八年级数学下册(人教版)配套教学教案:20.1.2 第2课时 平均数、中位数和众数的应用
- 格式:docx
- 大小:221.92 KB
- 文档页数:6
第 2 课时均匀数、中位数和众数的应用1.进一步认识均匀数、众数、中位数;(要点 )2.知道均匀数、中位数和众数在描绘数据时的差别; (要点 )3.能灵巧应用这三个数据代表解决实质问题. (难点 )一、情境导入2015 年 9 月 3 日是“中国人民抗日战争成功暨世界反法西斯战争成功 70 周年龄念日”,要选择部分士兵构成阅兵方阵,在这个问题中最值得我们关注的是士兵身高的均匀数、中位数仍是众数?你能作出选择吗?二、合作研究研究点一:均匀数、中位数和众数的应用【种类一】均匀数的应用假期里小菲和小琳结伴去商场买水果,三次购置的草莓价钱和数目以下表,从均匀价钱看,买得比较划算的是()价钱 /(元 /kg)12108共计 /kg 小菲购置的数目2262/kg小琳购置的数目2361/kgA. 同样划算B.小菲划算C.小琳划算D.没法比较分析:∵小菲购置的均匀价钱是(12 ×2+10×2+8×2) ÷6= 10(元/kg) ,小琳购置的平28均价钱是 (12×1+ 10×2 + 8×3) ÷6=( 元/kg) ,∴小琳划算.应选 C.方法总结:数据的“权” 能够反应数据的相对“ 重要程度”,要突出某个数据,只需要给它较大的“ 权”,“ 权”的差别对结果会产生直接的影响.【种类二】中位数的应用有 13 位同学参加学校组织的才艺表演竞赛,已知他们所得的分数互不同样,共设 7 个获奖名额,某同学知道自己的竞赛分数后,要判断自己可否获奖,在这13 名同学成绩的统计量中只需知道一个量,它是__________( 填“众数”“中位数”或“平均数”).分析:因为 7 位获奖者的分数一定是13名参赛选手中最高的,因此把 13 个不一样的分数按从小到大排序,只需知道自己的分数和中位数就能够知道能否获奖了.故填中位数.方法总结:中位数与数据的摆列次序相关,受极端值的影响较小,因此当一组数据中个别数据变化较大时,能够用中位数描绘其“均匀状况”,但不可以充足利用全部数据的信息.【种类三】众数的应用抽样检查了某班30 位女生所穿鞋子的尺码,数据以下(单位:码).在这组数据的均匀数、中位数和众数中,鞋厂最感兴趣的是()码号3334353637人数761511A. 均匀数 B.中位数 C.众数 D.没法确立分析:因为众数是数据中出现最多的数,故鞋厂最感兴趣的是销售量最多的鞋号即这组数据的众数.应选 C.方法总结:众数是反应一组数据中出现次数最多的数据,当一组数据中有许多量据多次重复出现时,众数常常能反应问题.【种类四】利用“三种数”对成绩做出评委打分最高 10 分 ).判断方案 1:全部评委给分的均匀分;某中学展开演讲竞赛活动,九 (1)、方案 2:在全部评委中,去掉一个最高九 (2) 班依据初赛成绩各选出 5 名选手参加分和一个最低分,再计算节余评委的均匀复赛,两个班各选出的 5 名选手的复赛成绩分;( 满分为 100 分 )以下列图所示.方案 3:全部评委给分的中位数;方案 4:全部评委给分的众数.为了研究上述方案的合理性,先对某个同学的演唱成绩进行统计实验,下列图是这个同学的得分统计图:(1)依据上图填写下表:均匀分中位数众数(分)(分 )(分 )九(1)班8585(1) 分别按上述四种方案计算这个同学九(2)班8580演唱的最后得分;(2) 联合两班复赛成绩的均匀数和中位(2) 依据 (1) 中的结果,请用统计的知识数,剖析哪个班级的复赛成绩较好;说明哪些方案不合适作为这个同学演唱的(3) 假如在每班参加复赛的选手中分别最后得分?选出 2 人参加决赛,你以为哪个班的实力更分析:此题要点是理解每种方案的计算强一些?说明原由.方法: (1)方案1:均匀数=总分数÷10;方分析:(1)依据统计图中的详细数据以及案 2:均匀数=去掉一个最高分和一个最低中位数和众数的观点计算;(2) 察看数据发分的总分数÷8.方案3: 10 个数据,中位数现:均匀数同样,则中位数大的较好;(3)应是数据从小到大(或从大到小 )摆列的第 5分别计算前两名的均匀分,比较其大小.个和第 6 个数据的均匀数;方案4:求出评解: (1)85 100委给分中,出现次数最多的分数.(2) 考虑不(2)∵两班的均匀数同样,九(1) 班的中受极值的影响,不可以有两个得分等原由进行位数高,∴九 (1)班的复赛成绩好些;清除.(3)∵九 (1) 班、九 (2) 班前两名选手的平1均分分别为92.5 分,100分,∴在每班参加解:(1) 方案 1:最后得分为10×(3.2+7.0复赛的选手中分别选出2人参加决赛,九 (2)+ 7.8+ 3×8+ 3×8.4+ 9.8)= 7.7;班的实力更强一些.方案 2:最后得分为1方法总结:读懂统计图,从不一样的统计10×(7.0+ 7.8+ 3×8图中获得必需的信息是解决问题的要点.条+ 3×8.4)=8;形统计图能清楚地表示出每个项目的数据.方案 3:最后得分为8;【种类五】利用“三种数”进行方案探方案 4:最后得分为8 和 8.4;究(2) 因为方案 1 中的均匀数受极端数值在喜迎“中国人民抗日战争成功的影响,不合适作为这个同学演讲的最后得70 周年暨世界反法西斯战争成功70 周年”,分,因此方案 1 不合适作为最后得分的方某校举办校园唱红歌竞赛,选出10 名同学案.因为方案 4 中的众数有两个,众数失掉担当评委,并预先制定从以下四种方案中选了实质意义,因此方案 4 不合适作为最后得择合理方案来确立演唱者的最后得分(每个分的方案.方法总结:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大( 或从大到小 )挨次摆列,把中间数据(或中间两数据的平均数 )叫做中位数.均匀数=总数÷个数.学会采用合适的统计量剖析问题.三、板书设计1.利用均匀数、中位数和众数解决生活中的实质问题2.利用“三种数”对成绩或对方案做出选择或决议经过这节课的学习,学生的参加性很强,乐于与伙伴沟通、研究知识.需要重申的是:学生有自己的见解和建议,教师不行一味的否认学生.教师要关注学生思虑问题的过程,千万不要取代学生思虑,更不行强加给学生固定的思想模式.。
20.1.1 平均数(第2课时)一、内容和内容解析1.内容根据频数分布求加权平均数,用计算器求加权平均数.2.内容解析在平均数第一课时的学习中,学生理解了算术平均数、加权平均数的意义,认识了权的表现形式及作用,能解决一些有关平均数的问题.本节课进一步引导学生在不同的情况下灵活运用加权平均数来分析数据的集中趋势.在求n个数据的算术平均数时,如果有若干个数据多次重复,这组数据的算术平均数就可看成求k个不同的数据的加权平均数;一般的计算器都有统计功能,在解决生活中的统计问题时能简化运算.如果已知一组数据的频数分布,在表示这组数据的集中趋势时,由于不知道原始数据,权与数据需要重新确认,可用组中值代替这组数据中每个数的值,用频数表示相应组内数据的权,近似地计算一组数据的平均数,所以,求出的加权平均数是一个近似的估计值.基于以上分析,本节课的教学重点是:根据频数分布求加权平均数的近似值.二、目标和目标解析1.目标(1)理解算术平均数的简便算法与加权平均数的一致性,会用计算器求加权平均数;(2)会根据频数分布计算加权平均数,理解它所体现的统计意义,发展数据分析能力.2.目标解析目标(1)是让学生会用加权平均数求n个数据(有若干个数据多次重复)的算术平均数,会灵活应用它解决实际问题;会用计算器求加权平均数,体会利用计算器求平均数的快捷和方便.目标(2)要求学生能根据一组数据的频数分布,将组中值看成数据,频数看成权来计算加权平均数,反映这些数据的集中趋势,并用统计的思维来解释其实际意义,发展数据分析观念.三、教学问题诊断分析经过第一课时的学习后,学生会依据具体的数据及相应的权计算加权平均数,但当数据是以频数分布的形式呈现时,由于分组后没有了具体数据,所以,当数据分布较为平均时,要用组中值代替一组数据中每个数据的值,再将频数视为权来计算加权平均数,而且这种计算方式得到的加权平均数是一个近似的估计值,这一点学生可能不容易理解.基于以上分析,本节课的教学难点是:根据频数分布求加权平均数.四、教学过程设计1.创设情境 提出问题问题1 某跳水队有5个运动员,他们的身高(单位:cm )分别为156,158,160,162,170.试求他们的平均身高.师生活动:学生计算,教师引导学生回顾算术平均数的意义:12n x x x x n +++=L . 设计意图:复习算术平均数的概念,为问题2的解决提供铺垫.问题2 某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个跳水队的运动员的平均年龄(结果取整数).追问1 有没有更简便的算法?追问2 计算过程能否看作加权平均数的计算过程?若能,请指出数据及相应的权. 师生活动:学生提供算法,师生共同计算,教师板书计算过程:13814161524162816242x =×+×+×+×+++≈14(岁).