与另一时刻取值得依赖关系,其定义式为ﻫ(2、4、6)ﻫﻫ对于周期信号,积分平均时间T为信号周期。
对于有限时间内得信号,例如单个脉ﻫ冲,当T趋于无穷大时,该平均值将趋于零,这时自相关函数可用下式计算(2、4、7)ﻫ自相关函数就就是信号x(t)与它得时移信号x(t+τ)乘积得平均值,它就是时移变量τ得函ﻫ数。
ﻫﻫ例如信号得自相关函数为ﻫ若信号就是由两个频率与初相角不同得频率分量组成,即,则ﻫﻫ对于正弦信号,由于,其自相关函数仍为ﻫﻫﻫ由此可见,正弦(余弦)信号得自相关函数同样就是一个余弦函数。
它保留了原信号ﻫ得频率成分,其频率不变,幅值等于原幅值平方得一半,即等于该频率分量得平均功率ﻫ,但丢失了相角得信息。
ﻫﻫ自相关函数具有如下主要性质:ﻫ (1)自相关函数为偶函数,,其图形对称于纵轴。
因此,不论时移方向就是导前还就是滞后(τ为正或负),函数值不变。
(2)当τ=0时,自相关函数具有最大值,且等于信号得均方值,即(2、4、8)ﻫ(3)周期信号得自相关函数仍为同频率得周期信号。
(4)若随机信号不含周期成分,当τ趋于无穷大时,趋于信号平均值得平方ﻫ,即ﻫ (2、4、9)实际工程应用中,常采用自相关系数来度量其不同时刻信号值之间得相关程ﻫ度,定义式为ﻫ (2、4、10)ﻫ当τ=0时,=1,说明相关程度最大;当τ=∞时,,说明信号x(t)与x(t+τ)之间彼此无关。
由于,所以.值得大小表示信号相关性得强弱。
ﻫﻫ自相关函数得性质可用图2、4、3表示.图2、4、3 自相关函数得性质常见四种典型信号得自相关函数如图2、4、4所示,自相关函数得典型应用包括: ﻫ(1)检测信号回声(反射)。
若在宽带信号中存在着带时间延迟得回声,那么该信号得自相关函数将在处也达到峰值(另一峰值在处),这样可根据确定ﻫ反射体得位置,同时自相关系数在处得值将给出反射信号相对强度得度量。
1、m序列产生及自相关和互相关函数曲线function PN=makem(x) %m序列产生函数ss1=num2str(x);ss2=dec2bin(base2dec(ss1,8)); %先把八进制转换为十进制,再把十进制转换为二进制G=2^(length(ss2)-1)-1; %最大周期sd=[];for j=1:(length(ss2)-2)sd=[sd 0];endsd=[sd 1]; %寄存器初始状态0 0 0...0 1PN=[];for j=1:GPN=[PN sd(length(sd))]; %m序列输出的第一位onenum=[];for jj=1:length(ss2)if str2num(ss2(jj))==1onenum=[onenum jj-1]; %存储二进制反馈系数里面“1”的位置-1,即进行异或的位置endendtemp=sd(onenum(2));for jj=3:length(onenum) %根据“1”的位置进行异或运算temp=xor(temp,sd(onenum(jj)));endfor jj=length(ss2)-1:-1:2 %移位(序列后一位值等于前一位值)sd(jj)=sd(jj-1);endsd(1)=temp; %序列第一位等于反馈出来的值endfunction mandzi(ss) %m序列曲线及自相关函数曲线绘图函数ss1=num2str(ss);ss2=dec2bin(base2dec(ss1,8)); %转换为二进制G=2^(length(ss2)-1)-1; %最大周期PN=makem(ss); %调用函数计算m序列pp=(-2).*PN+1; %0→1 1→-1pp2=[];for tao=-(G-1):G-1pp1=circshift(pp,[0,tao]);pp2=[pp2 sum(pp.*pp1)/G]; %计算自相关函数endsubplot(2,1,1)stem(PN)grid on;title(['使用生成多项式(',num2str(ss),')8=(',ss2,')2产生的m序列']) subplot(2,1,2)tao=-(G-1):G-1;plot(tao,pp2)grid on;title('自相关函数曲线')function huxg(x,y) %m序列互相关绘图函数x1=num2str(x);x2=dec2bin(base2dec(x1,8)); %转换为二进制G1=2^(length(x2)-1)-1; %最大周期y1=num2str(y);y2=dec2bin(base2dec(y1,8)); %转换为二进制G2=2^(length(y2)-1)-1; %最大周期if G1~=G2error('周期不同,无法计算')returnendpn1=makem(x); %分别调用函数计算出m序列pn2=makem(y);pp=[];for tao=-(G1-1):G1-1pn1tao=circshift(pn1,[0,tao]); %计算互相关函数%pp=[pp sum(pn2.