(1) 开发商A先行动, 选择开发或不开发;(2) 开发商B在
观测到A得决策后, 再决定开发或不开发。博弈树如下
图。
A
开
不
B
B
开
不
开
不
(-3,-3)
(1,0) (0,1)
(0,0)
注:所有n个局中人得一个纯策略组合决定了博弈树上得一条 路径。但每条路径可由不同得策略组合决定。
例如, (开发,(不开发,开发))决定了 A -> 开发 -> B -> 不开发 -> (1,0)
进 入 进入 者 不进入
在位者
默许
斗争
5,5 1,10
-2,3 1,10
承诺行动使 不可ቤተ መጻሕፍቲ ባይዱ信威胁可信威胁,否则,当事人将为自 己得“失信”付出成本。
例如,该例中,在位者与某第三者打赌,如果进入者进入后她 不斗争,她就付给后者3,这时,斗争成为可置信得威胁。因为 如果进入后,选择默许,收益更小。注意:有了这个赌,进入者 就不敢进入了,实际上,在位者无需支付赌注。
开 (-3,-3)
A
开
BI
不
不
B
开
(1,0) (0,1)
Ⅱ
不 (0,0)
房地产开发中,子博弈I与Ⅱ属于单人博弈,子博弈I中,B得最优 选择就是不开发,子博弈Ⅱ中,B得最优选择就是开发,因此: (1)(不开发, (开发,开发))在子博弈I上不构成Nash均衡; (2)(开发,(不开发,不开发))在子博弈Ⅱ上不构成Nash均衡; (3)(开发,(不开发,开发))在所有子博弈上都构成Nash均衡, 就是子博弈精炼Nash均衡。
Max π1(q1,s2(q1))=q1(a-q1-s2(q1)-c)