若学生不能直接用简便方式处理,则教师通过追问引导,学生通过观察、分析后回答,得出结论:在求n 个数的平均数时,如果x 1出现f 1次,x 2出现f 2次,···,x k 出现f k 次(这里f 1+f 2+··· f k =n ),那么这n 个数的平均数1122x f x f x f x n +=L + +k k也叫做x 1,x 2,···,x k 这k 个数的加权平均数,其中f 1,f 2,···,f k 分别叫做x 1,x 2,···,x k 的权.设计意图:当参与运算的数据较多时,计算平均数的过程较繁,需要用简便的方法得到平均数的结果(通过追问1引导);追问2让学生从形式上认同这种简便算法就是加权平均数的计算方式,进一步明晰数据及相应的权,理解算术平均数简便算法与加权平均数算法具有一致性.2.合作探究 理解新知问题3 为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,得到下表,这天5路公共汽车平均每班的载客量是多少?(结果取整数)追问1 请分析表中的数据,组中值是怎样得到的?追问2 第二组数据的频数5的实际意义是什么?追问3 如果每组数据在本组中分布较均匀,各组数据的平均值和组中值有什么关系? 追问4 各组数据中的载客量可近似地用什么表示?相应的数据的权是什么?师生活动:学生分析频数分布表中的数据,先独立思考,后通过小组合作互助解决;教师通过四个追问层层深入的引导学生明确数据及相应的权,最后用加权平均数解决这个问题,在活动中,教师要关注学生对“用组中值代替各组数据中数的值”的理解.说明:若学生对追问3理解有困难,则可以第三组数据为例说明,它的范围是41≤x ≤61,共有20个数据,若分布较为平均,41、42、43、44、 ··· 、60个出现1次,那么这组数据的平均值为41426020L +++=50.5≈51.即当数据分布较为平均时组中值近似等于它的平均数.因此这天5路公共汽车平均每班的载客量是113315512071229118111153520221815x ×+×+×+×+×+×+++++≈73(人).设计意图:追问1、2让学生独立得出,并明确频数与权有相同的作用;追问3、4引导学生得到每组数据的组中值可代表这组数据中每个数,从而找到求加权平均数时的数据及相应的权,并理解它的合理性;让学生体会到,在这个问题的分析过程中,由于不知道原始数据,因此求出的加权平均数是一个近似的估计值.活动:请用计算器的统计功能,验算加权平均数的计算结果.师生活动:教师为学生示范计算器的使用过程,学生模仿(或学生自主阅读说明书),并通过计算器验算所计算的结果.设计意图:学生学习使用计算器的统计功能求平均数的方法,体会利用计算器求平均数的快捷和方便.3.例题展示应用新知例为了解全班学生做课外作业所用时间的情况,老师对学生做课外作业所用时间进行调查,统计情况如下表,求该班学生平均每天做课外作业所用时间(结果取整数,可使用计算器).师生活动:教师出示例题,指导学生阅读分析,教师板书解题过程.在活动中教师应关注学生能否主动求出各组数据的组中值,再计算加权平均数.设计意图:进一步规范据频数分布表求加权平均数的近似值的解题格式,体会这种统计方式解决实际问题的合理性.4.学会应用巩固新知完成教科书第115面练习题.设计意图:巩固本节内容.练习1用加权平均数简便计算一组数据的平均数;练习2要求学生从统计图中收集信息,找出数据及相应的权,灵活运用加权平均数解决实际问题,两题都可用计算器计算或验证,培养学生运用计算器的统计功能解决实际问题的能力.5.归纳小结教师与学生一起回顾本节课所学的主要内容,并请学生回答以下问题:(1)当一组数据中有多个数据重复出现时,如何简便的反映这组数据的集中趋势?(2)据频数分布求加权平均数时,你如何确定数据与相应的权?试举例说明.设计意图:问题(1)使学生明白算术平均数简便算法与加权平均数算法是一致的;问题(2)引导学生回顾频数分布表中数据及相应权的确定方法,并举例说明平均数的求法,近一步理解平均数的统计意义.6.布置作业教科书习题20.1第1,6题.五、目标检测设计1.为了调查某一路口某时段的汽车流量,记录了15天同一时段通过该路口的汽车辆数,其中有2天是142辆,2天是145辆,6天是156辆,5天是157辆,那么这15天通过该路口汽车平均辆数为____辆.设计意图:考查学生对算术平均数的简便算法的掌握情况.2.为了解全班50名同学的参加课外体育锻炼的情况,王老师调查后得到他们在某一天各自参加课外运动时间的数据,结果如图,根据此条形图估计这一天全班同学平均参加课外体育锻炼的时间为____小时.设计意图:考查学生从统计图中获取信息,并用加权平均数解决实际问题的能力.3.某校数学兴趣小组举行了一次数学竞赛,分段统计参赛同学的成绩,52名学生的成绩如下表:(分数均为整数,满分为100分)分数段/分61~70 71~80 81~90 90~100人数/人 5 20 15 12这次数学竞赛的平均成绩是多少?设计意图:考查学生灵活运用加权平均数描述分组数据,反映其集中趋势并解决实际问题的能力.。
第二十章数据的分析1.进一步理解平均数、中位数和众数等统计量的统计意义.2.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势.3.会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况.1.探索并掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,用样本估计总体,并解决生产、生活中的有关问题.2.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度.1.能用计算器的统计功能进行统计计算,进一步体会计算器的优越性.2.会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想.3.通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质.本章属于“统计与概率”领域.对于“统计与概率”领域的内容,共有三章.这三章内容采用统计和概率分开编排的方式,前两章是统计,最后一章是概率.统计部分的两章内容按照数据处理的基本过程来安排.我们在7年级下册学习了“第10章数据的收集、整理与描述”,本章“数据的分析”主要学习分析数据的集中趋势和离散程度的常用方法.在前一章中,我们学习了收集、整理和描述数据的常用方法,将收集到的数据进行分组、列表、绘图等处理工作后,数据分布的一些面貌和特征可以通过统计图表等反映出来.为了进一步了解数据分布的特征和规律,还需要计算出一些代表数据一般水平(典型水平)或分布状况的特征量.对于统计数据的分布的特征,可以从三个方面来分析:一是分析数据分布的集中趋势,反映数据向其中心值(平均数)靠拢或聚集的程度;二是分析数据分布的离散程度,反映数据远离其中心值(平均数)的趋势;三是分析数据分布的偏态和峰度,反映数据分布的形状.这三个方面分别反映了数据分布特征的不同侧面.根据《标准》的要求,本章就从前两个方面研究数据的分布特征.【重点】平均数、众数、中位数、方差的定义及其应用.【难点】应用所学的统计知识解决实际问题.1.注意与前两个学段相关内容的衔接.本章在教学时,注意与前两个学段的衔接,将三个学段的相关内容,在分析数据的这个大背景下统一起来,在对学生已有的相关知识进行整理的基础上学习新的知识.例如,对于平均数、中位数、众数,本章就是在研究数据集中趋势的大背景下,在整理学生已有的关于这三种统计量的认识的基础上,学习加权平均数,研究如何根据统计量的特征选择适当的统计量描述数据的集中趋势等.这样的一种编写方式,将三个学段的学习连成一个相互联系、螺旋上升的整体.因此,教学中要注意对已有知识的复习,在复习的基础上学习新内容,使学生对于分析数据的知识和方法形成整体认识.2.准确把握教学要求.本章要求通过较多实例,从不同的方面进一步感受抽样的必要性,并初步感受样本的代表性,体会不同的抽样可能得到不同的结果,能够用样本的平均数、方差估计总体的平均数、方差等.因此,在本章教学时,要注意把握教学要求.3.合理使用计算器.信息技术的发展给统计学的研究带来很大变化,为统计工作的高效、准确提供了便捷的工具.对于计算器等现代信息技术对统计的作用,本章中,编写了使用计算器求一组数据的平均数和方差的内容作为必学内容,还编写了利用计算机求平均数、中位数、众数和方差等集中统计量的内容作为选学内容等.教学中要注意发挥计算器在处理数据中的作用,也要注意合理地使用计算器.20.1 数据的集中趋势20.1.1平均数(2课时) 20.1.2中位数和众数(2课时)4课时20.2 数据的波动程度1课时20.3 课题学习体质健康测试中的数据分析1课时单元概括整合1课时20.1数据的集中趋势1.进一步掌握算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.2.理解中位数和众数的定义和意义,会求一组数据的中位数和众数,能结合具体问题解释中位数和众数的实际意义.3.