第三章扩展式博弈与完全信息动态博弈
- 格式:ppt
- 大小:735.00 KB
- 文档页数:58
第三章完全信息动态博弈第一节完全信息动态博弈的扩展式表述动态博弈的根本特征是,参与人的行动有先后顺序,且后行动的参与人在自己行动之前能观测到先行动的参与人的行动,特别是能根据先行动的参与人的行动调整或做出自己的战略选择。
运用战略式表述动态博弈的缺陷表现在:1.看不出行动的先后顺序;2.对于描述2人以上的博弈较不方便。
因此,扩展式表述extensive form representation被用于描述动态博弈。
一、扩展式表述的要素1.参与人集合:i=1,……,n。
此外,用N代表虚拟参与人“自然”。
2.参与人的行动顺序the order of moves:谁在什么时候行动。
3.参与人的行动空间action set:在每次行动时,参与人有些什么选择。
4.参与人的信息集information set:每次行动时,参与人知道些什么。
5.参与人的支付函数:在行动结束之后,每个参与人得到些什么(支付是所有行动的函数)。
6.外生事件(即自然的选择)的概率分布。
如同两人有限博弈的战略表述可以用支付矩阵表示一样,n人有限博弈的扩展式表述可以用博弈树game tree表示。
二、博弈树的基本建筑材料building blocks(4,4)(8,)(-3,-3)1,),8),),1),)图3-1(一)结nodes1.结的分类(1)决策结decision nodes:参与人采取行动的时点。
包括:起点结——initial nodes非起点结——(2)终点结terminal nodes:博弈行动路径的终点。
2.结的顺序关系precedence relation用X表示所有结的集合,x∈X表示某个特定的结。
x≺x"表示“x在x"之前”≺3.前列集the set of predecessors和后续集the set of successors定义P(x)为在x之前的所有结的集合,简称为x的前列集;定义T(x)为x之后的所有结的集合,简称为x的后续集。
第三章完全信息动态博弈上一章介绍了完全信息静态博弈,本章在前面的基础上探讨完全信息动态博弈。
现实社会经济活动的决策大多数是有先后顺序的行为而不是同时选择的行为,而且后行者能够看到先行者的决策内容,在先行者的决策结果之后再定夺自己的策略。
这样的经济行为比比皆是,如商业活动中的讨价还价,拍卖活动中的轮流竞价,资本市场上的收购兼并和反收购兼并都是如此。
依次选择与一次性同时选择有很大的差异,因此这种决策问题构成的博弈也是从时间序列上有别于静态博弈的,我们称之为“动态博弈”(Dynamic Games)。
例如下象棋通常需要两个参与人,我们定义为红方和黑方,红方先走,黑方后走,这是一个典型的完全信息动态博弈。
动态博弈由于添加了时间因素,因而更加贴近现实。
根据博弈方是否相互了解得益情况,可分为“完全信息动态博弈”和“不完全信息动态博弈”,根据是否所有博弈方都对自己选择前的博弈过程完全了解,可分为“完美信息动态博弈”和“不完美信息动态博弈”。
在本章中,我们首先对博弈的扩展式表达给出完整的定义,为动态博弈的分析奠定基础;其次,我们从扩展式表述博弈的纳什均衡分析逐步深入到子博弈精炼纳什均衡,为动态博弈的分析提供可行的方法,接下来介绍两种完全信息动态博弈经典模型;最后,分析具有无穷次的重复博弈,推导出无名氏定理。
3.1 博弈的扩展式表述在动态博弈中,博弈方的行动是有先后次序的,且后行动者在自己行动之前能够观测到先行动者的行动,每个博弈方的一次选择行为常称为一个“阶段”(Stage )。
动态博弈中也可能存在几个博弈方同时选择的情况,这时博弈方的同时选择构成一个阶段。
一个动态博弈至少有两个阶段,因此动态博弈有时也称为“多阶段博弈”(Multistage Games )。
此外,也有把动态博弈称为“序列博弈”(Sequential Games )的,这也是由动态博弈中的次序特征引出来的。
设有一个商人要从A 地向B 地运输一批货物。