高数1-2极限概念
- 格式:ppt
- 大小:1.52 MB
- 文档页数:24
大一高数极限知识点归纳总结大一高数中的极限是一个非常重要且基础的概念,它在数学中发挥着至关重要的作用。
极限的概念在不同领域有不同的含义和应用,如物理学、工程学等。
在学习极限的过程中,我们需要深入理解其原理和应用,下面将对大一学生常见的高数极限知识点进行归纳总结。
一、数列极限数列是由一系列数按一定顺序排列而成的特殊集合。
数列可以是无穷的,因此讨论数列时就需要考虑其极限。
数列极限可以理解为数列中的数随着序号的增大趋于某个确定的值。
数列极限的计算需要了解一些基本的性质和方法。
对于数列 {an} ,当n趋于无穷时,如果存在一个实数a,使得对于任意给定的正数ε,总存在正整数N,当n>N时,有|an - a| < ε,那么我们就称数列 {an} 的极限为a,记作lim(an) = a。
在计算数列极限时,可以运用数列的极限性质和一些基本的极限运算法则。
例如,当我们遇到常见的几何数列或等差数列时,可以根据其规律推导出极限值。
二、函数极限函数极限是指当自变量趋于某一个值时,函数的取值趋于某个确定的值。
函数极限是数学分析的基础,对于理解和应用各种函数的性质和特点至关重要。
对于函数 f(x),当x趋于某个值x0时,如果存在一个实数L,使得对于任意给定的正数ε,总存在正数δ,当0 < |x - x0| < δ时,有|f(x) - L| < ε,那么我们就称函数 f(x) 的极限为L,记作lim f(x) = L。
计算函数极限需要运用一些基本的极限性质和方法,如极限的四则运算法则、极限的复合法则等。
此外,还需要结合一些常见函数的特性,如指数函数、对数函数、三角函数等,来求解更加复杂的函数极限。
三、无穷极限无穷极限是指当极限的自变量趋向于无穷大或无穷小的情况下,函数的取值趋于不同的极限。
无穷极限的研究可以帮助我们更深入地理解和运用数学中的极限概念。
1. 当x趋于正无穷大(+∞)时,我们写作x→+∞。
摘要高等数学教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的.然而极限部分绝大部分的运算令很多从中学进入高校的学生感到困窘.本文立足教材的基本概念阐述,着重介绍极限运算过程中极具技巧的解决思路.希望以此文能对学习者有所帮助.关键词高等数学极限技巧高等数学极限运算技巧高等数学的极限与连续是前几章的内容,对于刚入高校的学生而言是入门部分的重要环节.是“初等数学”向“高等数学”的起步阶段.一,极限的概念从概念上来讲的话,我们首先要掌握逼近的思想,所谓极限就是当函数的变量具有某种变化趋势这种变化趋势是具有唯一性,那么函数的应变量同时具有一种趋势,而且这种趋势是与自变量的变化具有对应性.通俗的来讲,函数值因为函数变量的变化而无限逼近某一定值,我们就将这一定值称为该函数在变量产生这种变化时的极限从数学式子上来讲,逼近是指函数的变化,表示为.这个问题不再赘述,大家可以参考教科书上的介绍.二,极限的运算技巧我在上课时,为了让学生好好参照我的结论,我夸过这样一个海口,我说,只要你认真的记住这些内容,高数部分所要求的极限内容基本可以全部解决.现在想来这不是什么海口,数学再难也是基本的内容,基本的方法,关键是技巧性.我记得blog中我做过一道极限题,当时有网友惊呼说太讨巧了其实不是讨巧,是有规律可循的今天我写的内容希望可以对大家的学习有帮助我们看到一道数学题的时候,首先是审题,做极限题,首先是看它的基本形式,是属于什么形式采用什么方法.这基本上时可以直接套用的.1,连续函数的极限这个我不细说,两句话,首先看是不是连续函数,是连续函数的直接带入自变量.2,不定型我相信所有学习者都很清楚不定型的重要性,确实.那么下面详细说明一些注意点以及技巧.第一,所有的含有无穷小的,首先要想到等价无穷小代换,因为这是最能简化运算的.等价代换的公式主要有六个:需要注意的是等价物穷小代换是有适用条件的,即:在含有加减运算的式子中不能直接代换,在部分式子的乘除因子也不能直接代换,那么如果一般方法解决不了问题的话,必须要等价代换的时候,必须拆项运算,不过,需要说明,拆项的时候要小心,必须要保证拆开的每一项极限都存在.