组合 1
- 格式:pdf
- 大小:5.54 MB
- 文档页数:88
第2课时组合的综合应用学习目标 1.能应用组合知识解决有关组合的简单实际问题.2.能解决有限制条件的组合问题.知识点组合的特点(1)组合的特点是只取不排组合要求n个元素是不同的,被取出的m个元素也是不同的,即从n个不同的元素中进行m 次不放回地取出.(2)组合的特性元素的无序性,即取出的m个元素不讲究顺序,没有位置的要求.(3)相同的组合根据组合的定义,只要两个组合中的元素完全相同(不管顺序如何),就是相同的组合.类型一有限制条件的组合问题例1 课外活动小组共13人,其中男生8人,女生5人,并且男、女生各有一名队长,现从中选5人主持某项活动,依下列条件各有多少种选法?(1)至少有一名队长当选;(2)至多有两名女生当选;(3)既要有队长,又要有女生当选.考点组合的应用题点有限制条件的组合问题解(1)C513-C511=825(种)(2)至多有2名女生当选含有三类:有2名女生;只有1名女生;没有女生,所以共有C25C38+C15C48+C58=966(种)选法.(3)分两类:第一类女队长当选,有C412=495(种)选法,第二类女队长没当选,有C14C37+C24C27+C34C17+C44=295(种)选法,所以共有495+295=790(种)选法.反思与感悟有限制条件的抽(选)取问题,主要有两类:一是“含”与“不含”问题,其解法常用直接分步法,即“含”的先取出,“不含”的可把所指元素去掉再取,分步计数;二是“至多”“至少”问题,其解法常有两种解决思路:一是直接分类法,但要注意分类要不重不漏;二是间接法,注意找准对立面,确保不重不漏.跟踪训练1 某食堂每天中午准备4种不同的荤菜,7种不同的蔬菜,用餐者可以按下述方法之一搭配午餐:(1)任选两种荤菜、两种蔬菜和白米饭;(2)任选一种荤菜、两种蔬菜和蛋炒饭.则每天不同午餐的搭配方法共有( )A.210种 B.420种 C.56种 D.22种考点组合的应用题点有限制条件的组合问题答案 A解析由分类加法计数原理知,两类配餐的搭配方法之和即为所求,所以每天不同午餐的搭配方法共有C24C27+C14C27=210(种).类型二与几何有关的组合应用题例2 如图,在以AB为直径的半圆周上,有异于A,B的六个点C1,C2,…,C6,线段AB上有异于A,B的四个点D1,D2,D3,D4.(1)以这10个点中的3个点为顶点可作多少个三角形?其中含C1点的有多少个?(2)以图中的12个点(包括A,B)中的4个点为顶点,可作出多少个四边形?考点组合的应用题点与几何有关的组合问题解(1)方法一可作出三角形C36+C16·C24+C26·C14=116(个).方法二可作三角形C310-C34=116(个),其中以C1为顶点的三角形有C25+C15·C14+C24=36(个).(2)可作出四边形C46+C36·C16+C26·C26=360(个).反思与感悟(1)图形多少的问题通常是组合问题,要注意共点、共线、共面、异面等情形,防止多算.常用直接法,也可采用间接法.(2)在处理几何问题中的组合问题时,应将几何问题抽象成组合问题来解决.跟踪训练2 空间中有10个点,其中有5个点在同一个平面内,其余点无三点共线,无四点共面,则以这些点为顶点,共可构成四面体的个数为( )A.205 B.110 C.204 D.200考点 组合的应用题点 与几何有关的组合问题 答案 A解析 方法一 可以按从共面的5个点中取0个、1个、2个、3个进行分类,则得到所有的取法总数为C 05C 45+C 15C 35+C 25C 25+C 35C 15=205.方法二 从10个点中任取4个点的方法数中去掉4个点全部取自共面的5个点的情况,得到所有构成四面体的个数为C 410-C 45=205. 类型三 分组、分配问题命题角度1 不同元素分组、分配问题例3 6本不同的书,分为3组,在下列条件下各有多少种不同的分配方法? (1)每组2本(平均分组);(2)一组1本,一组2本,一组3本(不平均分组); (3)一组4本,另外两组各1本(局部平均分组). 考点 排列组合综合问题 题点 分组分配问题解 (1)每组2本,均分为3组的方法数为C 26C 24C 22A 33=15×6×16=15.(2)一组1本,一组2本,一组3本的分组种数为C 36C 23C 11=20×3=60. (3)一组4本,另外两组各1本的分组种数为C 46C 12C 11A 22=15×22=15.