能分清平均数、中位数、众数三者的区别,根据实际问题情境选择适当的统计量表示数据的特征.经历应用加权平均数对数据处理和探索中位数、众数的过程,体验对统计基本思想的理解过程.能运用数据信息的分析解决一些简单的实际问题.通过加权平均数、中位数和众数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性,激发学生学好数学的热情,感受统计在生活中的应用,增强统计意识,培养统计能力.【重点】算术平均数、加权平均数的概念及计算,会求一组数据的中位数和众数,能结合实际情境理解其实际意义.【难点】理解平均数、中位数和众数这三个统计量之间的联系与区别,能根据具体问题选择适当的统计量分析数据信息并作出决策.20.1.1平均数1.进一步掌握算术平均数、加权平均数的概念.2.会求一组数据的算术平均数和加权平均数.经历应用加权平均数对数据处理的过程,体验对统计基本思想的理解过程.能运用数据信息的分析解决一些简单的实际问题.通过加权平均数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性,激发学生学好数学的热情.【重点】1.算术平均数、加权平均数的概念及计算.2.掌握加权平均数的实际应用.【难点】1.体会平均数在不同情境中的应用.2.应用加权平均数对数据做出合理判断.第课时1.使学生理解数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.1.通过加权平均数的学习,经历运用数据描述信息,作出推断的过程,形成和发展统计观念.2.通过加权平均数的学习,进一步认识数据的作用,体会统计的思想方法.渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显、寓纷繁于严谨的辩证统一的数学美.【重点】会求加权平均数.【难点】对“权”的正确理解.【教师准备】教学中出示的课件和例题.【学生准备】预习课本内容.导入一:刘木头开了一家小工厂,生产儿童玩具.工厂的管理人员由刘木头、他的弟弟及其他6个亲戚组成.工作人员由5个领工和10个工人组成.现在需要一个新工人,刘木头正在与一个叫小王的青年人谈招聘问题.刘木头说:“我们这里报酬不错,平均每个人的薪金是每周300元,但在学徒期间每周是75元,不过很快就可以加工资.”小王上了几天班以后,要求和厂长谈谈.小王说:“你骗我,我已经和其他工人核对过了,没有一个人的工资超过每周100元.每人平均工资怎么可能是一周300元呢?”刘木头皮笑肉不笑地回答:“小王,不要激动嘛!每人平均工资确实是300元,不信你自己算一算.”刘木头拿出一张表,说道:“这是我每周付出的薪金.我得2400元,我弟弟得1000元,我的6个亲戚每人得250元,5个领工每人得200元,10个工人每人得100元.总共是每周6900元,付给23个人,平均每人得300元,对吗?”“对,对,你是对的,每人的平均工资是每周300元.可你还是骗了我.”小王生气地说.刘木头拍着小王的肩膀说:“这我可不同意,你自己算的结果也表明我没骗你呀!小兄弟,你根本不懂得平均数的含义,怪不得别人哟!”同学们,你能当个小法官来判一下谁说的对吗?[设计意图]让学生明确数学问题来源于生活实践,同时数学又指导生活实践,从而达到激发学生思考问题、探究新知的强烈欲望及引入新课的目的.导入二:农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种各用10块试验田进行试验,得到各试验田每公顷的产量(见下表),根据这些数据,应为农科院选择甜玉米种子提出怎样的建议呢?品各试验田每公顷产量种(单位:吨)甲7.657.57.627.597.65 7.647.57.47.417.41乙7.557.567.537.447.49 7.527.587.467.537.49提问:如何考察一种玉米的产量和产量的稳定性?学生随意说出自己的一些想法后,教师说明本章学习的知识内容:(1)平均数、中位数、众数和方差等概念;(2)用样本的平均数和方差估计总体的平均数和方差;(3)课题学习,解决实际问题.[设计意图]问题的提出,学生难以用已学到的平均数的公式解决这个问题,需要研究新的方法,学习新的知识,让学生了解本章研究的基本知识内容,培养学生用样本估计总体的基本思想.[过渡语]前面我们学过算术平均数的计算,我们一起来探究加权平均数.1.加权平均数思路一问题:某市三个郊县的人数及人均耕地面积如下表:郊县人数/万人均耕地面积/公顷A15 0.15 B7 0.21 C10 0.18这个市郊县的人均耕地面积是多少?(精确到0.01公顷)问题1小明求得这个市郊县的人均耕地面积为:= =0.18(公顷).你认为小明的做法有道理吗?为什么?组织学生讨论,教师参与,并适时指导:(1)对“平均数”和“人均耕地面积”的准确理解;(2)三个郊县人数的多少对人均耕地面积有无影响,分析小明同学的计算错误.问题2这个市郊县的总耕地面积是多少?总人口是多少?你能算出这个市郊县的人均耕地面积是多少吗?引导学生列出正确算式,即这个市郊县的人均耕地面积为:≈0.17(公顷).问题3三个郊县的人数(单位:万)15,7,10在计算人均耕地面积时有何作用?教师指出:上面的平均数0.17称为三个数0.15,0.21,0.18的加权平均数.三个郊县的人数(单位:万)15,7,10分别为三个数据的权.追问:你能正确理解数据的权和三个数的加权平均数吗?在活动中教师应重点关注学生对数据的权及加权平均数的理解.问题4若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则这n个数的加权平均数是多少?教师引导学生从三个数据的加权平均数的计算方法中,归纳得出n 个数的加权平均数的计算公式.学生思考、总结归纳:若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则叫做这n个数的加权平均数.[设计意图]通过讨论、分析、思考认识到用已学过的平均数的计算方法来计算这个市郊县的人均耕地面积是根本行不通的,使学生意识到需要学习新知识、新方法,激发学生去探究.通过大胆猜想,培养学生的探究意识,通过教师的有效引导,让学生体会数学的归纳思想方法,理解n个数的加权平均数的计算公式及其结构特征,认识数据的权的作用.思路二问题1一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试听说读写者甲85 83 78 75乙73 80 85 82提问:如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?录用依据是什么?学生提出评判依据,若学生提出以总分作为依据,教师要引导学生思考:已学过的哪个统计量可反映数据的集中趋势?学生计算平均数,解决问题.追问:这家公司在招聘英文翻译的过程中,对甲、乙两名应试者进行了哪几个方面的英语水平测试?成绩分别为多少?学生同桌讨论,计算后提出自己的意见.问题2如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?引导学生讨论:招聘口语能力或笔译能力较强的翻译时,听、说、读、写四项成绩的重要程度是否相同,公司侧重哪两个方面的成绩?从给出的比值是否体现这两方面更加“重要”?根据算术平均数的计算公式,让学生依据题目要求,分别计算出甲、乙两名应试者的成绩,教师引导写出解答过程.问题3在问题2中,各个数据的重要程度不同(权不同),这种计算平均数的方法能否推广到一般?追问:若n个数据x1,x2,…,x n的权分别为w1,w2,…,w n,这n个数据的平均数该如何计算?教师引导学生思考归纳得出n个数的加权平均数的计算公式:若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则叫做这n个数的加权平均数.问题4如果这家公司想招一名口语能力较强的翻译,应该侧重哪些分项成绩?如果听、说、读、写成绩按照3∶3∶2∶2的比确定两人的测试成绩,那么谁将被录取?与问题2相比较,你能体会到权的作用吗?学生独立完成计算过程,体会权的改变对加权平均数的影响.追问:你认为问题1中各数据的权有什么关系?通过上述问题的解决,说说你对权的认识.师生活动:引导学生分析加权平均数公式,发现问题1中各数可看作是权相同的,教师指出两种平均数之间的联系.[设计意图]回顾学过的平均数的意义,为引入加权平均数作铺垫.通过讨论,让学生充分发表自己的见解,同时接纳和吸引别人的正确意见,相互交流、相互探讨,培养学生的合作意识.通过改变同一个问题背景中数据的权,得到不同的结果,从而进一步体会权的意义与作用.[知识拓展](1)当所给的数据在一常数a上下波动时,一般选用='+a.一组数据x1,x2,…,x n的各个数据比较大的时候,我们可以把各个数据同时减去一个适当的常数a,得x'1=x1-a,x'2=x2-a,…,x'n=x n-a.于是x1=x'1+a,x2=x'2+a,…,x n=x'n+a.