*pn1tao)/G1];pp=[pp sum(pn2.*pn1tao)];endtao=-(G1-1):G1-1;plot(tao,pp)grid on;title(['反馈系数(',num2str(x),')8和(',num2str(y),')8的互相关函数曲线'])2、Rake接收机仿真clear all;clcNumusers=1;Nc=16; %扩频因子ISI_Length=1; %每径延时为ISI_Lengh/2 EbN0db=[0:1:30]; %信噪比,单位dBTlen=8000; %数据长度Bit_Error_Number1=0; %误比特率初始值Bit_Error_Number2=0;Bit_Error_Number3=0;power_unitary_factor1=sqrt(6/9); %每径功率因子power_unitary_factor2=sqrt(2/9);power_unitary_factor3=sqrt(1/9);s_initial=randsrc(1,Tlen); %数据源wal2=[1 1;1 -1]; %产生walsh矩阵wal4=[wal2 wal2;wal2 wal2*(-1)];wal8=[wal4 wal4;wal4 wal4*(-1)];wal16=[wal8 wal8;wal8 wal8*(-1)];s_spread=zeros(Numusers,Tlen*Nc); %扩频ray1=zeros(Numusers,2*Tlen*Nc);ray2=zeros(Numusers,2*Tlen*Nc);ray3=zeros(Numusers,2*Tlen*Nc);for i=1:Numusersx0=s_initial(i,:).'*wal16(8,:);x1=x0.';s_spread(i,:)=(x1(:)).';end%将每个扩频后的输出重复为两次,有利于下面的延迟(延迟半个码元)ray1(1:2:2*Tlen*Nc-1)=s_spread(1:Tlen*Nc);ray1(2:2:2*Tlen*Nc)=ray1(1:2:2*Tlen*Nc-1);%产生第二径和第三径信号ray2(ISI_Length+1:2*Tlen*Nc)=ray1(1:2*Tlen*Nc-ISI_Length);ray2(2*ISI_Length+1:2*Tlen*Nc)=ray1(1:2*Tlen*Nc-2*ISI_Length);for nEN=1:length(EbN0db)en=10^(EbN0db(nEN)/10); %将Eb/N0的dB值转化为十进制数值sigma=sqrt(32/(2*en)); %将收到的信号dempdemp=power_unitary_factor1*ray1+...power_unitary_factor2*ray2+...power_unitary_factor3*ray3+...(randn(1,2*Tlen*Nc)+randn(1,2*Tlen*Nc)*i)*sigma;dt=reshape(demp,32,Tlen)';wal16_d(1:2:31)=wal16(8,1:16); %将walsh码重复为两次wal16_d(2:2:32)=wal16(8,1:16);rdata1=dt*wal16_d(1,:).'; %解扩后rdata1为第一径输出wal16_delay1(1,2:32)=wal16_d(1,1:31); %将walsh码延迟半个码元rdata2=dt*wal16_delay1(1,:).'; %解扩后rdata2为第二径输出wal16_delay2(1,3:32)=wal16_d(1,1:30); %将walsh码延迟一个码元wal16_delay2(1,1:2)=wal16_d(1,31:32);rdata3=dt*wal16_delay2(1,:).'; %解扩后rdata3为第三径输出p1=rdata1'*rdata1;p2=rdata2'*rdata2;p3=rdata3'*rdata3;p=p1+p2+p3;u1=p1/p;u2=p2/p;u3=p3/p;rd_m1=real(rdata1*u1+rdata2*u2+rdata3*u3); %最大比合并rd_m2=(real(rdata1+rdata2+rdata3))/3; %等增益合并u=[u1,u2,u3]; %选择式合并maxu=max(u);if(maxu==u1)rd_m3=real(rdata1);elseif(maxu==u2)rd_m3=real(rdata2);else