数学建模 简单的优化模型
- 格式:ppt
- 大小:2.13 MB
- 文档页数:33
数学建模简单13个例子全解1. 线性回归模型线性回归是一种基本的数学建模方法,用于预测一个因变量与一个或多个自变量之间的关系。
通过最小化误差平方和来拟合一个直线或平面,使其能够最好地拟合数据。
2. 逻辑回归模型逻辑回归是一种用于分类问题的建模方法。
它通过将线性回归模型的输出变换为一个概率值,从而将输入样本分为两个不同的类别。
3. K-means聚类模型K-means聚类是一种无监督学习算法,用于将样本分为若干个不同的簇。
它根据样本之间的相似性将它们分配到不同的簇中。
4. 决策树模型决策树是一种基于规则的分类模型。
它通过一系列的决策节点和叶节点来对输入样本进行分类。
5. 随机森林模型随机森林是一种集成学习模型,它由多个决策树组成。
它通过对每个决策树的预测结果进行投票来进行分类。
6. 支持向量机模型支持向量机是一种基于最大间隔原则的分类模型。
它通过寻找一个超平面来将数据样本分成不同的类别。
7. 主成分分析模型主成分分析是一种降维技术,它将原始数据投影到一个低维空间中,以便尽可能保留数据的方差。
8. 马尔可夫链模型马尔可夫链是一种离散时间概率模型,它假设过去的状态对于预测未来的状态是有用的。
9. 指数平滑模型指数平滑是一种时间序列预测方法,它使用加权平均法来对下一个时间点的预测值进行估计。
10. 神经网络模型神经网络是一种模拟人类神经系统的方法,它通过多层神经元之间的连接来进行学习和预测。
11. 遗传算法模型遗传算法是一种通过模拟生物进化过程来求解优化问题的方法。
它通过交叉、变异和选择等操作来生成新的解,并逐步优化。
12. 时间序列模型时间序列模型用于分析和预测随时间变化的数据。
常用的时间序列模型包括自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)等。
13. 蒙特卡洛模拟模型蒙特卡洛模拟是一种概率方法,用于通过随机模拟来解决复杂的数学问题。
它通常通过重复随机抽样和运算来估计问题的解。
四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
数学建模中经济与金融优化模型分析在当今复杂多变的经济与金融领域,数学建模已成为一种不可或缺的工具。
通过建立数学模型,我们能够对经济和金融现象进行定量分析,预测趋势,制定优化策略,从而为决策提供有力支持。
本文将深入探讨数学建模中常见的经济与金融优化模型,分析它们的原理、应用以及优缺点。
一、线性规划模型线性规划是数学建模中最基本也是应用最广泛的优化模型之一。
它主要用于解决在一组线性约束条件下,如何使线性目标函数达到最优值的问题。
在经济领域,线性规划常用于生产计划的制定。
例如,一家工厂生产多种产品,每种产品需要不同的原材料、生产时间和劳动力,同时市场对每种产品的需求也有限制。
通过建立线性规划模型,工厂可以确定每种产品的生产数量,以在满足各种约束条件的前提下,实现利润最大化。
在金融领域,线性规划可用于资产配置。
投资者拥有一定的资金,并希望在多种资产(如股票、债券、基金等)之间进行分配,以在风险限制和预期收益目标下,实现投资组合的最优配置。
线性规划模型的优点在于计算简单、易于理解和求解。
然而,它也有局限性,比如只能处理线性关系,无法准确描述现实中许多复杂的非线性现象。
二、整数规划模型整数规划是在线性规划的基础上,要求决策变量取整数值的优化模型。
在经济领域,整数规划常用于项目选择和人员分配问题。
例如,一个企业有多个项目可供投资,但每个项目的投资金额是整数,且资源有限。
通过整数规划模型,可以确定投资哪些项目,以实现企业的长期发展目标。
在金融领域,整数规划可用于股票的买卖决策。
假设投资者只能以整数股买卖股票,且有资金和风险限制,整数规划可以帮助确定购买哪些股票以及购买的数量。