因此=(x1+x2+…+x n)=(x1'+x2'+…+x n')+·na='+a;(2)平均数的大小与每个数据都有关系,它反映一组数据的集中趋势,是一组数据的“重心”,也是度量一组数据波动大小的基准;(3)加权平均数是算术平均数的特例.加权平均数的实质就是考虑不同权重的平均数,当加权平均数的各项权相等时,就变成了算术平均数.2.例题讲解一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各个成绩均按百分制,再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制),进入决赛的前两名选手的单项成绩如下表所示:(单位:分)选手演讲内容演讲能力演讲效果A85 95 95B95 85 95请确定两人的名次.教师出示例题并指导学生阅读分析:这个问题可以看成是求两名选手三项成绩的加权平均数,50%,40%,10%说明演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度,是三项成绩的权.学生在阅读过程中明确下列问题:(1)演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度用什么数据说明?(2)要想决出两人的名次,必须求两人的总成绩,实质上是求这两名选手三项成绩的加权平均数.学生根据加权平均数的计算公式先分别计算出两名选手的总成绩,教师进一步引导写出解答过程.解:选手A的最后得分是=90,选手B的最后得分是=91.由上可知选手B获得第一名,选手A获得第二名.[设计意图]让学生掌握自学的方法,提高学生独立分析问题、解决问题的能力.通过问题的解决,让学生进一步体会数据的权的作用,体验参与数学活动的乐趣.(1)加权平均数的意义:在一组数据中,由于每个数据的权不同,所以计算平均数时,用加权平均数,才符合实际.(2)数据的权的意义:数据的权能够反映数据的相对“重要程度”.(3)加权平均数公式:=.1.晨光中学规定学生的学期体育成绩满分为100分,其中平时体育活动评估成绩占20%,期中成绩占30%,期末成绩占50%.则平时体育活动评估成绩、期中成绩、期末成绩的权分别为、和.解析:根据权的概念解决即可.答案:20%30%50%2.学校把学生学科的期中、期末两次成绩分别按40%,60%的比例计入学期学科总成绩.小明期中数学成绩是85分,期末数学成绩是90分,那么他的学期数学总成绩是()A.85分B.87.5分C.88分D.90分解析:根据学期数学成绩=期中数学成绩×所占的百分比+期末数学成绩×所占的百分比即可求得学期总成绩.故选C.3.一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩的20%,面试占30%,实习成绩占50%,各项成绩如下表所示:(单位:分)应聘笔试面试实习者甲85 83 9080 85 92试判断谁会被公司录用,为什么?解:甲的平均成绩为=86.9,乙的平均成绩为=87.5.因此,乙会被公司录用.4.某单位欲招聘一名技术部门负责人,对甲、乙、丙三位候选人进行了三项能力测试,且各项测试成绩满分均为100分,根据结果择优录取,三位候选人的各项测试成绩如下表所示:(单位:分)测试项目测试成绩甲乙丙沟通能力85 73 73 科研能70 71 65组织能64 72 84力(1)如果根据三项测试的平均成绩,谁将被录用?说明理由.(2)根据实际需要,该单位将沟通能力、科研能力和组织能力三项测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用?说明理由.解:(1)甲的平均成绩为(85+70+64)÷3=73,乙的平均成绩为(73+71+72)÷3=72,丙的平均成绩为(73+65+84)÷3=74,因此,丙的平均成绩最高,丙将被录用.(2)甲的成绩为=76.3,乙的成绩为=72.2,丙的成绩为=72.8.因此,甲的成绩最高,甲将被录用.第1课时1.加权平均数2.例题讲解例题一、教材作业【必做题】教材第113页练习第1,2题;教材第121页习题20.1第1题.【选做题】教材第122页习题20.1第5题.二、课后作业【基础巩固】1.在中国好声音选秀节目中,四位参赛选手的各项得分如下表,如果将专业、形象、人气这三项得分按3∶2∶1的比例确定最终得分,最终得分最高的进入下一轮比赛,则进入下一轮比赛的是()(每项按10分制)测试内测试成绩容小赵小王小李小黄专业素6 7 8 8质形象表8 7 6 9现人气指8 10 9 6数A.小赵B.小王C.小李D.小黄2.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下:采访写计算机创意设作计小70分60分86分明小90分75分51分亮小60分84分72分丽现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权重比由3∶5∶2变成5∶3∶2,成绩变化情况是() A.小明增加最多 B.小亮增加最多C.小丽增加最多D.三人的成绩都增加3.希望中学一个学期的数学总平均分是按下图进行计算的.该校李飞同学这个学期的数学成绩如下:(单位:分)李飞平时作业期中考试期末考试90 8588则李飞这个学期数学总平均分为.4.某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙种糖果30千克混合成的什锦糖果的单价应定为.【能力提升】5.学生的学科期末成绩由期考分数、作业分数、课堂参与分数三部分组成,按各占30%,30%,40%的比例确定.已知晓明的数学期考80分,作业90分,课堂参与85分,则他的数学期末成绩为分.6.小丽家上个月吃饭费用为500元,教育费用为200元,其他费用为500元.本月小丽家这三项费用分别增长了10%,30%和5%.小丽家本月的总费用比上个月增长的百分数是多少?7.小李同学七年级第二学期的数学成绩如下表所示:测验类别平时期中考试期末考试测验1测验2测验3测验4成绩88 92 94 90 92 89如果学期的总评成绩是根据如图所示的权重计算,那么小李同学该学期的总评成绩为多少分?(四舍五入精确到1分)8.老师在计算学期总平均分的时候按如下标准:作业占10%,测验占20%,期中考试占35%,期末考试占35%,小关和小兵的成绩如下表:学生作业测验期中考试期末考试小关80 75 71 88 小76 80 68 90分别算出小关和小兵的总平均分.【拓展探究】9.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试成绩(单位:分)测试项甲乙丙目笔试75 80 90面试93 7068根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4∶3∶3的比例确定个人成绩,那么谁将被录用?【答案与解析】1.D(解析:将四个人的测试成绩按比例求出最终成绩,找出成绩最高的即可.)2.B(解析:根据加权平均数的概念分别计算出3人的各自成绩.先求出采访写作、计算机和创意设计这三项的权重比是3∶5∶2各自的成绩,再求出这三项的权重比是5∶3∶2各自的成绩,进行比较.)3.87.5(解析:先从统计图得到相应数据的权重,再利用加权平均数的计算方法求解.)4.11.5元/千克(解析:将三种糖果的总价算出,再除以60即可.)5.85(解析:根据加权平均数的计算公式计算即可.)6.解:500×10%+200×30%+500×5%=135(元),135÷(500+200+500)×100% =11.25%.7.解:平时平均成绩为=91(分),总评成绩为=90.1≈90(分).8.解:小关的学期总平均分为=80×10%+75×20%+71×35%+88×35%=78.65(分),小兵的学期总平均分为'=76×10%+80×20%+68×35%+90×35%=78.9(分).9.解:(1)甲、乙、丙三人的民主评议得分分别为:200×25%=50(分),200×40%=80(分),200×35%=70(分).(2)甲的平均成绩为≈72.67(分),乙的平均成绩为≈76.67(分),丙的平均成绩为=76.00(分).由于76.67>76>72.67,所以候选人乙将被录用.(3)甲的个人成绩为=72.9(分);乙的个人成绩为=77(分);丙的个人成绩为=77.4(分).由于丙的个人成绩最高,所以候选人丙将被录用.本节课把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.平均数是统计中的一个重要概念,新教材注重了学生在经历统计活动的过程中体会平均数的本质内涵,理解平均数的意义,发展学生的统计观念.基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值,努力做到由传统的数学课堂向实验课堂转变.在教学过程中,高估了学生理解加权平均数的能力,主要困难在于一些学生不能对权的含义理解透彻.适当增加学生熟知的一些实例,通过计算平均数,深刻理解权的含义及对平均数的影响.练习(教材第113页)1.解:(1)甲:=88(分),乙:=87.5(分),故甲将被录取.(2)甲:=87.6(分),乙:=88.4(分),故乙将被录取.2.解:=88.5(分).故小桐这学期的体育成绩是88.5分.学生在第二学段已学过平均数,初步了解了平均数的实际意义,这个课时将在此基础上,在研究数据集中趋势的大背景下,学习加权平。
