《数学模型》第四版第三章简单的优化模型
- 格式:ppt
- 大小:2.16 MB
- 文档页数:61
第 三 章 简 单 的 优 化 模 型§1 存贮问题模型[问题的提出]工厂要定期地订购各种原料,存放在仓库中供生产之用;商店里要成批地购进各种商品,放在货柜中以备零售,原料、商品存贮太多,贮存费用高;存得太少则无法满足需求或缺货造成损失.订货时需付一次性订货费,进货时要付商品(原料)费,货物贮存要贮存费.如果允许缺货,缺货时因失去销售机会而使利润减少,减少的利润可以视为因缺货而付出的费用,称为缺货费.在单位时间内货物的需求量为常数的条件下,试制定出存贮策略(多长时间订一次货,每次订货量多少),使总费用最小. [模型的假设]1.为方便起见,时间以天为单位,货物以吨为单位,每隔T 天订一次货(T 称为订货周期),每次订货量为Q 吨;2.每次订货费为1c (元)(一次性的),每吨货物的价格为k (元),每天每吨货物的贮存费为2c (元);3.每天的货物需要量为r 吨;4.每隔T 天订货Q 吨,且订货可以瞬时完成,不允许缺货时,贮存量降到零时订货立即到达.5.允许缺货时,货物在1T t 时售完,有一段时间缺货,每天每吨货物缺货费为3c (元).[模型的建立]1rT Q =,T t =T =1设货物在任意时刻t 的贮存量为()t q (单位时间), 其变化规律为总费用=订货费++缺货费+① 订货费=1c ② 贮存费 =()()rQ c QT c QT c dt t q c tq c ni T iit 2221lim22121212021==⋅==∆∑⎰=→∆ξ ③ 缺货费=()()()r Q rT c T T r c S c dt t q c B TT 2223213331-=-==⎰ ④ 购货费=kQ ,即总费用()kQ rQ rT c r Q c c c +-++=2223221 由于T 是可变的,因此我们的目标函数应该是每天的平均费用最小.目标函数是T 、Q 的二元函数,记作()Q T C ,,即()()TkQrT Q rT c rT Q c T c Q T C +-++=22,23221 问题就是要确定()+∞<<+∞<<Q T Q T 0,0、,使二元函数()Q T C ,取最小值. [模型的求解]2223322221222T kQ rT Q c r c rT Q c T c T C--+--=∂∂,T k rT Q c c rT Q c Q C ++-=∂∂332 0t这里()rTQ c Q c rT c rT Q rT c 222233323+-=- 令0=∂∂T C ,0=∂∂Q C .得到驻点:()⎪⎪⎩⎪⎪⎨⎧+-+-+=-+=3232222332321*32233221*22c c kr c c c r k c c c c c r c Q c c k c c c rc c T 故当允许缺货时,每*T 天订一次货,每次订货*Q 吨,总费用将最少. [模型的讨论]1. 当不允许缺货时,T T =1而rT Q =,此时()kr rT c T c T C ++=2121,221r c T c dT dC +-= 令0=dTdC,解得21*12rc c T =,从而21*1*12c rc rT Q == 结果表明:① 最佳订货周期和订货量与货物本身的价格无关.② 订货费1c 越高,需求量r 越大,订货量Q 就越大;贮存费2c 越高,订货量Q 就越小.2. 若不考虑购货费,则此时模型中可视0=k得到最佳订货周期*2T ,最佳订货量*2Q⎪⎪⎩⎪⎪⎨⎧+=+=32321*233221*222c c c c r c Q c c c rc c T 记()1332>+=c c c μ,于是*1*2T T μ=,μ*1*2Q Q =,结果表明:① 当考虑购货费时,*2T 、*2Q 都比*T 、*Q 增大了. ② *1*2*1*2,Q Q T T <>.③ 当+∞→3c 时,1→μ.此时*1*2T T →,*1*2Q Q →.④ 这个结果是合理的,因为+∞→3c ,即缺货造成的损失无限变大相当于不允许缺货.3. 考虑生产销售存贮问题设生产速率为常数k ,销售速率为常数r ,r k >. 则生产量()1b kt t p +=,销售量()2b rt t q +-= 4. 考虑一般的生产销售存贮问题允许与不允许缺货,函数()t p 、()t q 更一般化.此时要应用函数逼近论理论.。
数学模型姜启源第四版答案【篇一:姜启源数学模型课后答案(3版)】t>第二章(1)(2008年9月16日)1.学校共1000名学生,235人住在a宿舍,333人住在b宿舍,432人住在c宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). 1中的q值方法;(3).d’hondt方法:将a、b、c各宿舍的人数用正整数n=1,2,3,??