整数规划模型相较于线性规划更加符合实际情况,但求解难度也更大,往往需要更复杂的算法和计算资源。
三、非线性规划模型非线性规划用于处理目标函数或约束条件中包含非线性函数的优化问题。
在经济领域,非线性规划可用于研究成本函数和需求函数为非线性的企业生产决策。
数学建模之优化模型在我们的日常生活和工作中,优化问题无处不在。
从如何规划一条最短的送货路线,到如何安排生产以最小化成本并最大化利润,从如何分配资源以满足不同的需求,到如何设计一个系统以达到最佳的性能,这些都涉及到优化的概念。
而数学建模中的优化模型,就是帮助我们解决这些复杂问题的有力工具。
优化模型,简单来说,就是在一定的约束条件下,寻求一个最优的解决方案。
这个最优解可以是最大值,比如利润的最大化;也可以是最小值,比如成本的最小化;或者是满足特定目标的最佳组合。
为了更好地理解优化模型,让我们先来看一个简单的例子。
假设你有一家小工厂,生产两种产品 A 和 B。
生产一个 A 产品需要 2 小时的加工时间和 1 个单位的原材料,生产一个 B 产品需要 3 小时的加工时间和 2 个单位的原材料。
每天你的工厂有 10 小时的加工时间和 8 个单位的原材料可用。
A 产品每个能带来 5 元的利润,B 产品每个能带来 8 元的利润。
那么,为了使每天的利润最大化,你应该分别生产多少个A 产品和 B 产品呢?这就是一个典型的优化问题。
我们可以用数学语言来描述它。
设生产 A 产品的数量为 x,生产 B 产品的数量为 y。
那么我们的目标就是最大化利润函数 P = 5x + 8y。
同时,我们有加工时间的约束条件 2x +3y ≤ 10,原材料的约束条件 x +2y ≤ 8,以及 x 和 y 都必须是非负整数的约束条件。
接下来,我们就可以使用各种优化方法来求解这个模型。
常见的优化方法有线性规划、整数规划、非线性规划、动态规划等等。
对于上面这个简单的例子,我们可以使用线性规划的方法来求解。
线性规划是一种用于求解线性目标函数在线性约束条件下的最优解的方法。
通过将约束条件转化为等式,并引入松弛变量,我们可以将问题转化为一个标准的线性规划形式。
然后,使用单纯形法或者图解法等方法,就可以求出最优解。
在这个例子中,通过求解线性规划问题,我们可以得到最优的生产方案是生产 2 个 A 产品和 2 个 B 产品,此时的最大利润为 26 元。
渡河问题设河流两岸为平行线,起点至终点的横向距离为1000米,河流宽度为400米,见图1。
请你借助数学模型解决如下问题:(1)假定在渡河过程中小船的速度大小和方向不变,且区域中每点的水速均为 1.2 米/秒。
试说明小船到达终点的最短时间是沿着怎样的路线前进的,设小船到达终点的最短时间是500秒,求小船速度的大小和方向?(2)如何根据小船自身的速度选择渡河方向,试为一个速度能保持在1.1米/秒的小船选择渡河方向,并估计它到达终点的最短时间?(3)当小船以垂直河岸的方向行驶时,通过数学建模指出它能否到达终点? (4)若水速离岸边距离的分布为 (设从起点垂直向上为 y 轴正向) :1/02/3001/300400()y v y <≤≤⎧⎪=⎨⎪⎩米秒,米米秒,米米秒,米米小船的速度大小(1.1米/秒)仍全程保持不变,试用两种不同方法为它选择渡河方向和路线,并估计它到达终点的最短时间。
问题一:(cos )*(1)sin *(2)u v T L u T Hθθ+=⎧⎨=⎩由(1)得cos (3)sin (4)L u v TH u Tθθ⎧=-⎪⎪⎨⎪=⎪⎩解得u =arccos L vT uT θ-=400m水流方向终点起点 图1问题二:由cos (5)sin (6)L vT uT H uT θθ-⎧=⎪⎪⎨⎪=⎪⎩得22222()2()0v u T vLT L H --++=当0∆≥时,也即22LH H vu +≥ (7)1,2T =(8)T =(本题中v > u ),cos(9)L vT arc uTθ-=,所求,T