第二十章数据的分析20.1.1平均数第二课时一、教学目标1.核心素养通过进一步学习算术平均数、加权平均数的概念,加深对加权平均数的理解,初步掌握统计解决问题的基本方法,培养学生收集数据提取信息的能力,学会构建模型分析数据,解释数据蕴含的结论.2.学习目标(1)1.1.1 进一步加深对加权平均数的理解.(2)1.1.2经历探索加权平均数对数据处理的过程,体验对统计基本思想的理解过程,学会频数分布表中应用加权平均数的方法.(3)1.1.3能根据频数分布直方图计算平均数,能正确有效应用平均数知识解决问题,提高分析解决问题的能力.3.学习重点根据频数分布表求加权平均数,根据频数分布直方图计算平均数.4.学习难点理解频数、组中值得概念,根据不同特点的频数分布直方图采取相应的处理方法.二、教学设计(一)课前设计1.预习任务阅读教材P128-P130,思考:平均数的意义是什么?如何利用加权平均数的计算公式求一组数据的平均数?2.预习自测1.数据15,23,17,17,22的平均数是_____________,若4,x,5的平均数是7,则3,4,5,x,6五个数的平均数是__________。
2.利用公式x=x/+a计算105,103,101,100,114,108,110,106,98,102的平均数,其中a=___,x/=_______,x=_______。
3.一个班级有45名学生,其中14岁的有16人,15岁的有17人,16岁的有8人,17岁的有4人,那么这个班的平均龄是_________岁。
预习自测参考答案1.18.8,62.100,4.7,104.73.15(二)课堂设计1.知识回顾(1)加权平均数的意义;(2)加权平均数的计算公式2.问题探究问题探究一:加深对加权平均数的理解问题1:某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为个人小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?解:(1)由题意可得,甲组的平均成绩是:(分),乙组的平均成绩是:(分),丙组的平均成绩是:(分),从高分到低分小组的排名顺序是:丙>甲>乙;(2)由题意可得,甲组的平均成绩是:(分),乙组的平均成绩是:(分),丙组的平均成绩是(分),由上可得,甲组的成绩最高.问题2:阳泉同学参加周末社会实践活动,到“富乐花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数:32 39 45 55 60 54 60 28 56 4151 36 44 46 40 53 37 47 45 46(1)前10株西红柿秧上小西红柿个数的平均数是_____,中位数是_____,众数是_____;(2)若对这20个数按组距为8进行分组,请补全频数分布表及频数分布直方图(3)通过频数分布直方图试分析此大棚中西红柿的长势.解:(1)前10株西红柿秧上小西红柿个数的平均数是(32+39+45+55+60+54+60+28+56+41)÷10=47;把这些数据从小到大排列:28、32、39、41、45、54、55、56、60、60,最中间的数是(45+54)÷2=49.5,则中位数是49.5;60出现了2次,出现的次数最多,则众数是60;故答案为:47,49.5,60;(2)根据题意填表如下:个数分组, 28≤x<36, 36≤x<44, 44≤x<52, 52≤x<60, 60≤x<68频数, 2, 5, 7, 4, 2补图如下:故答案为:5,7,4;(3)此大棚的西红柿长势普遍较好,最少都有28个;西红柿个数最集中的株数在第三组,共7株;西红柿的个数分布合理,中间多,两端少.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.问题3:下图反映了甲、乙两班学生的体育成绩。
20.1.2 中位数和众数第2课时1.在解决实际问题中进一步理解平均数、中位数、众数作为数据代表的意义,能根据所给信息求出相应的数据代表.2.结合具体情景体会平均数、中位数、众数三者的特点与差异,能根据具体问题选择适当的量来代表,并作出自己的评判.3.经历探索常见的数据集中趋势的特征数的过程,感受其实际应用,掌握判断方法.重点:进一步认识度量集中数据趋势的平均数、众数、中位数三个特征数.能灵活应用平均数、众数、中位数解决实际问题.难点:进一步认识度量集中数据趋势的平均数、众数、中位数三个特征数.能灵活应用平均数、众数、中位数解决实际问题.一、创设情境,导入新课在端午节到来之前,幸福儿童福利院对全体小朋友爱吃哪几种粽子作调查如下: 名称艾香粽豆沙粽蜜枣粽糯米粽火腿粽人数 3 5 20 11 14幸福儿童福利院调查后最值得关注的是平均数、中位数和众数中的哪个量?你能根据调查统计表中数据为进货员提供进货建议吗?你会解答上面问题吗?这一节课我们就来探究.二、探究归纳活动1:选择统计量描述数据的集中趋势1.问题:某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数 1 800 510 250 210 150 120 人数 1 1 3 5 3 2则这15位营销人员该月销售量的平均数是,中位数是________,众数是________答案:3202102102.思考:假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?提示:不合理.因为15人中有13人的销售额不到320件,320件虽是所给一组数据的平均数,它却不能很好地反映销售人员的一般水平.3.归纳:(1)平均数、中位数和众数都可以反映一组数据的集中趋势,它们各有自己的特点,能够从不同的角度提供信息.在实际应用中,需要分析具体问题的情况,选择适当的量反映数据的集中趋势.(2)①平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大;②当一组数据中某些数据多次重复出现时,众数往往是人们关心的一个量,它不易受极端值的影响,这是它的一个优势;③中位数只需要很少的计算,它也不易受极端值的影响.活动2:例题讲解【例1】三个生产日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月.工商部门为了检查他们宣传的真实性,从三个厂家各抽取11只日光灯管进行检测,灯管的使用寿命(单位:月)如下:甲厂7 8 9 9 9 11 13 14 16 17 19 乙厂7 7 8 8 9 10 12 12 12 12 13 丙厂7 7 7 8 8 12 12 13 13 16 18(1)这三个厂家的广告宣传中,分别利用了统计中的哪一个反映数据集中趋势的统计量?(2)如果三种产品的售价一样,作为顾客的你选购哪个厂家的产品?请说明理由.分析:(1)分别求出这三个厂家的平均数、中位数和众数,根据计算结果进行解答.(2)根据(1)的计算结果进行选择,并说明理由.解:(1)甲厂的平均数、中位数和众数分别为12,11,9;乙厂的平均数、中位数和众数分别为10,10,12;丙厂的平均数、中位数和众数分别为11,12,7.根据计算的结果可知这三个日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月,甲厂的广告利用了统计中的平均数;乙厂的广告利用了统计中的众数;丙厂的广告利用了统计中的中位数.(2)根据以上分析选用甲厂的产品.因为它的平均数较真实地反映灯管的使用寿命.或选用丙厂的产品.因为该厂有一半以上的灯管使用寿命超过12个月.活动3:平均数、中位数和众数的综合应用【例2】在对全市初中生进行的体质健康测试中,青少年体质研究中心随机抽取的10名学生的坐位体前屈的成绩(单位:厘米)如下:11.210.511.410.211.411.411.29.512.010.2(1)通过计算,样本数据(10名学生的成绩)的平均数是10.9,中位数是________,众数是________.(2)一个学生的成绩是11.3厘米,你认为他的成绩如何?说明理由.(3)研究中心确定了一个标准成绩,等于或大于这个成绩的学生该项素质被评定为“优秀”等级.如果全市有一半左右的学生能够达到“优秀”等级,你认为标准成绩定为多少?说明理由.分析:(1)用中位数,众数的定义得出答案.(2)方法一:将这名学生的成绩与中位数进行比较,方法二:将这名学生的成绩与平均数相比较.(3)要让一半学生达到“优秀”等级,这个衡量标准取中位数,即标准成绩定为11.2厘米(中位数).解:(1)中位数是11.2,众数是11.4.