人们对原子结构的认识
- 格式:doc
- 大小:302.00 KB
- 文档页数:4
一、原子结构模型的演变历史年代原子结构模型的名称主要理论依据或技术原子结构模型的主要论点公元前5世纪古希腊哲学家德谟克利的古代原子说原子是构成物质的微粒,万物都是由间断的、不可分割的微粒——原子构成的,原子的结合和分离是万物变化的根本原因19世纪初英国科学家道尔顿的近代原子学说参考元素化合时具有确定的质量比的关系①物质由原子构成;②原子不能被创造,也不能被毁灭;③原子在化学变化中不可再分割,它们在化学变化中保持本性不变19世纪末20世纪初汤姆生的“葡萄干面包式”原子结构模型①原子中存在电子,电子的质量为氢原子质量的;②原子中平均分布着带正电荷的微粒,这些微粒之间镶嵌着许多电子1911年英国物理学家卢瑟福的带核原子结构模型参考α粒子的散射现象①原子由原子核和核外电子组成,原子核带正电荷,位于原子中心,电子带负电荷,在原子核周围做高速运动;②电子的运动形态就像行星绕太阳运转一样1913年丹麦物理学家玻尔的原子轨道模型运用量子论观点研究氢原子光谱①原子核外电子在一系列稳定的轨道上运动,每个轨道都具有一个确定的能量值;②电子在这些轨道上运动时,既不放出能量,也不吸收能量20世纪初现代量子力学原子结构模型(电子云模型)微观世界的波粒二象性①原子是由原子核和核外电子构成的;②电子运动不遵循经典力学的原理;③对于多电子原子,电子在核外一定空间近似于分层排布二、原子结构与元素的性质1.原子的核外电子排布(1)自从道尔顿提出原子论后,人们相继发现了、和等,对原子结构的认识更加深刻。
现在人们已经知道,原子是由和构成的,对于原子,可以近似认为电子在原子核外是分层排布的。
例如,(2)核外电子排布的表示方法——结构示意图人们常用原子结构示意图表示原子的核外电子排布,如氧原子的结构示意图为,钠原子的结构示意图为。
2.元素的化学性质与原子核外电子排布的关系(1)稀有气体元素原子最外层电子数为8(氦为2),是稳定结构,不易得失电子,因此化学性质稳定,一般不跟其他物质发生化学反应。
回顾历史:人们对原子结构的认识过程科学研究工作的一种重要方法—-假说与模型1、公元前5世纪,我国墨翟认为构成物质的微粒为“端”,意指不能再分的质点;战国时《庄子·天下篇》一书中提出:物质无限可分的思想。
公元前4世纪,希腊哲学家德谟克利特等人认为:万物是由大量的不可分割的微粒构成的,即原子;而且原子有不同的形态。
2、19世纪初,英国科学家道尔顿提出近代原子学说。
道尔顿原子模型:原子是构成物质的基本粒子,它非常小,不可再分,内部没有任何结构,就像一个小球一样。
实心球模型道尔顿提出原子模型虽然多半处于想象,但也有符合科学研究基本原则的地方,所以是合理的想象。
3、1897年,英国科学家汤生逊发现了电子。
汤姆生的原子模型:原子由带正电荷的主体和带负电荷的电子组成,电子像镶嵌在蛋糕中的葡萄干那样处于正电荷的“海洋”中。
这个模型中电子与正电荷的分布是处于想象的,因为没有实验证明。
浸入模型(枣糕模型)4、1911年,卢瑟福提出原子模型:原子由带正电的原子核和带负电的电子构成,在原子的中心有一个很小的核,原子核集中了原子的绝大多数质量和全部的正电荷,电子在核外空间绕着核旋转。
卢瑟福原子行星模型5.玻尔的原子壳型结构:电子依据能量不同,在原子核外不同区域(电子层)运动。
玻尔原子壳型结构6.奥地利物理学家薛定谔提出电子云模型(几率说):电子云是近代对电子用统计的方法,在核外空间分布方式的形象描绘,我们不能预言电子在某一时刻究竟出现在核外空间的哪个地方,只能知道它在某处出现的机会有多少,即几率密度大小,用小白点的疏密来表示。
