2.1数列的概念与
简单表示法(二)
第一页,编辑于星期日:十三点 十七分。
复习引入
练习. 1. 以下四个数中,是数列{n(n+1)}中的 一项的是 ( A )
A. 380
B. 39 C. 32 D. 18
第二页,编辑于星期日:十三点 十七分。
复习引入
练习. 1. 以下四个数中,是数列{n(n+1)}中的 一项的是 ( A )
第十三页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式: a1 1,
第十四页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式:
a1 1, a2 3 1 2 a1 2,
第十五页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式:
给出,
写出这个数列的前五项.
第二十四页,编辑于星期日:十三点 十七分。
讲解范例:
例1.已知数列{an}的第一项是1,以后
的各项由公式
1 an 1 an1 给出,
写出这个数列的前五项.
1, 2, 3 , 5 , 8 . 235
第二十五页,编辑于星期日:十三点 十七分。
小结:
若记数列 {an }的前n项之和为 Sn ,则
a1 1, a2 3 1 2 a1 2, a3 5 a 2 2,,
第十六页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式:
a1 1, a2 3 1 2 a1 2, a3 5 a 2 2,, an an1 2
第十七页,编辑于星期日:十三点 十七分。
他项.
3. 用递推公式求通项公式的方法: 观察法、累加法、迭乘法.