1第一讲:绪论和晶体的形成
- 格式:ppt
- 大小:755.50 KB
- 文档页数:3
初中物理第一册:晶体教案二字晶体教案晶体是指具有规则的排列方式和明显的晶格结构的固态物质。
晶体结构是由一定数量的原子或分子按照一定的规律排列,并沿着特定方向周期性排列形成的。
本篇教案将帮助学生学习晶体的基本概念、典型结构及特性。
一、基本概念:根据晶体的成分不同,晶体可以分为金属晶体、离子晶体、共价晶体和分子晶体四种。
金属晶体是由金属原子组成的晶体;离子晶体是由离子(正、负离子)组成的晶体;共价晶体是由共价键形成的晶体;分子晶体是由分子构成的晶体。
晶体的组成单位为晶胞,晶体的各项物理性质均与晶胞有关。
晶胞的大小和形状取决于晶体的结构类型。
晶体结构有点阵结构和层状结构两种。
点阵结构又分为立方晶系、六方晶系、四方晶系、正交晶系、单斜晶系和三斜晶系。
层状结构又分为全息结构和层间孔洞结构两种。
二、典型结构离子晶体的典型结构为NaCl晶体,它由钠离子和氯离子组成。
NaCl晶体的晶胞为面心立方晶胞,具有六个面,八个顶点和十二条边。
共价晶体的典型结构为金刚石晶体,它由碳原子组成。
金刚石晶体的晶胞为菱形晶胞,具有八个面,八个顶点和十二条边。
分子晶体的典型结构为冰晶体,它由H2O分子组成。
冰晶体的晶胞为基本平行六面体晶胞,具有六个面,八个顶点和十二条边。
三、特性晶体的特性包括晶体的硬度、光学性质、声学性质、电学性质等。
晶体的硬度指的是晶体的抵抗外力破坏的能力。
钻石是一种具有非常高硬度的晶体,具有非常好的韧性和熔点。
晶体的光学性质指的是晶体对光的吸收、偏振和缺陷等。
二氧化硅是一种具有特殊光学性质的晶体,可以透过包括紫外线和红外线在内的大部分波长范围的光。
晶体的声学性质指的是晶体对声波的传播和反射能力。
石英是一种非常有用的晶体,可以用于制造声振器,例如用于无线电收发器中的压电石英晶体。
晶体的电学性质指的是晶体在外电场或磁场下的电效应。
铁电体是一种具有独特电学性质的晶体,在应用电子学和光学器件制造中具有重要作用。
四、教学方法本节课程将采用多种交互式教学方法,包括小组讨论、问题解答、实验演示和模拟仿真。
金属晶体的形成
1、原子的凝聚:金属晶体是由原子组成的,这些原子需要先凝聚在一起才能形成晶体。
2、形成晶粒:在凝聚的过程中,原子排列不规则,难以形成有序的晶体结构。
因此,需要通过控制凝聚速率、温度等条件来促进原子有序排列,形成小的晶粒。
3、晶粒长大:小的晶粒会相互接触并合并成为更大的晶体,经过多次重复后形成完整的大晶体。
4、金属键的形成:金属晶体的原子间结合方式是金属键,即金属原子间通过共享自由电子形成金属晶体的共价键。
在晶体形成过程中,金属原子会释放出部分自由电子,形成电子气体,从而产生金属键。
5、最终定型:晶体长大到一定大小后,会逐渐失去活跃性,形成最终稳定的晶体结构。
第一部分结晶学基础教案任课老师:许虹2002年2月第一章绪论一.晶体和非晶体 crystal and noncrystal晶体:具有格子构造的固体。
如SiO2:石英——晶体,玻璃——非晶体NaCl晶体二.空间格子 Space lattice晶格结点重复规律,抽象→ 几何图形—空间格子—相当点组成相当点条件:(1)性质相同,质点,空间任意一点(2)环境方位性同空间格子要素:空间格子最小重复单位。
实际晶体相应的是晶胞(形状,大小)三.晶体的基本性质 The ultimate properties of crystal自限性 property of self-confinement,均一性 homogeneity,各向异性 anisotropy,对称性symmetry,最小内能minimum internalenergy,稳定性 stability第二章晶体的形成 crystal formation (第一章和第二章共2学时)重点:晶体概念,空间格子,晶体的基本性质难点:空间格子←NaCl晶体←空间格子←NaCl, FeS2一.晶体形成的方式the way of crystal formation 二.晶核的形成三,晶体的生长 crystal growth介绍两种主要理论。
1.层生长理论layer growth2.螺旋生长理论 BCF Buston-Cabresa-Frank三.晶面发育growth of crystal face三个主要理论。
1.布拉维法则law of Bravais实际晶体的晶面常常平行网面结点密度最大的面网。
2.居里—吴里夫原理就晶体的平衡形态而言,各晶面的生长速度与各晶面的比表面能成正比。
3.周期键链理论PBC Periodic Bond Chain晶体平行键链生长,键力最强的方向生长速度最快。
第三章、晶体的测量与投影一.面角恒等定律Law of constancy of angle 定律:同种晶体之间,对应晶面间的夹角恒等。
晶体学基础绪论刘彤固体中的晶体气态:内部微粒(原子、分子、离子)无规运动液态:内部微粒(原子、分子、离子)无规运动固态:内部微粒(原子、分子、离子)振动自然界中绝大多数固体物质都是晶体。
如:食盐、冰糖、金属、岩石等。
¾单质金属和合金在一般条件下都是晶体。
¾一些陶瓷材料是晶体。
¾高聚物在某些条件下也是晶体。
“德里紫蓝宝石”如何在千姿百态的晶体中发现其规律?熔体凝固液相结晶晶体并非局限于天然生成的固体人工单晶飞机发动机叶片飞机发动机晶体的共同规律和基本特征?水晶石英晶体具有规则的凸多面体外形。
α石英的内部结构大球代表小球代表晶体的概念NaCl的晶体结构晶体(crystal):其内部质点(原子、分子或离子)在3维空间周期性重复排列的固体。
也称具有格子构造的固体。
晶体材料:单晶,多晶¾在一个单晶体的范围内,晶格中的质点均呈有序分布。
多晶体内形成许多局限于每个小区域内的有序结构畴,但在畴与畴之质点的分布是无序的或只是部分有序的。
晶界(晶体缺陷)Be 2O 3非晶体Be 2O 3 晶体分子晶体(范德华力)晶体学的发展历史¾有文字记载以前,人们对矿物晶体瑰丽的色彩和特别的多面体外形引起了的注意,开始观察研究晶体的外形特征。
¾17世纪中叶,丹麦学者斯丹诺(steno)1669年提出面角守恒定律,这可以说是晶体学作为一门正式科学的标志,它找出了晶体复杂外形中的规律性,从而奠定了几何晶体学的基础。
¾1801年,法国结晶学家阿羽依(Haüy)基于对方解石晶体沿解理面破裂现象的观察,发现晶体学基本定律之一的整数定律。
¾1805-1809年,德国学者魏斯(Weiss)发现晶带定律以及晶体外形对称理论。
几何晶体学发展到了相当高的程度。
¾1830年,德国学者赫塞尔(Hessel)推导出描述晶体外形对称性的32种点群。
¾1837年,英国学者米勒(Miller)提出晶面在三维空间位置的表示方法---米勒指数。