第3章傅里叶变换
- 格式:ppt
- 大小:1.21 MB
- 文档页数:44
第三章 傅里叶变换3.1周期信号的傅里叶级数分析(一) 三角函数形式的傅里叶级数满足狄利赫里条件的周期函数()f t 可由三角函数的线性组合来表示,若()f t 的周期为1T ,角频率112T πω=,频率111f T =,傅里叶级数展开表达式为()()()0111cos sin n n n f t a a n t b n t ωω∞==++⎡⎤⎣⎦∑各谐波成分的幅度值按下式计算()0101t T t a f t dt T +=⎰()()0112cos t T n t a f t n t dt T ω+=⎰()()01012sin t T n t b f t n t dt T ω+=⎰其中1,2,n =⋅⋅⋅狄利赫里条件:(1) 在一个周期内,如果有间断点存在,则间断点的数目应是有限个;(2) 在一个周期内,极大值和极小值的数目应是有限个; (3) 在一个周期内,信号是绝对可积的,即()00t T t f t dt +⎰等于有限值。
(二) 指数形式的傅里叶级数周期信号的傅里叶级数展开也可以表示为指数形式,即()()11jn tnn f t F n eωω∞=-∞=∑其中()011011t T jn tn t F f t e dt T ω+-=⎰ 其中n 为从-∞到+∞的整数。
(三) 函数的对称性与傅里叶系数的关系(1) 偶函数由于()f t 为偶函数,所以()()1sin f t n t ω为奇函数,则()()01112sin 0t T n t b f t n t dt T ω+==⎰所以,在偶函数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。
(2) 奇函数由于()f t 为奇函数,所以()()1cos f t n t ω为奇函数,则()0100110t T t a f t dt T +==⎰()()010112cos 0t T n t a f t n t dt T ω+==⎰ 所以,在奇函数的傅里叶级数中不会含有直流项和余弦项,只可能包含正弦项(3) 奇谐函数(()12T f t f t ⎛⎫=-+ ⎪⎝⎭)半波对称周期函数的傅里叶级数中,只会含有基波和奇次谐波的正、余弦项,而不会含有偶次谐波项,这也是奇谐函数名称的由来。
第3章 离散时间傅里叶变换在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。
与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。
本章将介绍离散时间系统的频域分析方法。
3.1 非周期序列的傅里叶变换及性质3.1.1 非周期序列傅里叶变换1.定义一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。
若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为:正变换: ∑∞-∞=ω-ω==n nj j en x e X n x DTFT )()()]([ (3-1-1)反变换: ⎰ππ-ωωω-ωπ==d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2)记为:)()(ω−→←j Fe X n x当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。
[例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X 解:由定义式(3-1-1)可得ωω=--=--===ω-ω-ωω-ω-ωω-ω-ω-ω-=ω-∞-∞=ω∑∑21sin 3sin )()(11)()(25212121333656j j j j j j j j j nj n nj n j ee e e e e e e e een R e X 2.离散时间序列傅里叶变换存在的条件:图3-1离散时间序列)(n x 的傅里叶变换存在且连续的条件为)(n x 满足绝对可和。
即:∞<∑∞-∞=)(n x n (3-1-3)反之,序列的傅里叶变换存在且连续,则序列一定是绝对可和的。