数列的极限讲解
- 格式:ppt
- 大小:1.36 MB
- 文档页数:30
数列的极限1.数列的极限【知识点的知识】1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n}的项a n 无限趋近于某个常数a(即|a n﹣a|无限地接近于 0),那么就说数列{a n}以a 为极限,记作푙푖푚a n=a.(注:a 不一定是{a n}中的项)푛→∞2、几个重要极限:3、数列极限的运算法则:4、无穷等比数列的各项和:(1)公比的绝对值小于 1 的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做S =푙푖푚S n.푛→∞(2)1/ 3【典型例题分析】典例 1:已知数列{a n}的各项均为正数,满足:对于所有n∈N*,有4푆푛=(푎푛+1)2,其中S n 表示数列{a n}的前n 项푛和.则푙푖푚푎푛=()푛→∞1A.0 B.1 C.2D.2解:∵4S1=4a1=(a1+1)2,∴a1=1.当n≥2 时,4a n=4S n﹣4S n﹣1=(a n+1)2﹣(a n﹣1+1)2,∴2(a n+a n﹣1)=a n2﹣a n﹣12,又{a n}各项均为正数,∴a n﹣a n﹣1=2.数列{a n}是等差数列,∴a n=2n﹣1.푛푛1∴푙푖푚2푛―1=푙푖푚2―1푎푛=푙푖푚푛→∞푛→∞푛→∞푛=12.故选:C.典例 2:已知点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,等差数列{a n}的公差为 1(n∈N*).(1)求数列{a n}、{b n}的通项公式;(2)设 c n =1푛|푃1푃푛|(푛≥2),求푙푖푚(푐2+푐3+⋯+푐푛)的值;푛→∞(3)若d n=2d n﹣1+a n﹣1(n≥2),且d1=1,求证:数列{d n+n}为等比数列,并求{d n}的通项公式.解:(1)∵点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,∴b n=2a n+1,a1=0,∵等差数列{a n}的公差为 1(n∈N*),∴a n=0+(n﹣1)=n﹣1.b n=2(n﹣1)+1=2n﹣1.(2)解:由(1)可得a n﹣a1=n﹣1,b n﹣b1=2n﹣1﹣1=2n﹣2,∴|P1P n| =(푎푛―푎1)2+(푏푛―푏1)2=(푛―1)2+4(푛―1)2=5(푛―1)(n≥2).2/ 3∴c n =1푛|푃1푃푛|=15푛⋅(푛―1)=115(푛―1―1푛),∴c2+c3+…+c n =15[(1―112)+(2―113)+⋯+(푛―1―1푛)]=15(1―1푛),∴푙푖푚(푐2+푐3+⋯+푐푛)=푙푖푚푛→∞푛→∞15(1―1푛)=5;5(3)证明:n≥2,d n=2d n﹣1+a n﹣1,=2d n﹣1+n﹣2,∴d n+n=2(d n﹣1+n﹣1),∴数列{d n+n}为等比数列,首项为d1+1=2,公比为 2,∴푑푛+푛=2푛,∴푑푛=2푛―푛.【解题方法点拨】(1)只有无穷数列才可能有极限,有限数列无极限.(2)运用数列极限的运算法则求数列极限应注意法则适应的前提条件.(参与运算的数列都有极限,运算法则适应有限个数列情形)1(3)求数列极限最后往往转化为푛푚(m∈N)或qn(|q|<1)型的极限.(4)求极限的常用方法:①分子、分母同时除以n m 或a n.②求和(或积)的极限一般先求和(或积)再求极限.③利用已知数列极限(如等).④含参数问题应对参数进行分类讨论求极限.∞⑤∞﹣∞,∞,0﹣0,等形式,必须先化简成可求极限的类型再用四则运算求极限.3/ 3。
数列的极限知识点归纳总结数列的极限是高中数学中重要的概念之一,它在解析几何、微积分等数学领域中起着重要的作用。
本文将对数列的极限进行知识点归纳总结,帮助读者更好地理解和掌握这一概念。
一、定义和概念1. 数列的定义:数列是按照一定顺序排列的一组数的集合。
