以1为首项,2 为公比的等比数列的前64项的求和问题,即: 62 63 …… ① S 1 2 4 8 2 2
64
把上式左右两边同乘以2 得:
2S 64
2 4 8 16+ ……
2 2
63
64
②
由②- ①得:
S 64 2 1
例2. 某商场第1年销售计算机5000台,如果平均每年的销 售量比上一年增加10%,那么从第1年起,约几年内可使 总销售量达到30000台(保留到个位)? 解:根据题意,每年销售量比上一年增加的百分率相同, 所以从第1年起,每年的销售量组成一个等比数列 { an } 其中 , %=1.1 , 可得: 可得:
等比数列的前n项和(一)
1
(一)知识回顾:
1.等比数列的定义:
a n 1 an
( q 0, n N ) q(常数)
n 1
2.通项公式:
an a1 q
成等比数列
3.等比数列的主要性质: ① a, G , b
G ab (G,a,b ≠ 0)
2
②在等比数列{ n }中,若 m n p q 则 am an a p aq ( m, n, p, q N )
两边取对数,得:
利用计算器得:
(年 )
7
答:约5年内可以使总销售量达到30000台。
例3.求和:
……
解 :当 时 …… …… + ……
8
例3.求和:
……
9
例4.求数列 (1+2+ 1,(1+2), 解 :∵ …… ( ), …… …… 前n項和。
∴
…… …… ……
10