小白点密处表示电子出现的几率密度大,小白点疏处几率密度小,看上去好像一片带负电的云状物笼罩在原子核周围,因此叫电子云。
薛定谔电子云模型。
《人类对原子结构的认识》知识清单一、引言原子,这个构成物质世界的基本单元,一直以来都是科学家们探索的焦点。
人类对原子结构的认识经历了漫长而曲折的过程,每一次的突破都推动了科学的巨大进步。
二、早期的原子概念在古代,哲学家们就对物质的本质进行了思考。
古希腊哲学家德谟克利特提出了“原子”的概念,他认为原子是不可分割的、坚实的、微小的粒子,它们在虚空中运动,构成了万物。
然而,这种早期的原子观念仅仅是基于哲学的思辨,缺乏科学的实验证据。
三、近代原子论的发展1、道尔顿的原子学说到了 19 世纪初,英国科学家约翰·道尔顿提出了近代原子学说。
他认为:元素是由不可再分的原子组成的;同种元素的原子性质和质量都相同,不同元素的原子性质和质量不同;原子在化学变化中不可再分。
道尔顿的原子学说为化学的发展奠定了基础,但他的理论仍然存在一些局限性,比如他没有认识到原子内部的结构。
2、汤姆孙的“葡萄干布丁”模型19 世纪末,英国物理学家约瑟夫·约翰·汤姆孙发现了电子。
他提出了原子的“葡萄干布丁”模型,认为原子是一个带正电的球体,电子像葡萄干一样镶嵌在其中。
这个模型虽然解释了原子的电中性,但无法解释一些实验现象。
四、卢瑟福的原子核式结构模型1、实验基础1911 年,卢瑟福进行了著名的α粒子散射实验。
他用一束带正电的α粒子轰击金箔,发现大部分α粒子穿过金箔后仍沿原来的方向前进,但有少数α粒子发生了较大角度的偏转,甚至有极少数α粒子被反弹回来。
2、模型提出基于实验结果,卢瑟福提出了原子核式结构模型。
他认为原子的中心有一个很小的原子核,原子核带正电,几乎集中了原子的全部质量;电子在原子核外绕核高速运动。
五、玻尔的原子模型1、经典理论的困境卢瑟福的模型虽然能够解释α粒子散射实验,但无法解释原子的稳定性和原子光谱的分立特征。
按照经典电磁理论,电子绕核运动时会不断辐射能量,最终会坠入原子核,但实际情况并非如此。
人类对原子结构的认识——原子结构模型的演变人类对原子结构的认识是一个逐步演变的过程。
从古希腊时期开始,人们对原子的概念就存在一定的认识,但是直到近代才逐渐了解原子的真正本质和结构。
本文将从古希腊时期的原子概念开始,主要介绍原子结构模型的演变过程,包括汤姆逊模型、卢瑟福模型和波尔模型,直到现代的量子力学模型。
古希腊时期,由于实验条件的限制,人们对原子的概念还比较朦胧。
古代哲学家德谟克利特首次提出“原子”的概念,原子是构成世界万物的最基本单位,它们具有不可分割的性质。
然而,这仅仅是一种哲学上的假设,没有经过科学实验的验证。
到了19世纪末,随着科学实验技术的进步,科学家对原子的理解逐渐深入。
在这个时期,英国科学家约翰·道尔顿提出了道尔顿原子论。
他认为,所有物质都是由不可分割的小颗粒(道尔顿原子)构成的,每种物质由不同类型的原子组成。
这个理论为解释化学反应和元素周期性表提供了重要的基础。
然而,到了20世纪初,科学家们发现了一些无法用道尔顿原子论解释的实验现象。
1904年,英国物理学家汤姆逊提出了汤姆逊模型,也被称为“葡萄干糕布模型”。
他认为,原子是一个正电荷球体,而电子则均匀地分布在球体内部,就像葡萄干糕布一样。
这个模型解释了电子的存在和负电荷,但没有考虑到原子中的正电荷分布。
1909年,英国物理学家卢瑟福进行了著名的金箔散射实验,这个实验改变了人们对原子结构的认识。