数列可以用公式表示,常用的表示方式为{an}或{an}∞n=1。
2. 数列的极限定义:对于数列{an},如果存在一个实数a,对于任意给定的正数ε,都存在正整数N,使得当n>N时,有|an - a| < ε,那么称数列{an}的极限为a。
3. 数列的收敛和发散:如果数列{an}存在极限,称该数列收敛;否则,称该数列发散。
二、极限的性质1. 极限唯一性:如果数列{an}收敛,那么它的极限是唯一的。
2. 有界性:对于收敛数列{an},存在一个正数M,使得对于任意的n,有|an| ≤ M。
3. 夹逼定理:如果{an} ≤ {bn} ≤ {cn},并且lim an = lim cn = a,那么lim bn = a。
4. 四则运算法则:若数列{an}和{bn}收敛,并且lim an = a,lim bn = b,则有以下运算结果:- lim(an ± bn) = a ± b- lim(an · bn) = a · b- lim(an / bn) = a / b (b ≠ 0)三、重要的数列极限1. 常数数列:对于常数c,数列{an} = c(n为正整数)的极限为c。
2. 等差数列:对于等差数列{an} = a1 + (n - 1)d,其中a1为首项,d为公差,极限为lim an = a1。
3. 等比数列:对于等比数列{an} = a1 · q^(n - 1),其中a1为首项,q为公比,当|q| < 1时,极限为lim an = 0;当|q| > 1时,极限不存在。
4. 幂函数数列:对于幂函数数列{an} = n^p,其中p为实数,当p >0时,极限为正无穷大;当p < 0时,极限为0。
数列极限的知识点总结一、数列极限的定义1.1 数列首先要了解数列的概念。
数列是由一系列按照一定顺序排列的数所组成的有序集合。
数列通常用符号{an}表示,其中an代表数列的第n个元素。
数列是数学中一种基本的数学概念,它在许多数学问题中都起着重要的作用。
1.2 数列极限接着要了解数列的极限。
数列{an}的极限是指当n趋向于无穷大时,数列中的元素an的值趋近于一个常数L,即lim(an) = L。
如果这样一个数L存在,那么我们就说数列{an}收敛,并且把L称为数列的极限,记作lim(an) = L。
如果这样一个数L不存在,那么我们就说数列{an}发散。
1.3 数列极限的形式化定义对于给定的数ε,如果存在一个正整数N,使得当n大于N时,|an - L| < ε恒成立,那么称L是数列{an}的极限。
这样的N存在的话,就称这N是数L和ε的函数。
1.4 无穷大数列如果数列{an}中的元素an当n趋向于无穷大时,它的绝对值|an|趋向于无穷大,那么就称数列{an}是无穷大的。
对于无穷大数列,我们通常用符号lim(an) = ±∞来表示。
1.5 注意事项在讨论数列极限的问题时,需要注意以下几点:1) 数列的极限可能是一个有限的常数,也可能是无穷大。
2) 一般来说,数列的极限不一定存在,也可能有多个极限(一般在不同n的取值范围内)。
3) 要特别注意当n趋于无穷大时,数列中的元素an的绝对值的行为,关系到数列是否是无穷大数列。
以上是数列极限的基本概念和定义,下面我们将介绍数列极限的相关性质。
二、数列极限的相关性质2.1 唯一性如果数列{an}收敛,那么它的极限是唯一的。
换句话说,如果lim(an) = L1和lim(an) = L2,那么L1 = L2。
2.2 有界性如果数列{an}收敛,那么它一定是有界的,即存在一个正实数M,使得|an| < M(n∈N)。
2.3 保号性如果数列{an}收敛到一个有限的极限L,那么当n充分大时,数列{an}的元素和L有相同的正负号。
极限与连续一、数列的极限定义:1、给定数列{x n },如果当n A ,则称数列{x n }以A 为极限,记作:lim n→∞x n =A 或者x n →A (n →∞)2、当数列{x n }以实数A 为极限时,称数列{x n }收敛于A ,否则称数列{x n }发散。