rd_m3=real(rdata3);endendr_Data1=sign(rd_m1)'; %三种方法判决输出r_Data2=sign(rd_m2)';r_Data3=sign(rd_m3)';%计算误比特率Bit_Error_Number1=length(find(r_Data1(1:Tlen)~=s_initial(1:Tlen)));Bit_Error_Rata1(nEN)=Bit_Error_Number1/Tlen;Bit_Error_Number2=length(find(r_Data2(1:Tlen)~=s_initial(1:Tlen)));Bit_Error_Rata2(nEN)=Bit_Error_Number2/Tlen;Bit_Error_Number3=length(find(r_Data3(1:Tlen)~=s_initial(1:Tlen)));Bit_Error_Rata3(nEN)=Bit_Error_Number3/Tlen;endsemilogy(EbN0db,Bit_Error_Rata1,'r*-');hold on;semilogy(EbN0db,Bit_Error_Rata2,'bo-');hold on;semilogy(EbN0db,Bit_Error_Rata3,'g.-');legend('最大比合并','等增益合并','选择式合并');xlabel('信噪比');ylabel('误比特率');title('三种主要分集合并方式性能比较');。
互相关函数-自相关函数计算和作图
————————————————————————————————作者: ————————————————————————————————日期:
ﻩ
互相关函数,自相关函数计算和作图
1.自相关和互相关的概念。
●互相关函数是描述随机信号x(t),y(t)在任意两个不同时刻t1,t2间的相关程度。
●自相关函数是描述随机信号x(t)在任意两个不同时刻t1,t2间的相关程度。
互相关函数是在频域内两个信号是否相关的一个判断指标,把两测点之间信号的互谱与各自的自谱联系了起来。
它能用来确定输出信号有多大程度来自输入信号,对修正测量中接入噪声源而产生的误差非常有效。
-----------------------------------------------------------------------------------
事实上,在图象处理中,自相关和互相关函数的定义如下:设原函数是f(t),则自相关函数定义为R(u)=f(t)*f(-t),其中*表示卷积;设两个函数分别是f(t)和g(t),则互相关函数定义为R(u)=f(t)*g(-t),它反映的是两个函数在不同的相对位置上互相匹配的程度。
2.利用matlab中实现这两个相关并用图像显示:
自相关函数:ﻫ
dt=.1;
t=[0:dt:100];x=cos(t);
[a,b]=xcorr(x,'unbiased');
plot(b*dt,a)
ﻫ
互相关函数:把[a,b]=xcorr(x,'unbiased');改为[a,b]=xcorr(x,y,'unbia sed');便可。
ﻫ3. 实现过程:
在Matalb中,求解xcorr的过程事实上是利用Fourier变换中的卷积定理进行的,即R(u)=ifft(fft(f)×fft(g)),其中×表示乘法,注:此公式仅表示形式计算,并非实际计算所用的公式。
当然也可以直接采用卷积进行计算,但是结果会与xcorr的不同。
事实上,两者既然有定理保证,那么结果一定是相同的,只是没有用对公式而已。
下面是检验两者结果相同的代码:ﻫﻫdt=.1;
t=[0:dt:100];ﻫx=3*sin(t);ﻫy=cos(3*t);ﻫsubplot(3,1,1);
plot(t,x);
subplot(3,1,2);ﻫplot(t,y);
[a,b]=xcorr(x,y);
subplot(3,1,3);ﻫplot(b*dt,a);ﻫyy=cos(3*fliplr(t)); % or use:yy=fliplr(y);
z=conv(x,yy);
pause;
subplot(3,1,3);
plot(b*dt,z,'r');ﻫﻫ即在xcorr中不使用scaling。
ﻫ4. 其他相关问题:ﻫ1) 相关程度与相关函数的取值有什么联系?