反思与感悟 一般地,n 个不同的元素分成p 组,各组内元素数目分别为m 1,m 2,…,m p ,其中k 组元素数目相等,那么分组方法数是C m 1n C m 2n -m 1C m 3n -m 1-m 2…C m p m pA kk. 跟踪训练3 6本不同的书,分给甲、乙、丙3人,在下列条件下各有多少种不同的分配方法? (1)甲2本,乙2本,丙2本; (2)甲1本,乙2本,丙3本; (3)甲4本,乙、丙每人1本; (4)每人2本;(5)一人1本,一人2本,一人3本; (6)一人4本,其余两人每人1本. 考点 排列组合综合问题 题点 分组分配问题解 (1)(2)(3)中,由于每人分的本数固定,属于定向分配问题,由分步乘法计数原理得: (1)共有C 26C 24C 22=90(种)不同的分配方法;(2)共有C16C25C33=60(种)不同的分配方法;(3)共有C46C12C11=30(种)不同的分配方法.(4)(5)(6)属于不定向分配问题,是该类题中比较困难的问题.分配给3人,同一本书给不同的人是不同的分法,属于排列问题.实际上可看作两个步骤:先分为3组,再把这3组分给甲、乙、丙3人的全排列数A33即可.因此,(4)共有C26C24C22÷A33×A33=90(种)不同的分配方法;(5)共有C16C25C33×A33=360(种)不同的分配方法;(6)共有C46C12C11÷A22×A33=90(种)不同的分配方法.命题角度2 相同元素分配问题例4 将6个相同的小球放入4个编号为1,2,3,4的盒子,求下列方法的种数.(1)每个盒子都不空;(2)恰有一个空盒子;(3)恰有两个空盒子.考点排列组合综合问题题点分组分配问题解(1)先把6个相同的小球排成一行,在首尾两球外侧放置一块隔板,然后在小球之间5个空隙中任选3个空隙各插一块隔板,有C35=10(种).(2)恰有一个空盒子,插板分两步进行.先在首尾两球外侧放置一块隔板,并在5个空隙中任选2个空隙各插一块隔板,如|0|000|00|,有C25种插法,然后将剩下的一块隔板与前面任意一块并放形成空盒,如|0|000||00|,有C14种插法,故共有C25·C14=40(种).(3)恰有两个空盒子,插板分两步进行.先在首尾两球外侧放置一块隔板,并在5个空隙中任选1个空隙各插一块隔板,有C15种插法,如|00|0000|,然后将剩下的两块隔板插入形成空盒.①这两块板与前面三块板形成不相邻的两个盒子,如||00||0000|,有C23种插法.②将两块板与前面三块板之一并放,如|00|||0000|,有C13种插法.故共有C15·(C23+C13)=30(种).反思与感悟相同元素分配问题的处理策略(1)隔板法:如果将放有小球的盒子紧挨着成一行放置,便可看作在排成一行的小球的空隙中插入了若干隔板,相邻两块隔板形成一个“盒”.每一种插入隔板的方法对应着小球放入盒子的一种方法,此法称之为隔板法.隔板法专门解决相同元素的分配问题.(2)将n个相同的元素分给m个不同的对象(n≥m),有C m-1n-1种方法.可描述为n-1个空中插入m-1块板.跟踪训练4 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )A.4种B.10种C.18种D.20种考点排列组合综合问题题点分组分配问题答案 B解析由于只剩一本书,且这些画册、集邮册分别相同,可以从剩余的书的类别进行分析.又由于排列、组合针对的是不同的元素,应从4位朋友中进行选取.第一类:当剩余的一本是画册时,相当于把3本相同的集邮册和1本画册分给4位朋友,只有1位朋友得到画册.即把4位朋友分成人数为1,3的两队,有1个元素的那队分给画册,另一队分给集邮册,有C14种分法.第二类:当剩余的一本是集邮册时,相当于把2本相同的画册和2本相同的集邮册分给4位朋友,有2位朋友得到画册,即把4位朋友分成人数为2,2的两队,一队分给画册,另一队分给集邮册,有C24种分法.因此,满足题意的赠送方法共有C14+C24=4+6=10(种).1.某乒乓球队有9名队员,其中2名是种子选手,现在挑选5名选手参加比赛,种子选手必须在内,那么不同选法共有( )A.26种 B.84种 C.35种 D.21种考点组合的应用题点有限制条件的组合问题答案 C解析从7名队员中选出3人有C37=7×6×53×2×1=35(种)选法.2.