二、数列极限的性质:1)极限的惟一性:若数列收敛,则其极限惟一,若 lim n→∞x n =a ,则lim n→∞x n+1=a2)有界性:收敛数列必有界. (数列有界是数列收敛的必要非充分条件)3)数列的极限:如数列: ,12,,432,322,212++n n则它的极限为3即:3121lim 2lim )12(lim =+=++=++∞→∞→∞→n nn n n n n三、几个需要记忆的常用数列的极限 01lim =∞→n n 11lim =+∞→n n n 0lim =∞→n n q )1(<q )(lim 为常数a a a n =∞→四、运算法则:如果 A a n =∞→lim B b n =∞→lim则: B A b a n ±=±∞→)(lim B A b a n ⋅=⋅∞→)(lim )0(,lim≠=∞→B BA b a n二、函数极限:▪函数极限lim x→∞f(x)=A 的充分必要条件是lim x→−∞f(x)=lim x→+∞f(x)=A▪函数极限lim x→x 0f(x)=A 的充分必要条件是lim x→x 0−f(x)=lim x→x 0+f(x)=A▪分段函数极限与该点有无定义无关,只与左右极限有关. 即 lim x→x 0f (x )存在⇌ lim x→x 0−f (x )= lim x→x 0+f (x )▪函数极限的性质:1)极限的惟一性:若函数f(x)当x →x 0(或x →∞)时有极限,则其极限惟一.▪极限运算法则: 设limf(x)=A,limg(x)=B,则 1)lim[f(x)±g(x)]=A ±B 2)lim[f(x)g(x)]=AB 3)当B ≠0时,lim f(x)g(x) =AB 4)lim[cf(x)]=climf(x) (c 为常数) 5)lim[f(x)]k = [limf(x)]k (k 为常数)▪小结..:.当a 0≠0, b 0≠0时,有lim x→∞a 0x n +a 1x n−1+⋯+a nb 0x m +b 1x m−1+⋯+b m= {a 0b 0 当n =m 时 0 当 n <m 时 ∞ 当n >m 时▪复合函数运算法则:lim x→x 0f[φ(x )]=lim u→u 0f (u )▪数列的夹逼准则:设有3个数列{x n }{y n }{z n },满足条件: 1)y n ≤x n ≤z n (n=1,2,…);2)lim n→∞y n =lim n→∞z n =a ,则数列{x n }收敛,且lim n→∞x n =a▪函数夹逼准则:设函数f(x),g(x),h(x)在点x 0的某去心邻域内有定义,且满足条件: 1)g(x) ≤f(x) ≤h(x);2) lim x→x 0g(x)=A, lim x→x 0h (x )=A . 则极限lim x→x 0f (x )存在且等于A.▪单调有界准则:单调有界数列必有极限.即单调增加有上界的数列必有极限;即单调减少有下界的数列必有极限.▪两个重要的极限: ▪重要极限Ⅰ:lim x→0sinx x=1▪重要极限Ⅱ:lim x→∞(1+1x )x=e , lim x→0(1+x )1x=e▪无穷小的性质:1)有限个无穷小的代数和为无穷小. 2)有界变量与无穷小的乘积为无穷小. 3)常量与无穷小的乘积为无穷小. 4)有极限的量无穷小的乘积为无穷小. 5)有限个无穷小的积为无穷小.▪在某个自变量变化过程中limf(x)=A 的充要条件是f(x)=A+α(x). 其中α(x)是该自变量变化过程中的无穷小量.▪无穷小的比较:设α=α(x) ,β=β(x)都是自变量同一变化过程中的无穷小. 1.若lim βα=c (c ≠0,是常数),则称β与α是同阶无穷小. 2.若lim βα=1,则称β与α是等价无穷小,记作β~α. 3.若lim βα=0,则称β与α是高阶无穷小,记作β=o(α) 4.若lim βαk =c(c ≠0,k 是正整数), 则称β与α是k 阶无穷小.5.α~β的充要条件为α-β是α(或β)的高阶无穷小,即β−α=o (α)或β=α+o(α)6.