此外等价无穷小代换的使用,可以变通一些其他形式,比如:等等.特别强调在运算的之前,检验形式,是无穷小的形式才能等价代换.当然在一些无穷大的式子中也可以去转化代换,即无穷大的倒数是无穷小.这需要变通的看问题.在无穷小的运算中,洛必答法则也是一种很重要的方法,但是洛必答法则适用条件比较单一,就是无穷小比无穷小.比较常见的采用洛必答法则的是无穷小乘无穷大的情况.特别说明无穷小乘无穷大可以改写为无穷小比无穷小或者无穷大比无穷大的形式,这根据做题的需要来进行.第二,在含有∞的极限式中,一般可分为下面几种情况:1,“∞/∞ ”形式如果是幂函数形式的包含幂函数四则运算形式,可以找高次项,提出高次项,这样其他一切项就都是无穷小了,只有高次项是常数.比如:,这道题中,可以看到提出最高次x注意不是其他项都是“0”,原来的x都是常数1了.当然如果分式形式中,只有分子中含有高次项,那么该极限式极限不存在是无穷大,如果只有分母中含有高次项,那么该极限式极限为0,如果分子分母都含有高次项,我们可以直接去看高次项的系数,基本原理其实就是上面所说的提高次项.比如上面的例子,可以直接写1/2.如果不是纯幂函数形式,无法用提高次项的方法提高次项是优先使用的方法,使用洛必达也是一种很好的方法.需要强调的是洛必达是一种解决“∞/∞ ”或“0/0 ”的基本方法,它的严格限制形式只有这两种,所以比较好观察.但是多数时候我们优先采用其他的方法来解决,这主要是考虑运算量的问题.2,“∞-∞ ”形式“ ∞-∞”形式不能直接运算,需要转换形式,即转换成“∞/∞ ”或“0/0 ”的形式,基本解法同上.比如:这道题是转换形式之后是“∞/∞ ”的形式,提高次项解.3“”形式这也是需要转换的一种基本形式.因为无穷大与无穷小之间的倒数关系,所以这种转换时比较简单也是比较容易解决的.转换之后的形式也是“∞/∞ ”或“0/0 ”的形式.第三,“”这种形式的解决思路主要有两种.第一种是极限公式,这种形式也是比较直观的.比如:这道题的基本接替思路是,检验形式是“”,然后选用公式,再凑出公式的形式,最后直接套用公式.第二种是取对数消指数.简单来说,“ ”形式指数的存在是我们解题的主要困难.那么我们直接消掉指数就可以采用其他方法来解决了.比如上面那道题用取对数消指数的方法来解,是这样的:可以看出尽管思路切入点不一样,但是这两种方法有异曲同工之妙.三,极限运算思维的培养极限运算考察的是一种基本能力,所以在做题或者看书的时候依赖的是基本概念和基本方法.掌握一定的技巧可以使学习事半功倍.而极限思维的培养则是对做题起到指导性的意义.如何培养,一方面要立足概念,另一方面则需要在具体的运算中体会,多做题多总结.。
大一高数两个重要极限知识点大一的学生在学习高数时,会接触到很多重要的知识点,其中有两个极限知识点尤为重要。
极限是数学中一个非常基础且重要的概念,它在高数的学习中发挥着重要的作用。
本文将重点介绍大一学生在高数学习中应重点掌握的两个极限知识点。
一、函数的极限和极限存在条件在学习函数极限时,我们首先需要明确什么是极限。
简单来说,函数f(x)在点x=a处的极限是指当x趋于a时,函数f(x)的取值趋于一个确定的有限值L。
数学中常用的表示方法是:lim(x→a) f(x) = L但是,在讨论函数极限时需要注意函数的定义域,并非所有函数都存在极限。
一个函数在某一点的极限存在的条件是,无论从函数的左边还是右边逼近这一点,函数的值都趋近于同一个值。
例如,对于函数f(x) = x/(x-1),当x趋近于1时,从左边和右边逼近,函数的值分别是1和-1/2,因此函数在这一点不具备极限。
在求解极限时,我们可以利用一些基本的极限公式,如常数定理、分式定理、指数幂函数定理等。
同时,我们还可以利用夹逼定理、唯一性定理等重要定理来判断函数极限的存在与计算具体的值。
二、无穷大与无穷小在学习极限时,我们还需要了解无穷大和无穷小的概念。
无穷大是指当自变量趋于某个值时,函数的取值无限增加或无限减小。
无穷小则相反,是指当自变量趋于某个值时,函数的取值无限接近于0。
在高数中,我们用符号±∞来表示无穷大。
例如,当x趋于∞时,函数f(x) = x²的取值趋于无穷大,我们可以表示为:lim(x→∞) f(x) = +∞同样,我们用符号±0来表示无穷小。