(2)方法一:从样本数据的中位数是11.2得到,可以估计在这次坐位体前屈的成绩测试中,全市大约有一半学生的成绩大于11.2厘米,有一半学生的成绩小于11.2厘米,这位学生的成绩是11.3厘米,大于中位数11.2厘米,可以推测他的成绩一半以上学生的成绩好.方法二:从样本数据的平均数是10.9得到,可以估计在这次坐位体前屈的成绩测试中,全市学生的平均成绩是10.9厘米,这位学生的成绩是11.3厘米,大于平均成绩,可以推测他的成绩比全市学生的平均成绩好.(3)如果全市有一半左右的学生评定为“优秀”等级,标准成绩应定为“11.2厘米”(中位数).因为从样本情况看,成绩在11.2厘米以上(含11.2厘米)的学生占总人数的一半左右.可以估计,如果标准成绩定为11.2厘米,全市将有一半左右的学生能够评定为“优秀”等级.总结:平均数、中位数和众数的作用平均数、中位数和众数都是来刻画数据平均水平的统计量,平均数常用于表示统计对象的一般水平,中位数表示这组数据的中等水平,而众数刻画了数据中出现次数最多的情况.三、交流反思这节课我们学习了选择统计量描述数据的集中趋势,练习时,在同一具体问题中分别求平均数、中位数和众数,目的是比较这三个统计量在描述一组数据集中趋势时的不同角度,有助于了解三个概念之间的联系与区别,有助于我们在实际应用中选择合理的统计量来描述数据的集中趋势.四、检测反馈1.某校九年级有11名同学参加数学竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自已的成绩,她想知道自已能否进入决赛,还需要知道这11名同学成绩的 ()A.中位数B.众数C.平均数D.最高分2.某品牌鞋店在一个月内销售某款女鞋,各种尺码鞋的销量如下表所示:尺码/厘米22.5 23 23.5 24 24.5销售量/双35 40 30 17 8通过分析上述数据,对鞋店业主的进货最有意义的是()A.平均数B.众数C.中位数D.最小鞋号3.数学老师在录入班级50名同学的数学成绩时,有一名同学的成绩录入错了,则该组数据一定会发生改变的是()A.中位数B.众数C.平均数D.中位数、众数、平均数都一定发生改变4.歌唱比赛有二十位评委给选手打分,统计每位选手得分时,会去掉一个最高分和一个最低分,这样做,肯定不会对所有评委打分的哪一个统计量产生影响________.(填“平均数”或“中位数”或“众数”)5.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:加工件数540 450 300 240 210 120人数 1 1 2 6 3 2 (1)这15人该月平均的加工零件数是________件,加工零件数在________件的人数最多,中间的加工零件数是________件.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为.(请填“合理”或“不合理”)6.某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分满分均为100分.前六名选手的得分如下:序号项目 1 2 3 4 5 6笔试成绩/分85 92 84 90 84 80面试成绩/分90 88 86 90 80 85根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的中位数是________分,众数是________分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余5名选手的综合成绩,并以综合成绩排序确定前两名人选.五、布置作业教科书第121页习题20.1第2,7,8,9题.六、板书设计七、教学反思关于平均数、中位数和众数综合应用:(1)首先要让学生明确认识到平均数、中位数和众数是度量集中趋势的三个主要特征数,它们具有不同的特点和应用场合,掌握它们之间的关系和各自的不同特点,有助于学生在实际应用中选择合理的统计量来描述数据的集中趋势.(2)在实际应用中,选择哪一个统计量来描述数据的集中趋势,需要综合考虑问题的具体情况、数据的特征以及统计量的特点等作出选择.(3)要注意让学生充分体会各种统计量的统计意义,对选择适当的统计量解决问题、用样本估计总体以及数据处理的基本过程有进一步的认识.。
人教版八年级下册数学第20章数据的分析20.1数据的集中趋势 20.1.2 中位数和众数课时1 中位数和众数教案【教学目标】知识与技能目标1.认识中位数和众数,并会求一组数据的众数和中位数;2.能够在具体的情境中选择合适的统计量表示数据;3.培养学生运用数学来解决实际问题的意识,养成“用数字来说话”的思想和习惯.过程与方法目标通过设置问题情境,经过探索、研究、解决问题,使学生经历中位数和众数产生的过程,感受统计在生活中的应用.情感、态度与价值观目标1.通过小组间的交流与合作,体验数学活动充满探索与创新的特点,从而培养学生的合作交流意识和探索精神;2.在解决实际问题的情境中,体会数学与实际生活的联系,增强统计意识,培养统计能力.【教学重点】理解中位数、众数的概念,会求一组数据的中位数和众数.【教学难点】理解平均数、中位数和众数这三个统计量之间的联系与区别,利用中位数、众数分析数据信息并作出决策.【教学准备】教师准备:教学中出示的例题.学生准备:复习平均数、加权平均数的定义,并完成本节学案中的自主学习内容.【教学过程设计】一、情境导入运动会男子50m步枪三姿射击决赛.甲、乙两位运动员10次射击的成绩如但由于第10次射击,意外地未能击中靶子,最终乙以总分第一获得该项目的第一名.你认为用10次射击的平均数来表示甲射击成绩的实际水平合适吗?如果你认为不合适.那么应该怎样评价甲射击的实际水平?一组数据的“平均水平”除了用平均数反映以外,还可以用中位数、众数来反映.二、合作探究知识点一:中位数【类型一】直接求一组数据的中位数例1)分别为25,27,27,26,28,28,28.则这组数据的中位数是()A.28B.27C.26D.25解析:首先把数据按从小到大的顺序排列为25、26、27、27、28、28、28,则中位数是27.故选B.方法总结:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).【类型二】根据统计表求中位数例210名同学在一周内的读书时间,他们一周内的读书时间累计如下表,则这10名同学一周内累计的读书时间的中位数是()A.8B.7解析:∵共有10名同学,∴第5名和第6名同学的读书时间的平均数为中位数,则中位数为8+102=9.故选C.方法总结:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【类型三】在两种不同的统计图中求中位数例3计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是()A.94,96B.96,96C.94,96.4 D.96,96.4解析:总人数为6÷10%=60(人),则94分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30与31个数据都是96分,这些职工成绩的中位数是(96+96)÷2=96;这些职工成绩的平均数是(92×6+94×12+96×15+98×18+100×9)÷60=(552+1128+1440+1764+900)÷60=5784÷60=96.4.故选D.方法总结:解题的关键是从统计图中获取正确的信息并求出各个小组的人数.然后求中位数和平均数.知识点二:众数【类型一】直接求一组数据的众数例4(单位:码)由小到大是20,21,21,22,22,22,22,23,23.这组数据的中位数和众数是()A.21和22 B.21和23C.22和22 D.22和23解析:数据按从小到大的顺序排列为20,21,21,22,22,22,22,23,23,所以中位数是22;数据22出现了4次,出现次数最多,所以众数是22.故选C.方法总结:一组数据中出现次数最多的数据叫做众数.【类型二】在条形统计图中求众数例5某校男子足球队的年龄分布如右图所示,则这些队员年龄的众数是()A.12B.13C.14D.15解析:观察条形统计图知年龄为14岁的人最多,有8人,故众数为14.故选C.方法总结:求一组数据的众数的方法:找出频数最多的那个数据.若几个数据频数都是最多且相同,此时众数就是这多个数据.【类型三】平均数、众数和中位数的综合考查例6别是()A.4,5B.5,5C.5,6D.5,8解析:∵3,x,4,5,8的平均数为5,∴(3+x+4+5+8)÷5=5,解得x=5.把这组数据从小到大排列为3,4,5,5,8,∴这组数据的中位数为5.∵5出现的次数最多,∴这组数据的众数是5.故选B.方法总结:解决本题的关键是掌握平均数、众数和中位数的求法.知识点三:平均数、众数和中位数的选择例7某公司33名职工的月工资(单位:元)如下:(2)假设副董事长的工资从8000元提升到20000元,董事长的工资从8500元提升到30000元,那么新的平均数、中位数、众数又各是多少(精确到个位)?