相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中a、b、c行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑n=10的分配方案,3p1?235,p2?333,p3?432, ?pi?1000.i?1方法一(按比例分配)q1?p1n3?2.35,q2?p2n3?3.33, q3?p3n3?4.32?i?1pi?i?1pii?1pi分配结果为: n1?3, n2?3, n3?4 方法二(q值方法)9个席位的分配结果(可用按比例分配)为:n1?2,n2?3, n3?4第10个席位:计算q值为 q1?23522?3?9204.17, q2?33323?4?9240.75, q3?43224?5?9331.2q3最大,第10个席位应给c.分配结果为 n1?2,n2?3,n3?5方法三(d’hondt方法)此方法的分配结果为:n1?2,n2?3,n3?5此方法的道理是:记pi和ni为各宿舍的人数和席位(i=1,2,3代表a、b、c宿舍).pinipinipini是每席位代表的人数,取ni?1,2,?,从而得到的近.中选较大者,可使对所有的i,尽量接再考虑n?15的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2.试用微积分方法,建立录像带记数器读数n与转过时间的数学模型. 解:设录像带记数器读数为n时,录像带转过时间为t.其模型的假设见课本.考虑t到t??t时间内录像带缠绕在右轮盘上的长度,可得vdt?(r?wkn)2?kdn,两边积分,得 ?vdt?2?k?(r?wkn)dntn22) ?t?2?rkvn??wkv2n.2第二章(2)(2008年10月9日)15.速度为v的风吹在迎风面积为s的风车上,空气密度是? ,用量纲分析方法确定风车获得的功率p与v、s、?的关系.解: 设p、v、s、?的关系为f(p,v,s,?)?0,其量纲表达式为: [p]=ml2t?3, [v]=lt量纲矩阵为:?2?1????3(p)10?1(v)200(s)?3?(l)?1(m)? ?0?(t)(??1,[s]=l2,[?]=ml?3,这里l,m,t是基本量纲.a=齐次线性方程组为:?2y1?y2?2y3?3y4?0??0 ?y1?y4??3y?y?012?它的基本解为y?(?1,3,1,1)由量纲pi定理得 ??p?1v3s1?1,?p??v3s1?1 ,其中?是无量纲常数. 16.雨滴的速度v与空气密度?、粘滞系数?和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v的表达式.解:设v,?,?,g 的关系为f(v,?,?,g)=0.其量纲表达式为[v]=lm0t-1,[?]=l-3mt0,[?]=mlt-2(lt-1l-1)-1l-2=mll-2t-2t=l-1mt-1,[g]=lm0t-2,其中l,m,t是基本量纲.量纲矩阵为?1?0?a=???1(v)?310(?)?11?1(?)1?(l)?0(m)? ?2?(t)?(g)齐次线性方程组ay=0 ,即? y1-3y2-y3?y4?0??0 ?y2?y3?-y-y-2y?034?1的基本解为y=(-3 ,-1 ,1 ,1) 由量纲pi定理得 ??v?*?3?1?g. ?v???g?,其中?是无量纲常数.16.雨滴的速度v与空气密度?、粘滞系数?、特征尺寸?和重力加速度g有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v的表达式.解:设v,?,?,?,g 的关系为f(v,?,?,?,g)?0.其量纲表达式为[v]=lmt,[?]=lmt,[?]=mlt(ltl)l=mlltt=lmt,[?]=lmt ,[g]=lmt 其中l,m,t是基本量纲. 量纲矩阵为?1?0a=????1(v)100(?)?310(?)?11?1(?)1?(l)?0(m)? ?2?(t)?(g)-1-3-2-1-1-1-2-2-2-1-1000-2齐次线性方程组ay=0 即 ?y1?y2?3y3?y4?y5?0?y3?y4?0 ???y1?y4?2y5?0?的基本解为??y1?(1,???y2?(0,??)2 1,?1,1,?)22231,0,0,?1得到两个相互独立的无量纲量 ??1?v??1/2g?1/2??3/2?1?1/2??g??2??即 v??g?1,?3/2?g1/2??1??2. 由?(?1,?2)?0 , 得 ?1??(?2)3/2?1?1? ??g?(??g1/2??1) , 其中?是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t,摆长l, 质量m,重力加速度g,阻力系数k的关系为f(t,l,m,g,k)?0其量纲表达式为:[t]?lmt,[l]?lmt,[m]?lmt,[g]?lmt?2,[k]?[f][v]?1?mlt?2(lt?1)?1?lmt0?1,其中l,m,t是基本量纲.量纲矩阵为?0?0a=???110001010?20?(l)?1(m)? ??1?(t)(t)(l)(m)(g)(k)齐次线性方程组y2?y4?0??y3?y5?0 ??y?2y?y?045?1的基本解为11?y?(1,?,0,,0)?122 ?11?y2?(0,,?1,?,1)22?得到两个相互独立的无量纲量?tl?1/2g1/2??1?1/2?1?1/2k??2?lmg∴t?lg?1, ?1??