身高各不相同的7名同学排成一排照相,要求正中间的同学最高,左右两边分别顺次一个比一个低,这样的排法种数是( )A.5 040 B.36 C.18 D.20考点组合的应用题点有限制条件的组合问题答案 D解析最高的同学站中间,从余下6人中选3人在一侧只有一种站法,另3人在另一侧也只有一种站法,所以排法有C36=20(种).3.直角坐标平面xOy上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有( )A.25个 B.36个 C.100个 D.225个考点组合的应用题点与几何有关的组合问题答案 D解析从垂直于x轴的6条直线中任取2条,从垂直于y轴的6条直线中任取2条,四条直线相交得出一个矩形,所以矩形总数为C26×C26=15×15=225.4.从7名志愿者中安排6人在周六、周日两天参加社区公益活动,若每天安排3人,则不同的安排方案共有________种.(用数字作答)考点排列组合综合问题题点分组分配问题答案140解析安排方案分为两步完成:从7名志愿者中选3人安排在周六参加社区公益活动,有C37种方法;再从剩下的4名志愿者中选3人安排在周日参加社区公益活动,有C34种方法.故不同的安排方案共有C37C34=7×6×53×2×1×4=140(种).5.正六边形顶点和中心共7个点,可组成________个三角形.考点组合的应用题点与几何有关的组合问题答案32解析不共线的三个点可组成一个三角形,7个点中共线的是:正六边形过中心的3条对角线,即共有3种情况,故组成三角形的个数为C37-3=32.1.无限制条件的组合应用题.其解题步骤为:(1)判断;(2)转化;(3)求值;(4)作答.2.有限制条件的组合应用题:(1)“含”与“不含”问题:这类问题的解题思路是将限制条件视为特殊元素和特殊位置,一般来讲,特殊要先满足,其余则“一视同仁”.若正面入手不易,则从反面入手,寻找问题的突破口,即采用排除法.解题时要注意分清“有且仅有”“至多”“至少”“全是”“都不是”“不都是”等词语的确切含义,准确把握分类标准.(2)几何中的计算问题:在处理几何问题中的组合应用问题时,应先明确几何中的点、线、面及构型,明确平面图形和立体图形中的点、线、面之间的关系,将几何问题抽象成组合问题来解决.(3)分组、分配问题:分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同,是不可区分的,而后者即使两组元素个数相同,但因元素不同,仍然是可区分的.一、选择题1.若从1,2,3,…,9这9个整数中同时取3个不同的数,使其和为奇数,则不同的取法共有( )A.30种 B.33种 C.37种 D.40种考点组合的应用题点有限制条件的组合问题答案 D解析从1,2,3,…,9这9个数中取出3个不同的数,使其和为奇数的情况包括:(1)取出的3个数都是奇数,取法有C35=10(种);(2)取出的3个数中有2个偶数、1个奇数,取法有C24C15=30(种),根据分类加法计数原理,满足题意的取法共有10+30=40(种).2.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A.24种 B.14种 C.28种 D.48种考点组合的应用题点有限制条件的组合问题答案 B解析方法一分两类完成:第1类,选派1名女生、3名男生,有C12·C34种选派方案;第2类,选派2名女生、2名男生,有C22·C24种选派方案.故共有C12·C34+C22·C24=14(种)不同的选派方案.方法二6人中选派4人的组合数为C46,其中都选男生的组合数为C44,所以至少有1名女生的选派方案有C46-C44=14(种).3.直线a∥b,a上有5个点,b上有4个点,以这九个点为顶点的三角形个数为( ) A.C25C14+C15C24B.(C25+C14)(C15+C24)C.C39-9 D.C39-C35考点组合的应用题点 与几何有关的组合问题 答案 A解析 可以分为两类:a 上取两点,b 上取一点,则可构成三角形个数为C 25C 14;a 上取一点,b 上取两点,则可构成三角形个数为C 15C 24,利用分类加法计数原理可得以这九个点为顶点的三角形个数为C 25C 14+C 15C 24,故选A.4.