简单的优化模型
- 格式:doc
- 大小:149.50 KB
- 文档页数:3
数学建模第二讲简单的优化模型数学建模是利用数学方法对实际问题进行建模、分析和求解的过程。
在实际问题中,常常需要针对一些指标进行优化,以达到最优的效果。
本讲将介绍一些简单的优化模型。
一、线性规划模型线性规划是一种重要的数学优化方法,广泛应用于工程、经济、管理等领域。
其数学模型可以表示为:\begin{aligned}&\text{max} \quad c^Tx \\&\text{s.t.} \quad Ax \leq b, \quad x \geq 0\end{aligned}\]其中,$x$为决策变量,$c$为目标函数系数,$A$为约束条件系数矩阵,$b$为约束条件右端向量。
线性规划模型指的是目标函数和约束条件都是线性的情况。
通过线性规划模型,可以求解出使得目标函数取得最大(或最小)值时的决策变量取值。
二、非线性规划模型非线性规划模型指的是目标函数或约束条件中存在非线性部分的情况。
非线性规划模型相对于线性规划模型更为复杂,但在实际问题中更为常见。
对于非线性规划问题,通常采用数值优化方法进行求解,如梯度下降法、牛顿法等。
这些方法通过迭代的方式逐步靠近最优解。
三、整数规划模型整数规划模型是指决策变量必须为整数的规划模型。
整数规划在实际问题中应用广泛,如物流配送问题、工程调度问题等。
整数规划模型通常难以求解,因为整数规划问题是一个NP难问题。
针对整数规划问题,常用的求解方法有枚举法、分支定界法、遗传算法等。
四、动态规划模型动态规划模型是指将问题划分为子问题,并通过求解子问题最优解来求解原问题最优解的方法。
动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。
动态规划模型具有递推性质,通过递归或迭代的方式求解子问题的最优解,并保存中间结果,以提高求解效率。
五、模拟退火模型模拟退火是一种用来求解组合优化问题的随机优化算法。
模拟退火算法基于固体退火过程的模拟,通过温度的控制和随机跳出来避免陷入局部最优解。
第3章简单的优化模型第3章简单的优化模型优化问题可以说是⼈们在⼯程技术、经济管理和科学研究等领域中最常⽤的⼀类问题。
其要求就是在已给定的能够满⾜的条件下,设计⼀个具体可⾏的策略,使我们能得到最为满意的结果。
⽐如公司经理要根据⽣产成本和市场需求确定产品价格,使所获利润最⾼;投资者要选择⼀些股票、债券下注,使收益最⼤,风险最⼩。
这些问题都属于优化问题,本节我们要介绍的优化模型就是⽤来模拟解决这样的问题。
本节我们介绍⼀些⽐较简单的优化模型,归结为微积分中的函数极值问题,可以直接⽤微分法求解。
3.1存储模型⼯⼚定期订购原料,存⼊仓库供⽣产之⽤;车间⼀次加⼯出⼀批零件,供装配线每天⽣产之需;商店成批购进各种商品,放在货柜⾥以备零售;显然这些情况下都有⼀个贮存量多⼤才合适的问题。
贮存量过⼤,贮存费⽤太⾼;贮存量太⼩,会导致⼀次性订购费⽤增加,或不能及时满⾜需求。
本⼩节在需求量稳定的前提下讨论两个简单的贮存模型:不允许缺货模型和允许缺货模型。
前者适⽤于⼀旦出现缺货会造成重⼤损失的情况(如炼铁⼚对原料的需求),后者适⽤于像商店购货之类的情况,缺货造成的损失可以允许和估计。
不允许缺货的存储模型先考察这样的问题:配件⼚为装配线⽣产若⼲种部件,轮换⽣产不同的部件时因更换设备要付⽣产准备费(与⽣产数量⽆关),同⼀部件的产量⼤于需求时因积压资⾦、占⽤仓库要付储存费。
今已知某⼀部件的⽇需求量100件,⽣产准备费5000元,储存费每⽇每件1元。
如果⽣产能⼒远⼤于需求,并且不允许出现缺货,是安排该产品的⽣产计划,即多少天⽣产⼀次(称为⽣产周期),每次产量多少,可使总费⽤最⼩。
问题分析让我们试算⼀下:若每天⽣产⼀次,每次⼀百件,⽆储存费,⽣产准备费5000元,每天费⽤5000元;若10天⽣产⼀次,每次1000件,储存费900+800+…100=4500元,⽣产准备费5000元,总计9500元,平均每天费⽤950元;若50天⽣产⼀次,每次5000件,储存费4900+4800+…100=122500元,⽣产准备费5000元,总计127500元,平均每天费⽤2550元。
第三章
部分习题
1. 在3.1节存储模型的总费用中增加购买货物本身的费用,重新确定最优定货周期和定货批量。
证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优定货周期和定货批量都比原来结果减小