(?2), ?2?klmg1/21/2klmg1/21/2∴t?lg() ,其中?是未定函数 .考虑物理模拟的比例模型,设g和k不变,记模型和原型摆的周期、摆长、质量分别为l?gkl?1/21/2t,t;l,l;m,m. 又t??(m?g)当无量纲量?l?l时,就有t?t?l?g?gl?l?l.《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.【篇二:数学建模陈东彦版课后答案】t>2.9-3.7 3.6-5.144.1-7.14.4-7.35.9-11.1 5.1-9.1 6.5-4.7 6.10-4.14第1章建立数学模型1.1 在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?(稳定的椅子问题见姜启源《数学模型》第6页)1.2 在商人们安全过河问题中,若商人和随从各四人,怎样才能安全过河呢?一般地,有n名商人带n名随从过河,船每次能渡k人过河,试讨论商人们能安全过河时,n与k应满足什么关系。
第3章简单的优化模型第3章简单的优化模型优化问题可以说是⼈们在⼯程技术、经济管理和科学研究等领域中最常⽤的⼀类问题。
其要求就是在已给定的能够满⾜的条件下,设计⼀个具体可⾏的策略,使我们能得到最为满意的结果。
⽐如公司经理要根据⽣产成本和市场需求确定产品价格,使所获利润最⾼;投资者要选择⼀些股票、债券下注,使收益最⼤,风险最⼩。
这些问题都属于优化问题,本节我们要介绍的优化模型就是⽤来模拟解决这样的问题。
本节我们介绍⼀些⽐较简单的优化模型,归结为微积分中的函数极值问题,可以直接⽤微分法求解。
3.1存储模型⼯⼚定期订购原料,存⼊仓库供⽣产之⽤;车间⼀次加⼯出⼀批零件,供装配线每天⽣产之需;商店成批购进各种商品,放在货柜⾥以备零售;显然这些情况下都有⼀个贮存量多⼤才合适的问题。
贮存量过⼤,贮存费⽤太⾼;贮存量太⼩,会导致⼀次性订购费⽤增加,或不能及时满⾜需求。
本⼩节在需求量稳定的前提下讨论两个简单的贮存模型:不允许缺货模型和允许缺货模型。
前者适⽤于⼀旦出现缺货会造成重⼤损失的情况(如炼铁⼚对原料的需求),后者适⽤于像商店购货之类的情况,缺货造成的损失可以允许和估计。
不允许缺货的存储模型先考察这样的问题:配件⼚为装配线⽣产若⼲种部件,轮换⽣产不同的部件时因更换设备要付⽣产准备费(与⽣产数量⽆关),同⼀部件的产量⼤于需求时因积压资⾦、占⽤仓库要付储存费。
今已知某⼀部件的⽇需求量100件,⽣产准备费5000元,储存费每⽇每件1元。
如果⽣产能⼒远⼤于需求,并且不允许出现缺货,是安排该产品的⽣产计划,即多少天⽣产⼀次(称为⽣产周期),每次产量多少,可使总费⽤最⼩。
问题分析让我们试算⼀下:若每天⽣产⼀次,每次⼀百件,⽆储存费,⽣产准备费5000元,每天费⽤5000元;若10天⽣产⼀次,每次1000件,储存费900+800+…100=4500元,⽣产准备费5000元,总计9500元,平均每天费⽤950元;若50天⽣产⼀次,每次5000件,储存费4900+4800+…100=122500元,⽣产准备费5000元,总计127500元,平均每天费⽤2550元。
数学建模第3章 简单的优化模型3.1 在存贮模型的总费用中增加购买货物本身的费用。
重新确定最优订货周期和订货批量。
证明在不允许缺货模型中结果与原来的一样。
而在允许缺货模型中最优订货周期和定货批量都比原来结果减少。
(1)不允许缺货模型:模型假设:考虑连续模型,即设生产周期T 和产量Q 均为连续量。
作如下假设:1、 产品每天的需求量为常数r ;2、 每次生产准备费为1c ,每天每件产品贮存费为2c ;3、 生产力为无限大(相对于需求量),当贮存量降到0时,Q 件产品立即生产出来供给需求,即不允许缺货。
模型建立:设购买单位种类货物的费用为k ,将贮存量表示为时间t 的函数()q t ,0t =生产Q 件,贮存量(0)q Q =,()q t 以需求速率r 递减,直到()0q T =。
如图1,显然有Q rT =。
图1一个周期内的贮存费为2/2c QT ⨯,准备费为1c ,购买费用为kQ 。
所以一周期的总费用为:21212/2/2C c c QT kQ c c rT krT =++=++,则每天的平均费用为:12()//2c T c T c rT kr =++。
模型求解:求T 使得每天平均费用最小,由2221r c Tc dT dC +-=,令0=dT dC ,可以得到122c T c r =,122c r Q c =,结果不变.(2)允许缺货模型:模型假设 与不允许缺货的1、2一样,但3、生产力为无限大(相对于需求量),允许缺货,每天每件产品缺货损失费为3c ,但缺货数量需在下次生产时补足。
模型建立 同上,设购买单位种类货物的费用为k ,将贮存量表示为时间t 的函数()q t ,0t =生产Q 件,贮存量(0)q Q =,()q t 以需求速率r 递减。
但是当1t T =时,有()0q t =,显然有1Q rT =,在1T 到T 这段时间内需求率不变,在t T =时数量立即恢复到Q 。
图2一个周期内的准备费为1c ,贮存费为21/2c QT ,缺货损失费为231()/2c r T T -,购买费用为kQ 。