θ有解的必要条件是(7)式成立问题四:方法一:(较具一般性,容易推广到水速分为更多段的情况) 模型建立:对于三段水速的问题可以建立各个量满足的关系如下(已知,,,i i u v H L )31(cos )*(10)sin *(11)(12)i i i ii i i i i u v T Lu T H L L θθ=⎧⎪+=⎪⎪=⎨⎪⎪=⎪⎩∑本问题可以归结为在已知,,,i i u v H L ,且,i i T θ满足(10)、(11)、(12)的前提下,求31min i i T T ==∑由(11)可得,1,2,3sin ii iH T i u θ==,再由(10)及(12)式可得本问题的数学模型如下:目标函数 31231min (,,)(0)sin ii i iH T f u θθθθπθ===<<∑约束条件:31(cos )sin i i ii i u v H L u θθ=+=∑模型求解:本问题是一个多元函数的条件极值问题,构造辅助函数123123(,,)(,,)[F f θθθθθθλ=+31(cos )]sin i i ii iu v H L u θθ=+-∑123(,,)f θθθ的极值点满足如下方程组:12331000(cos )sin i i i i i F F F u v H L u θθθθθ=∂⎧=⎪∂⎪∂⎪=⎪∂⎪⎨∂⎪=⎪∂⎪+⎪=⎪⎩∑ 经计算偏导数并化简可得11223331cos (13)1cos (14)1cos (15)1(cos )(16)sin i i i i i u v u v u v u v H L u λθλλθλλθλθθ=-⎧=⎪+⎪-⎪=⎪+⎪⎨-⎪=⎪+⎪+⎪=⎪⎩∑将(13)、(14)、(15)及s i n1,2,3i i θ==,代入(16)得到一个关系λ的一元无理方程,在λ满足11,1,2,31iui v λ--<<=+的前提下可以用求方程近似解的方法(如二分法)求出λ,并进而求出i θ与T 。
一、概述数学建模是数学与实际问题相结合的产物,通过建立数学模型来解决现实生活中的复杂问题。
Matlab作为一个强大的数学计算工具,在数学建模中具有重要的应用价值。
本文将介绍30种经典的数学建模模型,以及如何利用Matlab对这些模型进行建模和求解。
二、线性规划模型1. 线性规划是数学建模中常用的一种模型,用于寻找最优化的解决方案。
在Matlab中,可以使用linprog函数对线性规划模型进行建模和求解。
2. 举例:假设有一家工厂生产两种产品,分别为A和B,要求最大化利润。
产品A的利润为$5,产品B的利润为$8,而生产每单位产品A 和B分别需要8个单位的原料X和10个单位的原料Y。
此时,可以建立线性规划模型,使用Matlab求解最大化利润。
三、非线性规划模型3. 非线性规划是一类更加复杂的规划问题,其中目标函数或约束条件存在非线性关系。
在Matlab中,可以使用fmincon函数对非线性规划模型进行建模和求解。
4. 举例:考虑一个有约束条件的目标函数,可以使用fmincon函数在Matlab中进行建模和求解。
四、整数规划模型5. 整数规划是一种特殊的线性规划问题,其中决策变量被限制为整数。
在Matlab中,可以使用intlinprog函数对整数规划模型进行建模和求解。
6. 举例:假设有一家工厂需要决定购物哪种机器设备,以最大化利润。
设备的成本、维护费用和每台设备能生产的产品数量均为已知条件。
可以使用Matlab的intlinprog函数对该整数规划模型进行建模和求解。
五、动态规划模型7. 动态规划是一种数学优化方法,常用于多阶段决策问题。
在Matlab 中,可以使用dynamic programming toolbox对动态规划模型进行建模和求解。
8. 举例:考虑一个多阶段生产问题,在每个阶段都需要做出决策以最大化总利润。
可以使用Matlab的dynamic programming toolbox对该动态规划模型进行建模和求解。