从乒乓球运动员男5名、女6名中组织一场混合双打比赛,不同的组合方法有( ) A .C 25C 26种 B .C 25A 26种 C .C 25A 22C 26A 22种D .A 25A 26种考点 排列组合综合问题 题点 排列与组合的综合应用 答案 B解析 先从5名男选手中任意选取2名,有C 25种选法,再从6名女选手中任意选择两名与选出的男选手打比赛,有C 26A 22,即A 26种.所以共有C 25A 26种.5.将标号为A ,B ,C ,D ,E ,F 的6张卡片放入3个不同的信封中,若每个信封放2张卡片,其中标号为A ,B 的卡片放入同1个信封,则不同的放法共有( ) A .12种 B .18种 C .36种 D .54种 考点 排列组合综合问题 题点 分组分配问题 答案 B解析 由题意知,不同的放法共有C 13C 24=3×4×32=18(种).6.某地招募了20名志愿者,他们编号分别为1号,2号,…,19号,20号,如果要从中任意选取4人再按编号大小分成两组去做一些预备服务工作,其中两个编号较小的人在一组,两个编号较大的人在另一组,那么确保5号与14号入选并被分配到同一组的选取种数是( )A .16B .21C .24D .90 考点 排列组合综合问题 题点 分组分配问题 答案 B 解析 分2类:第1类,5号与14号为编号较大的一组,则另一组编号较小的有C 24=6(种)选取方法. 第2类,5号与14号为编号较小的一组,则编号较大的一组有C 26=15(种)选取方法. 由分类加法计数原理得,共有C 24+C 26=6+15=21(种)选取方法.7.北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作,若每天早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为( ) A .C 1214C 412C 48 B .C 1214A 412A 48 C.C 1214C 412C 48A 33D .C 1214C 412C 48A 38考点 排列组合综合问题 题点 分组分配问题 答案 A解析 首先从14人中选出12人共C 1214种,然后将12人平均分为3组共C 412·C 48·C 44A 33种,然后这两步相乘,得C 1214·C 412·C 48A 33.将三组分配下去共C 1214·C 412·C 48种.故选A. 8.假如北京大学给中山市某三所重点中学7个自主招生的推荐名额,则每所中学至少分到一个名额的方法数为( ) A .30 B .21 C .10 D .15 考点 排列组合综合问题 题点 分组分配问题 答案 D解析 用“隔板法”.在7个名额中间的6个空位上选2个位置加2个隔板,有C 26=15(种)分配方法. 二、填空题9.在2017年的上海高考改革方案中,要求每位考生必须在物理、化学、生物、政治、历史、地理6门学科中选择3门学科参加等级考试.小明同学决定在生物、政治、历史三门中至多选择一门,那么小明同学的选择方案有________种. 考点 组合的应用题点 有限制条件的组合问题 答案 10解析 ①在生物、政治、历史三门中选择1门,则在物理、化学、地理中选2门,有C 13C 23=9(种)选法;②在生物、政治、历史三门中选择0门,则物理、化学、地理全选,有C 33=1(种)选法. 共有选法9+1=10(种).10.如图所示的几何体是由一个正三棱锥P -ABC 与正三棱柱ABC -A 1B 1C 1组合而成,现用3种不同颜色对这个几何体的表面涂色(底面A 1B 1C 1不涂色),要求相邻的面均不同色,则不同的涂色方案共有______种.考点涂色问题题点涂色问题答案12解析先涂三棱锥P-ABC的三个侧面,然后涂三棱柱的三个侧面,共有C13×C12×C11×C12=3×2×1×2=12(种)不同的涂法.11.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种.(用数字作答)考点排列组合综合问题题点排列与组合的综合应用答案60解析一、二、三等奖,三个人获得,有A34=24(种).一、二、三等奖,有一个人获得2张,一个人获得1张,共有C23A24=36(种),共有24+36=60(种)不同的获奖情况.三、解答题12.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,求不同取法的种数.