完全但不完美信息动态博弈
- 格式:ppt
- 大小:325.00 KB
- 文档页数:32
第四章参考答案2、火车站和机场餐饮商业服务的顾客往往都是一次性的,回头客、常客比较少,这些经济交易具有一次性博弈的特征,它们的价格总是较高而质量又会差一些,顾客也会尽量不在这些地方购买商品和消费。
在一般商业区和居民区的餐饮商业服务则回头客和常客较多,有明显的重复博弈特征,在居民区购买商品和消费的老顾客一般能得到比较公平、优惠的价格,还能得到较好的服务,甚至有些还可以信用消费(赊账),因此消费者一般会比较放心地消费。
这就是现实生活中重复博弈和一次性博弈效率不同的典型例子之一。
3、从研究对象和问题特征看,有限次重复博弈研究的主要是有明确结束时间的(合作、竞争等)关系,无限次重复博弈研究的主要是没有明确结果时间,或者较长期的关系。
从分析方法的角度,动态博弈和重复博弈分析中常用的逆推归纳法在无限次16重复博弈中无法直接运用,因为没有最后一次重复。
因此无限次重复博弈分析的主要方法是构造法,即根据特定效率意义等构造了博弈完美纳什均衡。
此外,也可以运用某些技巧解决问题,如教材中利用三阶段讨价还价博弈分析无限阶段讨价还价博弈的技巧。
从博弈的结果看,无限次重复博弈的效率往往高于有限次重复博弈,有些在有限次重复博弈中无法实现的效率较高的结果,在无限次重复博弈中有可能实现。
例如囚徒的困境型博弈的无限次重复博弈和有限次重复博弈就体现了这种差别。
两类重复博弈民间定理的差异也说明了这一点。
最后,在重复次数不多的有限次重复博弈中不一定要考虑得益贴现问题,在我限次重复博弈问题中这是必须考虑的。
上述区别在理论方面最主要的启发是重视有限次和无限次重复博弈的区别,区分研究这两类博弈问题是非常重要的,在实践方面的主要启发是促进和保持经济关系的长期稳定性,对于提高社会经济效率等常常有非常重要的意义。
6、用画线法容易找出该博弈的两个纯策略纳什均衡(T,L)和(M,R)。
这两个纳什均衡的得益都帕累托劣于(B,S)。
一次性博弈中效率较高的(B,S)不可能实现。
博弈论基础读书笔记三完全信息动态博弈和逆向归纳法第⼆章完全信息动态博弈先来说明两个概念:1、是指在博弈中,参与⼈同时选择或虽⾮同时选择但后⾏动者并不知道先⾏动者采取了什么具体⾏动。
2、是指在博弈中,参与⼈的⾏动有先后顺序,且后⾏动者能够观察到先⾏动者所选择的⾏动。
这⼀章,我们来讨论关于完全信息(即参与者的收益函数是共同知识的博弈)动态博弈的问题。
在这⾥我们还将博弈分为两种:完美信息博弈:即要选择⾏动的参与者完全知道这⼀步之前所有的博弈过程。
完全但不完美信息博弈:即要选择⾏动的参与者不知道这⼀步之前的博弈过程。
进⾏这章之前先简要的解释⼀些东西:所有的动态博弈的中⼼问题都是可信任性。
下⾯给⼀个经典的⼿雷博弈的例⼦:第⼀,参与者1可以选择⽀付1000美元给参与者2或者是⼀分不给。
第⼆,参与者2观察参与者1的选择,然后决定是否引爆⼀颗⼿雷将两个⼈同炸死。
如果参与者2威胁参与者1如果他不付1000美元就引爆⼿雷,如果参与者1相信这个威胁,则最优选择是⽀付1000美元。
但参与者1却不会对这⼀威胁信以为真,因为它不可置信(参与者2不会蠢到因为1000美元⽽同归于尽,⾄于参与者1考虑参与者2是不是疯⼦的情况在第三章讨论)。
这个例⼦就是典型的完全且完美信息博弈。
在2.1节我们将在后⾯使⽤逆向归纳解,来求解这个问题。
在2.2节我们会丰富前⼀节的博弈模型使之成为完全但不完美博弈,我们会定义这种博弈的⼦博弈精炼解,它是逆向归纳法的延申。
在2.3节研究重复博弈,即多次重复⼀个给定博弈。
这⾥分析问题的中⼼使(可信的)威胁和对以后做出的承诺对当前⾏为的影响。
在2.4节中我们介绍分析⼀般的完全信息动态博弈所需要的⼯具。
不再区别信息是否是完美的。
本节和本章的重点都在语⾔,⼀个完全信息动态博弈可能会有多个纳什均衡,但其中⼀些均衡或许包含了不可置信的威胁和承诺,⼦博弈精炼纳什均衡则是通过了可信检验的均衡。