3. 在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型。
4. 在3.4节`最优价格模型中,如果考虑到成本q 随着产量x 的增加而降低,试做出合理的假设,重新求解模型。
7. 要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学,模型讨论是否跑都越快,淋雨量越少。
将人体简化成一个长方体,高m a 5.1=(颈部以下),宽m b 5.0=厚m c 2.0=,设跑步距离
,1000m d =跑步最大速度s m v m /5=,雨速s m u /4= ,降雨量h cm w /2=,记跑步速度为v ,按以下步骤进行讨论;
(1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量
(2)雨从迎面吹来,雨线与跑步方向在同一铅直平面内,且与人体的夹角为θ,如图1建立总淋雨量与速度v 及参数θ,,,,,,w u d c b a 之间的关系,问速度v 多大,总淋雨量最少,计算0
30,0==θθ时的总淋雨量。
(3))雨从背面吹来,雨线方向与跑步方向在同一铅直平面内,且与人体的夹角为∂,如图2建立总淋雨量与速度v 及参数∂,,,,,,w u d c b a 之间的关系,问速度v 多大,总淋雨量最少,计算030=θ时的总淋雨量。
(4)以总淋雨量为纵轴,速度v 为横轴,对(3)作图(考虑α的影响),并解释结果的实际意义。
(5)若雨线方向与跑步方向不在同一平面内,模型会有什么变化。
参考答案
1. 设购买单位重量货物的费用为k ,对于不允许缺货模型,每天平均费用为()Q T kr rT c T c T c ,,2
21++=,的最优结果不变,对于允许缺货模型,每天平均费用为()()⎥⎦
⎤⎢⎣⎡+-++=kQ Q rT r c r Q c c T Q T c 23221221,,利用0,0=∂∂=∂∂Q c T c ,可求出Q T ,的最优结果为
()32232222332321*32233221*2,2c c kr c c c r k c c c c c r c Q c c k c c c rc c T +-+-+=-+=
*T ,*Q 均不考虑费用k 时的结果减小.
3. 不妨设()1'
+=b b λλ,表示火势b 越大,灭火速度λ越小,分母1+b 中的1是防止0
→b 时∞→λ而加的,最优解为
()[]()
()''322'
1121122λβλβλ+++++=b c b b b c b c x .
4. 不妨设()k kx q x q ,0-=,是产量增加一个单位时成本的降低,最优价格为()b
a k
b ka q p 2120*+--=
. 7. 1) 全身面积22.222m bc ac ab s =++=,淋雨时间s v d t m 200==,降雨量
s m h cm 181024-==ω,所以总淋雨量44.2≈=ωst Q 升
2) 顶部淋雨量v bcd Q θωcos 1=;雨速水平分量θsin u ,方向与v 相反,合速度v u +θsin ,迎面单位时间、单位面积的淋雨量()u v u +θωsin ,迎面淋雨量()uv v u abd Q +=θωsin 2,所以总淋雨量()v v u a cu u bd Q Q Q ++=+=θθωsin cos 21。
m v v =时Q 最小,15.1,0≈=Q θ升。
55.1,300≈=Q θ升。
3) 与2)不同的是,合速度为v u -αsin ,于是总淋雨量
()()()()⎪⎪⎩⎪⎪⎨⎧>+-=-+≤-+=-+=αααωααωαααωααωsin ,sin cos sin cos sin ,sin cos sin cos u v v av a c u u bd v u v a cu u
bd u v v av a c u u bd v v u a cu u bd Q ,若,0sin cos <-ααa c 即a c >αtan ,则αs i n u v =时Q 最小。
否则m v v =时Q 最小(见下图)当24.0,2,5.12.0tan ,300≈=>=Q s
m v αα升最小,可与93.0,≈=Q v v m 升相比. 4) 雨从背面吹来,只要α不太大,满足a
c >αtan (07.62.0,5.1〉时,αm c m a ==即可),Q u v ,sin α=最小,此时人体背面不淋雨,只有顶部淋雨.
5) 再用一个角度表示雨的方向,应计算侧面的淋雨量,问题本质上没有变化.。