相关系数只是一个比率,不是等单位量度,无什么单位名称,也不是相关的百分数,一般取小数点后两位来表示。
ﻫ相关系数的正负号只表示相关的方向,绝对值表示相关的程度。
因为不是等单位的度量,因而不能说相关系数0.7是0.35两倍,只能说相关系数为0.7的二列变量相关程度比相关系数为0.35的二列变量相关程度更为密切和更高。
也不能说相关系数从0.70到0.80与相关系数从0.30到0.40增加的程度一样大。
ﻫﻫ对于相关系数的大小所表示的意义目前在统计学界尚不一致,但通常按下是这样认为的:
相关系数相关程度
0.50-±0.80 显著相关
±
0.00-±0.30微相关ﻫ
±
0.30-±0.50实相关ﻫ
±0.80-±1.00高度相关ﻫ------------------------------------------
-----------------------------------------------------------
-----------------------------------------ﻫ
3) 与matlab中相关函数xcorr()与相关度函数corrcoef()的关系:
相关度函数:对于一般的矩阵X,执行A=corrcoef(X)后,A中每个值的所在行a和列b,反应的是原矩阵X中相应的第a个列向量和第b个列向量的相似程度(即相关系数)。
计算公式是:C(1,2)/SQRT(C(1,1)*C(2,2)),其中C表示矩阵[f,g]的协方差矩阵,假设f和g都是列向量(这两个序列的长度必须一样才能参与运算),则得到的(我们感兴趣的部分)是一个数。
以默认的A=corrcoef(f,g)为例,输出A是一个二维矩阵(对角元恒为1),我们感兴趣的f和g的相关系数就存放在A(1,2)=A(2,1)上,其值在[-1,1]之间,1表示最大的正相关,-1表示绝对值最大的负相关
●相关函数xcorr函数是通过不反折的卷积来衡量这两个信号在不同位置的相似程度—
—假设两个序列的长度分别是m和n,则得到的是一个长度为2*max(m,n)-1的序列,也就是说,当m和n不相等的时候,在执行xcorr的时候会先对短的那个序列进
行0扩充,使得m与n相等;
●相关度corrcoef函数是通过协方差矩阵来衡量这两个信号在不同局部的相似程度,计
算公式是:C(1,2)/SQRT(C(1,1)*C(2,2)),其中C表示矩阵[f,g]的协方差矩阵,假设f和g都是列向量(这两个序列的长度必须一样才能参与运算),则得到的(我们感兴趣的部分)是一个数。
以默认的A=corrcoef(f,g)为例,输出A是一个二维矩阵(对角元恒为1),我们感兴趣的f和g的相关系数就存放在A(1,2)=A(2,1)上,其值在[-1,1]之间,1表示最大的正相关(例如x=[1;2;3], y=[5;7;9]),-1表示绝对值最大的负相关(例如x=[1;2;3], y=[12;7;2])。
对于一般的矩阵X,执行A=c
orrcoef(X)后,A中每个值的所在行a和列b,反应的是原矩阵X中相应的第a个列向量和第b个列向量的相似程度(即相关系数)。
ﻫ
4)互相关函数图像的横坐标问题
以下例子,主要求两个信号的相位差,按照某篇参考资料的说法,t_max对应的值就应该是它们的相位差,但是这个程序中做出的互相关函数的横坐标不是-40到+40,而是0到1200,请问这个横坐标表示的是什么意思呢?
n=99;%设定每周期数据采集点数
T=6;%采样周期数
t=0:2*pi/(n-1):2*T*pi;%采样数ﻫy1=4*sin(t);%信号1
y2=8*sin(t+pi/6);%信号2,相位差取pi/6
Cc=xcorr(y1,y2);%求互相关函数
[y_max,t_max]=max(Cc)%找出Cc的最大值及对应的t_maxﻫsubplot(311); plot(t,y1); grid;ﻫsubplot(312); plot(t,y2); grid;ﻫsubplot(313); plot(C c); grid。