考点组合的应用题点有限制条件的组合问题解若没有红色卡片,则需从黄、蓝、绿三色卡片中选3张,若都不同色,则有C14×C14×C14=64(种),若2张同色,则有C23×C12×C24×C14=144(种),若红色卡片有1张,剩余2张不同色,则有C14×C23×C14×C14=192(种),剩余2张同色,则有C14×C13×C24=72(种),所以共有64+144+192+72=472(种)不同的取法.13.现有8名青年,其中有5名能胜任英语翻译工作,有4名能胜任德语翻译工作(其中有1名青年两项工作都能胜任).现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?考点排列组合综合问题题点分组分配问题解可以分三类.精品试卷第一类,让两项工作都能胜任的青年从事英语翻译工作,有C24C23种选法;第二类,让两项工作都能胜任的青年从事德语翻译工作,有C34C13种选法;第三类,让两项工作都能胜任的青年不从事任何工作,有C34C23种选法.根据分类加法计数原理,一共有C24C23+C34C13+C34C23=42(种)不同的选法.四、探究与拓展14.20个不加区别的小球放入编号为1,2,3的三个盒子中,要求每个盒内的球数不小于它的编号数,则不同的放法种数为________.考点排列组合综合问题题点分组分配问题答案120解析先在编号为2,3的盒内分别放入1,2个球,还剩17个小球,三个盒内分别至少再放入1个球,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中即可,共C216=120(种)方法.15.已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?考点排列组合综合问题题点排列与组合的综合应用解(1)先排前4次测试,只能取正品,有A46种不同测试方法,再从4件次品中选2件排在第5和第10的位置上测试,有C24A22=A24(种)测法,再排余下4件的测试位置,有A44种测法.所以共有不同测试方法A46·A24·A44=103 680(种).(2)第5次测试恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现,所以共有不同测试方法C16C34A44=576(种).欢迎下载。
概述组合数学在生活中处处可见。
计算单循环、双循环赛制下比赛的场数、构造幻方、一笔画、计算扑克牌游戏中满堂红牌的手数,概率等。
扎根于数学游戏和娱乐中,计算机技术的发展促进了其发展。
解决两类问题:排列的存在性问题(这是根本性问题。
排列集合中的某些元素使其满足某些条件,其排列的存在性并非总是显而易见的,若不存在,那么什么条件下会存在);排列的计数和分类问题。
(若存在,则会有多种方法实现,需要计数,并将其分类)。
一、棋盘的完美覆盖问题二、切割立方体三、幻方:四、四色问题五、36军官问题来自6个军团的6个军衔的军官,排成方阵,要求每行每列都有各种军衔的军官1名,并且每行每列的军官都是来自不同的军团。
六、最短路径问题组合优化的问题。
(路由选择)七、Nim 取子游戏鸽笼原理(抽屉原则)一、简单形式:把n+1个物体放入n 个盒子中,有一个盒子中至少有2个物体。
证明方法:反证法。
鸽笼原理与反证法的关系,类似于不完全归纳法与数学归纳法的关系。
例1 13个人中至少有两个人的生日在同一个月。
例2 有n 对夫妇,至少选择多少个人,才能保证至少有一对夫妇被选出?变化形式:把n 个物体放入n 个盒子中,每一个盒子中至少有1个物体,那么每一个盒子恰好有1个物体。
把n 个物体放入n 个盒子中,每一个盒子中至多有1个物体,那么每一个盒子恰好有1个物体。
例3 整数列a 1,a 2,〃〃〃〃〃〃,a m 中,一定有若干个连续的数的和能被m 整除。
构造∑==ij j i a b 1,构造所有被m 除所得余数的鸽笼,共有m 个若两个b i 被m 除的余数相同,则其差能被m 整除,现在笼子多一个,不用考虑余数为0的情况(此时已经满足要求)例4 大师11周训练,每天至少下一盘,每周不超过12盘,证明:有连续的若干天,刚好下了21盘棋。