(3)你认为哪个统计量更能反映这个公司职工的工资水平?请说明理由.解析:(1)(2)根据平均数、中位数、众数的概念计算;(3)由于副董事长、董事长的工资偏高,使月平均工资偏大,也就是说用平均数来反映这个公司职工的工资水平有很大的误差.应用公司职工月工资的中位数或众数来反映这个公司的工资水平.解:(1)公司职工月工资的平均数为133×(8500+8000+6500×2+6000+5500×5+5000×3+4500×20)≈5091;把33个数据按从小到大排列可得中位数为4500,众数为4500;(2)新的平均数为133×(30000+20000+6500×2+6000+5500×5+5000×3+4500×20)≈6106;把33个新的数据按从小到大排列可得中位数仍为4500,众数仍为4500;(3)由于副董事长、董事长的工资偏高,使月平均工资与绝大多数职工的月工资差距很大,也就是说用平均数来反映这个公司职工的工资水平有很大的误差.显然用公司职工月工资的中位数或众数更能反映这个公司的工资水平.方法总结:此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.三、教学小结师生共同回顾所学主要内容:中位数众数概念将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称处于中间位置的数为这组数据的中位数;如一组数据中出现次数最多的数据就是这组数据的众数果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数作用中位数也是用来描述数据的集中趋势的,它是一个位置代表值,如果知道一组数据的中位数,那么可以知道,小于或大于这个中位数的数据约各占一半众数也常作为一组数据的代表,用来描述数据的集中趋势,当一组数据有较多的重复数据时,众数往往是人们所关心的一个量区别中位数的优点是计算简单,只与其在数据中的位置有关,但不能充分利用所有的数据信息.众数只与其在数据中重复出现的次数有关,而且有时不是唯一的, 但不能充分利用所有的数据信息,而且当各个数据的重复次数大致相等时,众数往往没有特别的意义联系它们从不同角度描述了一组数据的集中趋势【板书设计】20.1数据的集中趋势20.1.2中位数和众数课时1中位数和众数1.中位数2.众数3.平均数、众数和中位数的应用4.例题讲解例1例2【课堂检测】1.1.某校在预防H1N1流感过程中,坚持每日检查体温,下表是该校八年级四班同学一天的体温数据统计表,则该班40名学生体温的中位数是() 体温/℃ 36.0 36.1 36.2 36.3 36.4 36.5 36.6 36.7 36.8 36.9 37.0人数0 2 0 5 7 5 6 3 8 3 1A. 36.8 ℃B. 36.5 ℃C. 36.6 ℃D. 36.4 ℃解析:题中已将40人的体温从小到大排列,找第20,21人的体温,均为36.6 ℃,故该班40名学生体温的中位数是36.6 ℃.故选C.2.在下表这组测试体重的数据中,众数是( )体重/kg 33 36 39 42 45 48人数/人 4 5 12 10 4 3A.39B.48C.12D.3解析:由表可以看出有4个33,5个36,12个39,10个42,4个45,3个48,其中39出现的次数最多,根据众数的意义,在一组数据中,出现次数最多的数就是这组数据的众数,所以39就是这组数据的众数.故选A.3.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A.21,21B.21,21.5C.21,22D.22,22解析:从图中可以看出出现最多的数据是21,因此众数是21.气温为20 ℃,21 ℃,22 ℃,23 ℃和24 ℃分别有4天,10天,8天,6天和2天,按从小到大排序后处在最中间的两个数是22,因此中位数为22.故选C.4.在数据-1,0,4,5,8中插入一个数据x,使该组数据的中位数是3,则x=.解析:在数据-1,0,4,5,8中,插入一数据x,使得该组数据的中位数是3,则(4+x)÷2=3,解得x=2.故填2.5.在一次数学知识竞赛中,某班20名学生的成绩如下表所示:成绩/分50 60 70 80 90人数 2 3 6 7 2分别求这些学生成绩的众数、中位数和平均数.解:平均数是=72(分);由表可知80分对应的人数最多,因此这组数据的众数应该是80分;由于人数总和是20,为偶数,将数据从小到大排列后,第10个和第11个数据都是70,因此这组数据的中位数应该是70分.5.某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表:部门A B C D E F G人数 1 1 2 4 2 2 3年利润/(万元/人) 20 5 2.5 2.1 1.5 1.5 2(1)该公司每人所创年利润的平均数、中位数、众数各是多少?(2)你认为应该用哪个数据来描述该公司每人所创年利润的一般水平比较合适?解析:(1)把所有数据相加,注意每个数据的个数不一样,所得的和除以15,得到平均数,把所有的数据按照从小到大的顺序排列,有15个数字,最中间一个是中位数.(2)用来描述该公司每人所创年利润的一般水平一般是平均数和中位数,该公司A部门每人所创年利润与其他部门每人所创年利润差距很大,导致平均数与中位数偏差很大,应用中位数来描述较合理.解:(1)(20+5+2.5×2+2.1×4+1.5×4+2×3)÷15=50.4÷15=3.36(万元),故该公司每人所创年利润的平均数是3.36万元.把所有的数据按照从小到大的顺序排列,有15个数字,最中间一个是2.1,故该公司每人所创年利润的中位数为2.1万元.2.1万元和1.5万元在这组数据中出现的次数最多,所以该公司每人所创年利润的众数是2.1万元和1.5万元.(2)该公司A部门每人所创年利润与其他部门每人所创年利润差距很大,导致平均数与中位数偏差很大,应用中位数来描述该公司每人所创年利润一般水平比较合理.【教学反思】成功之处:本节课的教学设计遵循学生的认知心理,通过设计学生熟悉的问题情境,激发学生的学习兴趣及积极性,适时组织与引导学生自主探索、与同伴合作交流,认识中位数、众数的特点,能根据实际问题,选择适当的统计量,表示一组数据的不同特征,突破重难点,完成本节课的学习目标,让学生感受“现实的数学、有用的数学”.不足之处:学生对中位数和众数的定义的掌握和理解较易接受,但在求中位数时容易出错.再教设计:在教学中需强调:(1)先将一组数据排序;(2)当一组数据的个数是偶数时,则要求中间两个数的平均数作为这组数据的中位数.教学过程中精心设计几种不同情形,巩固学生对中位数的求法.人教版八年级下册数学第20章数据的分析20.1数据的集中趋势20.1.2中位数和众数课时1中位数和众数学案【学习目标】1.理解中位数、众数的概念,会求一组数据的中位数、众数;2.掌握中位数、众数的作用,会用中位数、众数分析实际问题.【学习重点】理解中位数、众数的概念,会求一组数据的中位数、众数.【学习难点】会用中位数、众数分析实际问题.【自主学习】一、知识链接x.1.n个数据a1,a2,a3,a4,…,a n的算术平均数=2.若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则______________叫做这n个数的加权平均数.x.3.n个数据:f1个a1,f2个a2,…,f n个a n,它的加权平均数为=二、新知预习1.下表是某公司员工月收入的资料.(1)计算这个公司员工月收入的平均数;(2)如果用(1)算得的平均数反映公司全体员工月收入水平,你认为合适吗?(3)该公司员工的中等收入水平大概是多少元?你是怎样确定的?(4)“平均数”和“中等水平”谁更合理地反映了该公司绝大部分员工的月工资水平?这个问题中,中等水平的含义是什么?2.自主归纳:(1)将一组数据按照由小到大(或由大到小)的顺序排列:如果数据的个数是奇数,则称为这组数据的中位数;如果数据的个数是偶数,则称为这组数据的中位数.(2)一组数据中的数据称为这组数据的众数.三、自学自测1.判断:(1)一组数据中间的数称为中位数.()(2)一组数据中出现次数最多的数称为这组数据的众数.()(3)一组数据中的中位数和众数是唯一的一个数.()(4)一组数据的中位数一定是这组数据中的某个数.()2.求出下面各组数据的中位数和众数:(1)90,23,27,40,90,18,52,100;(2)21,15,32,32,46,32,58,64,98.四、我在自学过程中产生的疑惑【构建新知】一、新知梳理知识点1:中位数问题1:确定一组数据的中位数时,要注意什么?问题2:中位数反映的是一组数据的何种特征,它有何意义?【典例探究】例1在一次男子马拉松长跑比赛中,抽得12名选手所用的时间(单位:min)如下:136 140 129 180 124 154146 145 158 175 165 148(1)样本数据(12名选手的成绩)的中位数是多少?