实验结果表明,大部分α粒子通过金箔而无明显偏转,但一小部分α粒子发生了大角度的散射。
基于这个实验结果,卢瑟福提出了卢瑟福模型,也被称为“太阳系模型”。
他认为,原子是由一个小而密集的带正电荷的核心,以及围绕核心运动的电子组成。
这个模型解释了实验结果,卢瑟福还通过核和电子的质量和电荷比计算出了核的大小。
然而,卢瑟福模型仍然存在一些问题。
根据经典电磁理论,一个加速的电子应该会辐射能量并从核中坠落,但事实上我们并没有看到这种现象。
为了解决这个问题,1913年,丹麦物理学家尼尔斯·波尔提出了波尔模型。
人类对原子结构的认识经历了一个漫长而曲折的历程。
从古希腊哲学家德谟克里特提出的“原子论”到现代量子力学的发展,人类对原子结构的认识不断深化和完善。
公元前5世纪,古希腊哲学家德谟克里特提出了“原子论”,认为宇宙万物都是由不可再分的、永恒的、微小的原子组成的。
这一理论为后来的原子结构研究奠定了基础。
然而,由于当时的科学技术水平有限,人们对原子结构的认识仅停留在宏观层面,无法揭示原子内部的奥秘。
19世纪初,英国科学家约翰·道尔顿提出了“道尔顿原子模型”,将原子划分为带正电荷的质子和带负电荷的电子,这是人类对原子结构认识的第一次重大突破。
随后,奥地利物理学家欧文·朗缪尔提出了“朗缪尔原子模型”,引入了原子核的概念,进一步揭示了原子内部结构的复杂性。
20世纪初,丹麦物理学家尼尔斯·玻尔提出了“玻尔原子模型”,将电子围绕原子核的运动分为不同的能级,解释了氢光谱现象。
这一模型被认为是量子力学的雏形,为后来的原子结构研究奠定了基础。
1927年,美国物理学家埃尔温·薛定谔提出了“薛定谔方程”,奠定了量子力学的基础。
薛定谔方程描述了微观粒子(如电子)在特定势场中的运动规律,为揭示原子内部结构提供了理论依据。
在此基础上,德国物理学家沃纳·海森堡、马克斯·玻恩等人提出了著名的“不确定性原理”,揭示了微观世界的非确定性特征。
随着科学技术的不断发展,人类对原子结构的认识也在不断深入。
20世纪中叶,美国物理学家罗伯特·塞格瑞等人提出了“塞格瑞模型”,将原子核分为质子和中子,解释了原子核的稳定性问题。
此外,科学家们还发现了反物质、超重元素等新的物质形态,丰富了人类对原子结构的认识。
总之,人类对原子结构的认识经历了一个漫长而曲折的历程。
从古希腊哲学家德谟克里特的“原子论”到现代量子力学的发展,人类对原子结构的认识不断深化和完善。
在未来,随着科学技术的进一步发展,人类对原子结构的认识必将更加深入,为人类探索宇宙奥秘提供更多的理论支持。
第1讲人类对原子结构的认识1.构成物质的微粒构成物质的微粒有原子、分子和离子。
原子是化学变化中的最小微粒,能直接构成物质,如金刚石、石墨等。
分子是构成物质的一种微粒,更多的研究结果表明,分子是由原子结合而成的,如:He、O2、O3、H2O、CO2、H2SO4等。
原子可以通过得到或失去电子形成离子,离子也是构成物质的微粒,如氯化钠就是由Na+和Cl-构成的。
2.原子原子的英文名(Atom)是从äτομοζ(atomos,“不可切分的”)转化而来。
很早以前,希腊和印度的哲学家就提出了原子的不可切分的概念。
17和18世纪时,化学家发现了物理学的依据:对于某些物质,不能通过化学手段将其继续的分解。
19世纪晚期和20世纪早期,物理学家发现了亚原子粒子以及原子的内部结构,由此证明原子并不是不能进一步切分。
原子是一种元素能保持其化学性质的最小单位,一个原子包含有一个致密的原子核及若干围绕在原子核周围带负电的电子,原子核由带正电的质子和电中性的中子组成。