看到这⾥你可能还是⼀头雾⽔,但是⽆所谓,让我们⼀节⼀节的来讲,看到最后你在回头看前⾯的总结可能会更有利于你对本章的理解。
完全信息博弈和不完全信息博弈例子完全信息博弈和不完全信息博弈是博弈论中常见的两种博弈模型。
在完全信息博弈中,参与者对对手的策略和利益有完全了解,而在不完全信息博弈中,参与者对对手的策略和利益了解不完全。
下面将给出10个例子来说明这两种博弈模型。
1. 完全信息博弈:象棋对局象棋是一种典型的完全信息博弈。
在游戏开始之前,双方玩家对对手的棋子摆放和可能的走法有全面的了解。
每一个棋子的能力和走法都是公开的,玩家可以根据对手的走法进行推理和决策。
双方都可以清楚地看到棋盘上的所有信息,这使得象棋成为一个完全信息博弈的范例。
2. 完全信息博弈:扑克牌游戏扑克牌游戏是另一个典型的完全信息博弈。
在游戏开始之前,玩家可以看到自己的牌和公共牌,可以推断其他玩家手中可能的牌型。
玩家可以根据对手的表情、下注行为和牌型推断对手的策略,并做出相应的决策。
3. 完全信息博弈:国际象棋比赛国际象棋比赛是另一个典型的完全信息博弈。
在比赛开始之前,双方选手可以看到对手的棋子摆放和可能的走法,可以根据对手的走法进行推理和决策。
选手可以通过分析对手的行为和棋局的发展,制定出相应的策略。
4. 完全信息博弈:囚徒困境囚徒困境是博弈论中著名的例子。
在这个博弈中,两个囚犯被关押在不同的牢房中,检察官给每个囚犯提供了一个交代罪行的机会。
如果两个囚犯都选择交代,那么他们都会被判刑。
如果两个囚犯都选择保持沉默,那么他们都会被判轻刑。
如果一个囚犯交代而另一个保持沉默,那么前者将获得豁免,后者将被判重刑。
这个博弈的特点是,双方玩家知道对方的利益和策略,并可以根据对方的策略做出自己的决策。
5. 完全信息博弈:足球比赛足球比赛是一种典型的完全信息博弈。
在比赛开始之前,双方球队都可以看到对方的阵容和战术,可以根据对手的策略进行相应的调整。
球队可以根据比赛的进展和对手的表现,调整自己的战术和策略。
6. 不完全信息博弈:扑克牌对局尽管扑克牌游戏可以被看作是完全信息博弈的例子,但在某些情况下,扑克牌对局也可以被看作是不完全信息博弈。
第三章完全且完美信息动态博弈在动态博弈中,参与者需要根据对手的行为和策略来调整自己的行动,以便达到最佳的结果。
动态博弈可以分为完全信息动态博弈和不完全信息动态博弈。
完全信息动态博弈是指所有参与者都知道其他参与者的策略和收益函数,而不完全信息动态博弈则是指参与者不知道其他参与者的策略和收益函数。
在完全信息动态博弈中,参与者可以通过观察对手的行为来推断出对手的策略和收益函数。
这种博弈可以通过逆向归纳法来求解,即从博弈的阶段开始,逐步向前推导出每个阶段的最佳策略。
逆向归纳法是一种有效的求解完全信息动态博弈的方法,它可以帮助参与者找到最佳策略,从而实现最佳的结果。
然而,在现实世界中,完全信息动态博弈并不常见。
大多数博弈都是不完全信息动态博弈,参与者无法知道其他参与者的策略和收益函数。
在这种情况下,参与者需要通过观察对手的行为和策略来推断出对手的类型和收益函数。
这种博弈可以通过贝叶斯纳什均衡来求解,即参与者根据对手的类型和收益函数来选择自己的策略,以达到最佳的结果。
完全且完美信息动态博弈是指所有参与者都知道其他参与者的策略和收益函数,并且参与者能够观察到其他参与者的行为和策略。
这种博弈可以通过逆向归纳法和贝叶斯纳什均衡来求解,从而帮助参与者找到最佳策略,实现最佳的结果。
在完全且完美信息动态博弈中,参与者可以通过观察对手的行为和策略来推断出对手的类型和收益函数,从而调整自己的策略,以实现最佳的结果。
在完全且完美信息动态博弈中,参与者之间的互动是基于透明和预知性的。
每个参与者不仅清楚自己的策略选择和可能的收益,同时也了解其他参与者将如何根据这些信息做出反应。
这种透明度使得参与者能够做出更加精确的决策,因为他们能够预测对手的行动并据此调整自己的策略。