当x趋于0时,函数f(x)= sinx / x的取值趋于0,可以表示为:lim(x→0) f(x) = 0无穷大和无穷小往往与极限的求解密切相关。
在求解一些复杂的极限问题时,我们需要用到无穷大和无穷小的性质,以及与之相关的一些重要极限公式,如洛必达法则等。
需要特别注意的是,无穷大和无穷小并不是绝对存在的,它们的存在与具体问题密切相关。
高数极限知识点总结大一学生高数极限知识点总结在大一学生学习高等数学的过程中,极限是一个重要的概念和知识点。
理解和掌握极限的概念对于后续学习微积分等相关内容非常重要。
本文将对大一学生需要掌握的高数极限知识点进行总结和概述。
一、极限的定义极限是数学中的重要概念,指的是当一个变量趋近于某个值时,函数在这个值附近的表现。
对于一般函数,极限的定义如下:设函数f(x)在点x0的某个去心邻域内有定义,如果存在常数L,对于任意给定的ε(ε>0),都存在一个对应的δ(δ>0),使得当0 < |x-x0| < δ时,有|f(x)-L| < ε成立,那么就称函数f(x)在x0处的极限为L。
二、极限的性质1. 唯一性:若函数f(x)在点x0处存在极限,则该极限唯一。
2. 局部有界性:若函数f(x)在点x0处存在极限,则必然存在着它的一个去心邻域,使得函数f(x)在该邻域内有界。
3. 局部保号性:若函数f(x)在点x0处存在极限且极限为L>0(或L<0),那么存在一个去心邻域,使得函数f(x)在该邻域内保持符号不变。
三、求解极限的方法1. 函数极限性质:函数的基本运算,包括四则运算、乘方运算、复合运算等。
2. 两个重要极限:〖lim〗_(x→∞) ((1+1/x)^x)=e 〖lim〗_(x→0) ((sinx)/x)=13. 无穷小量和无穷大量的关系:对于函数f(x),当x趋近于某个值x0时,若f(x)的极限为0,则称f(x)是x→x0时的无穷小量。
四、常见的极限1. 基本初等函数极限:常数函数极限、幂函数极限、指数函数极限、对数函数极限、三角函数极限等。
2. 不定式极限:0/0型极限、∞/∞型极限、0*∞型极限、1^∞型极限等。
3. 复合函数极限:由若干个函数的运算和复合而成的函数的极限。
4. 变量替换法:常用的变量替换有有理函数的分子分母分别用t替换,指数函数与对数函数互为反函数等。
高数函数的极限知识点一、极限的定义1. 数列极限数列 $\{a_n\}$ 极限为 $L$,记作 $\lim_{n \to \infty} a_n = L$,如果对于任意给定的正数 $\epsilon$,总存在一个正整数 $N$,使得当 $n > N$ 时,不等式 $|a_n - L| < \epsilon$ 成立。
2. 函数极限函数 $f(x)$ 当 $x \to c$ 时的极限为 $L$,记作 $\lim_{x \to c} f(x) = L$,如果对于任意给定的正数 $\epsilon$,总存在一个正数 $\delta$,使得当 $0 < |x - c| < \delta$ 时,不等式 $|f(x) - L| < \epsilon$ 成立。
二、极限的性质1. 唯一性如果 $\lim_{x \to c} f(x) = L$ 和 $\lim_{x \to c} f(x) = M$ 都成立,则 $L = M$。
2. 局部有界性如果 $\lim_{x \to c} f(x) = L$,则 $f(x)$ 在 $c$ 的某个邻域内有界。
3. 局部保号性如果 $\lim_{x \to c} f(x) = L$ 且 $L > 0$,则存在 $c$ 的一个邻域,使得在这个邻域内 $f(x) > 0$。
三、极限的计算1. 极限的四则运算如果 $\lim_{x \to c} f(x) = L$ 和 $\lim_{x \to c} g(x) = M$ 都存在,则:- $\lim_{x \to c} [f(x) + g(x)] = L + M$- $\lim_{x \to c} [f(x) - g(x)] = L - M$- $\lim_{x \to c} [f(x) \cdot g(x)] = L \cdot M$- $\lim_{x \to c} [f(x) / g(x)] = L / M$,当 $M \neq 0$。