(2)一名选手的成绩是142min,他的成绩如何?总结归纳:1.中位数是一个位置代表值(中间数),它是唯一的.2.如果一组数据中有极端数据,中位数能比平均数更合理地反映该组数据的整体水平.3.如果已知一组数据的中位数,那么可以知道,小于或大于这个中位数的数据各占一半,反映一组数据的中间水平.例2 已知一组数据10,10,x,8(由大到小排列)的中位数与平均数相等,求x 值及这组数据的中位数.分析:由题意可知最中间两位数是10,x,列方程求解即可.知识点2:众数问题3:如果小张是该公司的一名普通员工,那么你认为他的月工资最有可能是多少元?问题4:一组数据的众数一定是唯一的吗?请举例说明.例3 一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如表所示.你能根据表中的数据为这家鞋店提供进货建议码?【跟踪练习】1.数学老师布置10道选择题,课代表将全班同学的答题情况绘制成条形统计图,根据图表,全班每位同学答对的题数的中位数是______.2.一组数据18,22,15,13,x ,7,它的中位数是16,则x 的值是_______.3.下面的扇形图描述了某种运动服的S 号、M 号、L 号、XL 号、XXL 号在一家商场的销售情况.请你为这家商场提出进货建议.三、归纳总结【学习检测】1.2015年某中学举行的春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.80 1.50 1.60 1.65 1.70 1.75人数 1 2 4 3 3 2这些运动员跳高成绩的中位数和众数分别是 ( )A.1.70 m,1.65 mB.1.70 m,1.70 mC.1.65 m,1.60 mD.3,4C(解析:按从小到大的顺序排列,1.50 m 的有2个,1.60 m 的有4个,1.65 m 的有3个,1.70 m 的有3个,1.75 m 的有2个,1.80 m 的有1个,故中位数是1.65 m;出现次中位数和众数中位数将一组数据按照由小到大(或由大到小)的顺序排列:如果数据的个数是奇数,则称 为这组数据的中位数;如果数据的个数是偶数,则称 为这组数据的中位数. 众数 一组数据中 的数据称为这组数据的众数.数最多的数据是1.60,故众数是1.60 m.故选C.)2.10名工人某天生产同一零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有()A.a>b>cB.c>b>aC.b>c>aD.c>a>bB(解析:∵生产的件数分别是15,17,14,10,15,17,17,16,14,12,总和为147,∴平均数a==14.7,样本数据17出现次数最多,为众数,即c=17;将数据从小到大排列为10,12,14,14,15,15,16,17,17,17,∴中位数b=15.∵17>15>14.7,∴c>b>a.故选B.)3.样本数据10,10,x,8的唯一众数与平均数相同,那么这组数据的中位数是()A.8B.9C.10D.12C(解析:根据题意,得(10+10+x+8)÷4=10,解得x=12.将这组数据从小到大重新排列为8,10,10,12,最中间的两个数的平均数即为中位数,是10.故选C.)4.数据1,2,8,5,3,9,5,4,5,4的众数、中位数分别为()A.4.5、5 B.5、4.5C.5、4 D.5、55.要调查多数同学们喜欢看的电视节目,应关注的是哪个数据的代表()A.平均数B.中位数C.众数6.在演讲比赛中,你想知道自己在所有选手中处于什么水平,应该选择哪个数据的代表()A.平均数B.中位数C.众数7.数据8,9,9,8,10,8,9,9,8,10,7,9,9,8的中位数是,众数是.99(解析:从小到大排列此组数据为7,8,8,8,8,8,9,9,9,9,9,9,10,10,一共14个数据,第7个与第8个都是9,所以中位数是(9+9)÷2=9;数据9出现了6次,次数最多,所以众数为9.)8.对于数据:3,3,2,3,6,3,3,6,3,2.则在下列结论中:①这组数据的众数是3;②这组数据的众数与中位数的数值不相等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等.其中正确的结论有()A.1个B.2个C.3个D.4个A(解析:从小到大排列数据为2,2,3,3,3,3,3,3,6,6.数据3出现了6次,最多,众数为3;第5个、第6个数据均是3,中位数是3;平均数为(2+2+3+3+3+3+3+3+6+6)÷10=3.4.故选A.)9.数据92,96,98,100,120,x的众数是96,则这组数据的中位数是.97(解析:∵92,96,98,100,120,x的众数是96,∴x=96,将这组数据按从小到大的顺序排列为92,96,96,98,100,120,处于中间位置的是96,98,那么由中位数的定义可知这组数据的中位数是(96+98)÷2=97.故填97.)10.为了了解开展“孝敬父母,从家务事做起”活动的实施情况,某校抽取八年级某班50名学生,调查他们一周做家务所用时间,得到一组数据,并绘制成下表,请根据下表完成各题:每周做家务01 1.52 2.53 3.54的时间(小时)人数226121343(1)填写表格中未完成的部分;(2)该班学生每周做家务的平均时间是 .(3)这组数据的中位数是 ,众数 .11.某校男子足球队的年龄分布如下面的条形图所示.请找出这些队员年龄的平均数、众数、中位数,并解释它们的意义.12.为了加强市区交通秩序管理,交警部门在十字路口安装了红绿灯实行交道管制.以下数据是某十字路口处,十个相同时间段(即绿灯亮一次的持续时间,红、绿灯交替各持续40秒)内南北方向机动车通过的数据(单位:辆):15,22,15,17,18,15,19,15,20,14.(1)该组数据的众数和中位数各是多少?(2)估计1小时内南北方向通过该路口的车有多少辆.解:(1)根据众数的概念,15出现了4次,出现的次数最多,则这组数据的众数是15.根据中位数的概念,首先将这组数据从小到大排列,即14,15,15,15,15,17,18,19,20,22,则中位数是15和17的平均数,即16.答:众数是15,中位数是16.(2)容易求得样本平均数是17,则估计1小时内南北方向通过该路口的车有(3600÷40÷2)×17=765(辆).答:1小时内南北方向通过该路口的车约有765辆.13.某公司销售部有营销人员15人,销售部为了制定某种商品的销售定额,统计了这15人某月的销售量如下(单位:件):1800,510,250,250,210,250,210,210,150,210,150,120,120,210,150.(1)这组数据的平均数、中位数和众数各是多少?(2)假设销售部负责人把每位营销人员的月销售量定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额,并说明理由.解:(1)平均数是=320(件).数据按从大到小的顺序排列,处于中间位置的是210,因而中位数是210件.210出现了5次,次数最多,所以众数是210件.(2)不合理.理由如下:15人中有13人的销售量达不到320件,320件虽是所给数据的平均数,它却不能很好地反映销售人员的一般水平,销售量定为210件合适些,因为210件既是中位数,又是众数,是大部分人能达到的定额.14.某商店3,4月份出售某一品牌各种规格的空调,销售台数如下表所示:根据表格回答问题:(1)商店出售各种规格的空调中,众数是多少?(2)假如你是经理,现要在有限的资金下进货,将如何决定?解:(1)卖出空调的台数中:1匹的为28台,1.2匹的为50台,1.5匹的为22台,2匹的为12台,可得买1.2匹的人数最多,故众数为1.2匹.(2)通过观察可得1.2匹的销售量最大,所以要多进1.2匹的空调,由于资金有限,就要少进2匹的空调.【拓展探究】15.某公司的33名员工的月工资(以元为单位)如下:职位董事长副董事长董事总经理经理管理员职员人数 1 1 2 1 5 3 20工资5500 5000 3500 3000 2500 2000 1500(1)求该公司员工月工资的平均数、中位数、众数;(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到1元)(3)在(2)中你认为应该使用平均数和中位数中哪一个来反映该公司员工的工资水平?解:(1)平均数为=1500+(4000+3500+2000×2+1500+1000×5+500×3+0×20)≈1500+591=2091(元), 中位数为1500元,众数为1500元.(2)平均数为=1500+(28500+18500+2000×2+1500+1000×5+500×3+0×20)≈1500+1788=328 8(元),中位数为1500元,众数是1500元.(3)在(2)中,应该使用中位数来反映该公司员工的工资水平,原因是公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.。