在原子中,质子数与电子数相同,原子表现为电中性。
如果质子数和电子数不相同,就成为带有正电荷或者负电荷的离子。
根据质子和中子数量的不同,原子的类型也不同,质子数决定了该原子属于哪一种元素。
原子是一个极小的物体,其质量也很微小,原子的99.9%的重量集中在原子核,其中的质子和中子有着相近的质量,目前可用扫描隧道显微镜观察并拨动单个原子,下图为超高真空多功能扫描隧道显微镜,中图为显微镜下的硅原子结构,右图为在扫描隧道显微镜下科学家拨动49个铁原子排列在钢表面上形成的一个圆形栅栏。
1.原子的组成原子是化学反应中的最小微粒,在化学反应中不可分割。
科学研究表明,绝大多数原子的原子核由质子和中子构成,质子、中子和电子的质量、所带电荷各不相同。
1个质子带1个单位的正电荷,1个电子带1个单位的负电荷,中子不显电性。
原子核内的质子数与原子核外的电子数相等,所以原子呈电中性。
《人类对原子结构的认识》说课稿尊敬的各位评委老师:大家好!今天我说课的题目是《人类对原子结构的认识》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“人类对原子结构的认识”是化学学科中的重要基础知识,对于学生理解化学物质的组成、性质和变化规律具有关键作用。
本节课所在的教材章节,是在学生已经初步了解了化学元素和物质的基本概念之后,进一步引导学生深入探究物质的微观结构。
通过对原子结构的学习,为后续学习化学键、化学反应原理等内容奠定了基础。
教材内容编排上,首先回顾了历史上科学家们对原子结构的探索历程,然后逐步引入现代原子结构模型的相关知识,如核外电子排布规律等。
这种编排方式既体现了科学知识的发展脉络,又符合学生的认知规律。
二、学情分析学生在初中阶段已经对原子的构成有了初步的认识,知道原子由原子核和核外电子构成。
但对于原子结构的深入理解,如电子的分层排布、原子结构与元素性质的关系等,还需要进一步的学习和探究。
在思维能力方面,高中生已经具备了一定的抽象思维和逻辑推理能力,但对于微观世界的想象和理解仍存在一定的困难。
因此,在教学中需要通过多种教学手段,帮助学生建立起清晰的原子结构概念。
三、教学目标1、知识与技能目标(1)了解原子结构模型的演变历程。
(2)理解原子核外电子的排布规律。
(3)掌握原子结构与元素性质的关系。
2、过程与方法目标(1)通过对原子结构模型演变的学习,培养学生的科学思维和创新能力。
(2)通过对核外电子排布规律的探究,提高学生的观察、分析和归纳能力。
3、情感态度与价值观目标(1)感受科学家们在探索原子结构过程中的执着和创新精神,激发学生对科学的热爱和追求。
(2)培养学生的辩证唯物主义世界观,认识到科学理论是不断发展和完善的。
四、教学重难点1、教学重点(1)原子结构模型的演变。
(2)原子核外电子的排布规律。
2、教学难点(1)核外电子排布规律的应用。
人类对原子结构的认识难点突破首先,了解原子结构模型的演变,认识几种结构模型,主要有:(1)古希腊科学家提出的物质由原子构成的猜想是人们对原子结构认识的初始阶段。
(2)道尔顿提出了“实心原子”这一观点。
(3)汤姆生发现电子后提出“葡萄干面包式”原子模型。
(4)卢瑟福提出“核式”原子结构模型。
(5)玻尔把量子说引入核式结构的原子模型。
其次,掌握原子的核外电子排布是依能量的不同,原子内的电子分层排布,其主要规律是:(1)核外电子总是尽先排布在能量较低的电子层,然后由里向外,依次排布在能量逐步升高的电子层(能量最低原理)。
(2)原子核外各电子层最多容纳2n2个电子。