这种博弈的一个关键特点是,参与者之间的信息是对称的。
这意味着没有参与者拥有其他参与者所不知道的信息优势。
这种信息对称性使得博弈变得更加公平,因为它消除了信息不对称带来的不确定性。
完全信息博弈和不完全信息博弈例子一、完全信息博弈的例子:1. 战争博弈:两个国家之间的战争可以被看作是一个完全信息博弈。
在这种情况下,每个国家都知道对方的军事力量、资源和战略,因此可以做出相应的决策,例如增加军事投入、调整战略等。
2. 棋类游戏:例如国际象棋、围棋等,这些游戏中,双方玩家都知道对方的棋子位置和规则,因此可以通过计算和预测对方的行动来做出最佳决策。
3. 拍卖:拍卖是一个经典的完全信息博弈。
在拍卖中,卖家和买家都了解物品的属性、市场需求和竞争对手的出价,因此可以根据这些信息来制定自己的出价策略。
4. 投标竞争:在企业之间的投标竞争中,每个企业都知道自己的成本、竞争对手的能力和市场需求,因此可以根据这些信息来制定自己的投标价格和竞争策略。
5. 股票交易:在股票市场上,投资者可以根据公司的财务报表、行业趋势和市场预期来做出投资决策。
这些信息都是公开的,每个投资者都可以获得相同的信息。
6. 价格竞争:在一个完全竞争的市场中,所有的卖方都知道其他卖方的价格和产品质量,因此可以根据市场需求和成本来制定自己的价格策略。
7. 职业博弈:在职业生涯中,每个人都可以根据自己的技能、经验和市场需求来选择自己的职业方向和工作机会。
8. 选举竞争:在政治选举中,候选人可以根据选民的偏好、政策议程和竞争对手的策略来制定自己的竞选策略。
9. 赛车比赛:在赛车比赛中,每个车手都知道自己和其他车手的技术水平、赛车性能和赛道条件,因此可以根据这些信息来制定自己的赛车策略。
10. 模拟游戏:在模拟游戏中,玩家可以根据游戏中的规则、目标和对手的行动来制定自己的游戏策略,例如《模拟城市》、《模拟经营》等。
二、不完全信息博弈的例子:1. 扑克牌游戏:扑克牌是一个典型的不完全信息博弈。
每个玩家只能看到自己的手牌和公共牌,对手的手牌是未知的。
因此,玩家需要通过对对手的行动、下注和表情的观察来推测对手的手牌和策略,并做出相应的决策。
判断下列表述是否正确,并作简单讨论:(1)如果一博弈有两个纯策略纳什均衡,则一定还存在一个混合策略纳什均衡。
(2)上策均衡一定是帕累托最优的均衡。
(3)有限次重复博弈的子博弈完美纳什均衡每次重复采用的都是原博弈的纳什均衡。
(4)完全但不完美信息动态博弈中各博弈方都不清楚博弈的进程,但清楚博弈的得益。
(5)囚徒的困境博弈中两个囚徒之所以会处于困境,无法得到较理想的结果,是因为两囚徒都不在乎坐牢时间长短本身,只在乎不能比对方坐牢的时间更长。
(6)帕累托上策均衡一定是上策均衡。
(7)风险上策均衡一定是上策均衡。
(8)上策均衡一定是纳什均衡。
(9)纳什均衡的一致预测性质是指不同博弈方的预测相同、无差异。
(10)静态贝叶斯博弈中之所以博弈方需要针对自己的所有可能类型都设定行为选择,而不是只针对实际类型设定行为选择,是因为能够迷惑其他博弈方,从而可以获得对自己更有利的均衡。
(11)严格下策反复消去法不会消去任何上策均衡,但却可以简化博弈。
(12)严格下策反复消去法把严格下策消去时,不会消去纳什均衡。
(13)多重纳什均衡不会影响纳什均衡的一致预测性质。
(14)纯策略纳什均衡和混合策略纳什均衡都不一定存在。
(15)在动态博弈中后行为博弈方有更多信息,可减少决策的盲目性,并作有针对性的选择,因此总处于较有利的地位。
(16)在动态博弈中先行为博弈方可以抢先采取有利于自己的行为,因此一定有行动优势。
(17)子博弈完美纳什均衡能够排除均衡策略中不可信的行为(威胁或承诺)因此具有真正的稳定性。
(18)子博弈完美纳什均衡和逆推归纳法并不能解决动态博弈分析的所有问题。
(19)子博弈完美纳什均衡和逆推归纳法能解决动态博弈分析的所有问题。
(20)重复博弈能否促进博弈方更合作和提高博弈效率,取决于原博弈的结构和重复博弈次数。