α,β, α′,β′,都是自变量同一变化过程中的无穷小,且 α~α′,β~β′,lim β′α′存在,则有lim βα= lim β′α′ ▪常用等价无穷小:[相乘的无穷小因子可用等价无穷小替换,加、减的不能] x →0时,x~ sinx~ tanx~ arcsinx~ arctanx~ ln(1+x)~ e x −1; 1-cosx~x 22;(1+x )a -1~ax(a ≠0) ;a x-1~xlna(a >0,a ≠1);√1+x n- 1~ xn常用等价无穷小:当变量0x →时,21sin ~,tan ~,arcsin ~,arctan ~,1~,ln(1)~,1cos ~,2x x x x x x x x x e x x x x x -+-√1+x - 1~ 12x~,(1)1~x x x αα+-.▪无穷大:函数无穷大 ⇀↚无界 x ⟶x 0时,若f(x)为无穷大,则1f(x)为无穷小;x⟶x0时,若f(x)为无穷小,且在x0的某去心邻域内f(x) ≠0, 则1为无穷大.f(x)[注:分母极限为0,不能用商的运算法则]▪初等函数:连续函数经过四则运算所得到的函数仍是连续函数.一切初等函数在其定义区间内都是连续的.f(x)=f(x0).如果f(x)是初等函数,x0是其定义区间内的点,则limx→x0最值定理:若函数f(x)在闭区间[a,b]上连续,则它在[a,b]上必有最值.有界性定理:若函数f(x)在闭区间[a,b]上连续,则它在[a,b]上有界.介值定理:若函数f(x)在闭区间[a,b]上连续,且f(a) ≠f(b),则对于f(a)与f(b)之间的任何数μ,在开区间(a,b)内至少存在一点ξ,使得f(ξ)= μ.零点定理(根的存在性定理):若函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号(f(a)∙f(b)<0),在开区间(a,b)内至少存在一点ξ,使得f(ξ)=01、0/0型:方法:将分子分母分解因式(消去公因子)或者将分子有理化(有理化),再求极限。
数列的极限与无穷级数知识点总结数学中的数列是由一系列按照一定规律排列的数所组成的序列。
数列的极限与无穷级数是数学中重要的概念,对于理解和应用数学具有重要作用。
本文将对数列的极限与无穷级数的知识点进行总结和讲解。
一、数列的极限1. 数列的定义:数列是一种按照规律排列的数的序列。
数列可以用一般形式表示为 {an} = a1, a2, a3, ..., an, ...,其中 an 表示第 n 个数。
2. 数列的极限定义:若数列 {an} 中的数随着 n 的增大趋向于一个确定的数 L,即lim(n→∞) an = L,我们称数列 {an} 的极限为 L。
3. 数列极限的性质:a) 如果数列 {an} 的极限存在且为 L,则数列 {an} 是有界的,即存在常数 M,使得|an| ≤ M 对于所有 n 成立。
b) 数列的极限存在的充分必要条件是其数列是收敛的。
4. 数列的常见极限:a) 等差数列的极限:对于公差为 d 的等差数列 {an} = a1, a1 + d,a1 + 2d, ..., a1 + (n-1)d, ...,其极限为无穷。
b) 等比数列的极限:对于公比为 q 的等比数列 {an} = a1, a1q,a1q^2, ..., a1q^(n-1), ...,若 |q|<1,则极限为 0。
二、无穷级数1. 无穷级数的定义:无穷级数是数列中所有项的和,通常用∑ 表示。
无穷级数可以表示为 S = a1 + a2 + a3 + ... + an + ...,其中 an 表示第 n 项。
2. 无穷级数的收敛与发散:a) 若无穷级数的部分和数列 {Sn} 收敛于一个确定的数 S,则称该无穷级数为收敛级数,记作∑ an = S。
b) 若无穷级数的部分和数列 {Sn} 发散,则称该无穷级数为发散级数。
3. 无穷级数的收敛性测试:a) 正项级数收敛性测试:若对于正数项级数∑ an,当且仅当∑ an 的部分和数列 {Sn} 有界时,该级数收敛。