(3)原子最外层电子数目不超过8个(K层为最外层时不能超过2个电子)。
(4)次外层电子数目不能超过18个(K层为次外层时不能超过2个),倒数第三层电子数目不能超过32个。
最后,明确元素的性质与元素的原子核外电子排布的关系:(1)稀有气体的不活泼性:原子最外层有8个电子(氦是2个电子),处于稳定结构。
(2)金属元素最外层少于4个电子,易失电子,表现金属性,非金属元素最外层多于4个电子,易得电子,表现非金属性。
对几个概念的理解注意:①单位1(一般不写出);②粒子:可以是原子、质子、中子、电子等;③质子、中子的相对质量约为1。
可从表格形式清楚了解原子的构成:熟练掌握元素的相对原子质量的计算:×a1%+×a2%+…………为核素的相对原子质量a1%、a2%……为核素的原子百分数或核素原子的物质的量分数氕、氘、氚三种原子的质子数相同,中子数不同,都属于氢元素,因为它们的质子数相同。
归纳与拓展核外电子数相同的微粒核外电子总数为10个电子的微粒,常见的共有15种。
阳离子有:Na+、Mg2+、Al3+、N、H3O+;阴离子有:N3-、O2-、F-、OH-、N;分子有:Ne、HF、H2O、NH3、CH4。
核外电子总数为18个电子的微粒,常见的共有16种。
人们对原子的认识人们对原子结构的认识,经历了一个由卢瑟福原子模型、玻尔氢原子结构理论到现代原子结构量子理论的发展过程。
现代原子结构理论,是在量子力学的基础上建立的。
它以电子云的概念代替了卢瑟福和玻尔的固定轨道的概念,报示了电子运动的波粒二象性及其能量变化量子化的特殊规律.在科学史上,人们对原子结构的认识是有一个历史过程的。
早在两千四百年前。
古希腊著名的哲学家德谟克里特提出了“原子”的概念,认为自然界的一切物质都是由一些坚硬不可分的小颗粒构成,并命“小微粒”为原子。
但是,由于没有科学实验依据和宗教势力的极力反对.所以在这之后的两千多年里,人们对物质的结构认识一直没有很大进展。
直到十九世纪,道尔顿和阿佛加德罗先后提出了原子论和分子论,并于1860年,正式建立了原子——分子论.认为物质由分子构成,分子由原子构成,原子则是不可再分的最小微粒。
这就是二十世纪以前人们对物质结构的认识.1897年,著名的英国物理学家汤姻逊,对克鲁克斯发现的阴极射线进行了精细的研究,测定了这种微粒的质量和电行,并命这种微粒为“电子”,这就有力地证明原子是不可再分的最小微粒的错误结论。
1919年,卢瑟福用科学实验证明原子中还有一种微粒,共命它为“质子”。
到本世纪三十年代,人们从实验中发现原子还能分裂另一种电中性的微粒.命它为“中子”.在1911年,卢瑟福正式提出了一个核式原子模型理论。
他指出:原子是由带上电行的原子核和带负电行的核外电子构成,原子核位于原子中心,占有很小的体积,但几乎集中原子的全部质量,核外电子就象行星绕太阳那样绕核旋转.因此,这个理论也称为行星式或天体式原子模型.继他之后,又作了重大发展的是他的助手丹麦物理学家玻尔。
玻尔大胆地运用了量子的概念(1900年由普朗克提出)来解释氢原子结构。
获得了很大的成功。
但是,他并没有彻底摆脱经典物理学的束缚。
仍然坚持电子沿一定轨道绕核运转的观点。
现在原子结构理论,主任是在卢瑟福利玻尔的基础上用量子力学(1926年建立)代替经典力学.对核外电子的运动状态给予了科学的解释.随着原子理论的建立和发展,人们对物质及其变化的规律有了新的认识。
《人类对原子结构的认识》教案2《人类对原子结构的认识》教案2教案标题:人类对原子结构的认识教案简介:本教案旨在通过引导学生学习和探究,帮助他们了解人类对原子结构的认识的发展历程。
通过学习原子结构的发现和发展,学生将能够理解科学发展的重要性和科学方法的应用。
教学目标:1.理解原子的概念和原子结构的重要性2.了解原子结构的发现和认识的历程3.掌握人类对原子结构的认识中的重要科学家和实验教学重点:1.原子的概念和原子结构的重要性2.原子结构的发现和认识的历程教学难点:1.理解科学发展的重要性和科学方法的应用2.掌握人类对原子结构的认识中的重要科学家和实验教学准备:1. PowerPoint演示文稿:包括原子的概念、原子结构的发现和认识的历程等内容2.学生练习册:包括与课程内容相关的练习题和活动教学过程:Step 1: 引入(10分钟)1.引导学生思考,询问他们对原子的概念和原子结构的认识。
2.介绍原子的概念和原子结构的重要性,解释为什么了解原子结构对于科学发展至关重要。
Step 2: 原子结构的发现(20分钟)1.通过演示文稿,介绍人类对原子结构的认识的历程。
2.重点介绍以下几位科学家和他们的实验:a.约翰·道尔顿:发现原子是不可分割的基本粒子。
b.朱世杰:发现电子是原子中的基本粒子。
c.汤姆逊:发现电子带负电荷。
d.鲁瑟福:通过金箔散射实验,发现原子核的存在。
e.波尔:提出了原子的量子结构模型。
Step 3: 练习和讨论(30分钟)1.分发学生练习册,让学生进行相关的练习和活动。
2.鼓励学生在小组内进行讨论和合作,帮助他们理解和巩固所学的知识。
Step 4: 学生展示与总结(20分钟)1.邀请学生进行展示,分享他们在学习过程中的收获和发现。
2.鼓励学生进行思考,讨论人类对原子结构的认识的发展对科学发展的重要性。
教学延伸:1.鼓励学生进行更深入的研究和探究,了解其他科学家在原子结构研究中的贡献。
回顾历史:人们对原子结构的认识
科学研究工作的一种重要方法—-假说与模型
1、公元前5世纪,我国墨翟认为构成物质的微粒为“端”,意指
不能再分的质点;战国时《庄子·天下篇》一书中提出:物质无限可分的思想。
公元前4世纪,希腊哲学家德谟克利特等人认为:万物是由大量的不可分割的微粒构成的,即原子;而且原子有不同的形态。
2、19世纪初,英国科学家道尔顿提出近代原子学说。
道尔顿原子模型:原子是构成物质的基本粒子,它非常小,不可再分,内部没有任何结构,就像一个小球一样。
实心球模型
道尔顿提出原子模型虽然多半处于想象,但也有符合科学研究基本原则的地方,所以是合理的想象。
3、1897年,英国科学家汤生逊发现了电子。
汤姆生的原子模型:原子由带正电荷的主体和带负电荷的电子组成,电子像镶嵌在蛋糕中的葡萄干那样处于正电荷的“海洋”中。
这个模型中电子与正电荷的分布是处于想象的,因为没有实验证明。
浸入模型(枣糕模型)
4、1911年,卢瑟福(汤姆生的学生)提出原子模型:
原子由带正电的原子核和带负电的电子构成,在原子的中心有一个很小的核,原子核集中了原子的绝大多数质量和全部的正电荷,电子在核外空间绕着核旋转。
卢瑟福原子行星模型
5.玻尔(卢瑟福的学生)的原子壳型结构:
电子依据能量不同,在原子核外不同区域(电子层)运动。
6.奥地利物理学家薛定谔提出电子云模型(几率说):
电子云是近代对电子用统计的方法,在核外空间分布方式的形象描绘,我们不能预言电子在某一时刻究竟出现在核外空间的哪个地方,只能知道它在某处出现的机会有多少,即几率密度大小,用小白点的疏密来表示。
小白点密处表示电子出现的几率密度大,小白点疏处几率密度小,看上去好像一片带负电的云状物笼罩在原子核周围,因此叫电子云。
至此,人类对原子结构的认识算是有了一个比较满
意的答案。