证明:共77天,分别下a 1,a 2,〃〃〃〃〃〃,a 77构造则前i 天共下了∑==ij j i a b 1要证明存在b i ,b j ,使得b i - b j =21构造t i =21+b i ,变成证明存在t i = b j1≤b 1< b 2<〃〃〃〃〃〃<b 77≤13222≤t 1< t 2<〃〃〃〃〃〃<b 77≤153b 与t 混合在一起总共有154个,而结果只能有153个,从而必有两个数相同,但不可能同是t ,或同是b ,因为分别严格增加。
排列组合公式/排列组合计算公式排列P------和顺序有关组合C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn (两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。
组合数学第1章答案1.1 从{}5021,,,⋅⋅⋅中找两个数{}b a ,,使其满足(1) 5||=-b a ;(2)5||≤-b a解:(1)根据5||=-b a 可得 55-=-=-b a b a 或 则有种种4545 共有90种。
(2)根据5||≤-b a 得 )50,,2,1(,55{⋅⋅⋅∈+≤≤-b a b a b则:当5≤b 时,有 1=b , 61≤≤a , 则有 6种 2=b , 71≤≤a , 则有7种 3=b , 81≤≤a , 则有8种 4=b , 91≤≤a , 则有 9种 5=b , 101≤≤a , 则有10种 当455≤<b 时,有 6=b , 111≤≤a , 则有 11种 7=b , 122≤≤a , 则有 11种. . . . . . . . . 45=b , 5040≤≤a , 则有11种 当5045≤<b 时,有 46=b , 5041≤≤a , 则有 10种 47=b , 5042≤≤a , 则有 9种 48=b , 5043≤≤a , 则有 8种 49=b , 5044≤≤a , 则有 7种 50=b , 5045≤≤a , 则有 6种故:共 种520)678910(21140=+++++⨯1.2 (1)先把女生进行排列,方案为5!,然后把女生看成1个人和7个男生进行排列,总方案数为5!×8!(2)女生不相邻,则先把男生进行排列,方案为7!再把女生插入男生之间的8个空位种的任意5个,总方案数为7!×58P(3)应该是A 女生x 女生y 女生z B,或是B 女生x 女生y 女生z A 的形式,从5个女生中选出3人进行排列,方案为35P ,考虑A,B 可以换位,方案为2×35P ,然后把这个看成一个整体,和剩下的2个女生,5个男生,一共7个人进行排列,总方案数2×35P ×8!1.3 m 个男生,n 个女生,排成一行,其中m,n 都是正整数,若 (a )男生不相邻(m ≤n+1);(b )n 个女生形成一个整体; (c )男生A 和女生B 排在一起; 分别讨论有多少种方案。
排列组合1. 排列组合公式quad排列与组合二者的区别,排列计较次序而组合不计序。
quad从n从n从n个不同物件随机取rrr个物件,记排列数和组合数分别为AnrA_n^rAnr?和CnrC_n^rCnr?,则:Anr=n(n?1)?(n?r?1)=n!(n?r)!Cnr=Anrr!=n!r!(n?r)!begin{aligned}amp; A_n^r=n(n-1)cdots(n-r-1)=frac{n!}{(n-r)!}amp; C_n^r=frac{A_n^r}{r!}=frac{n!}{r!(n-r)!}end{aligned}Anr=n(n1)(nr1)=(nr)!n!Cnr=r!Anr=r!(nr)!n!quad注:Anr(n≥r≥1)A_n^r(ngeq r geq 1)Anr?(n≥r≥1),Cnr(n≥r≥0)C_n^r(ngeq r geq 0)Cnr?(n≥r≥0),0!=10!=10!=1,Cn0=1C_n^0=1Cn0?=12. 二项式及公式推广quad二项式展开公式为:(a+b)n=∑i=0nCniaibn?i(a+b)^n=sum_{i=0}^nC_n^ia^ib^{n-i}(a+b)n=i=0∑n?Cni?aibn?iquad系数CnrC_n^rCnr?常称为二项式系数。
由(a+b)n=(a+b)?(a+b)?n(a+b)^n=underbrace{(a+b)cdots(a+b)}_{n} (a+b)n=n(a+b)?(a+b)?,若独立nnn次实验从{a,b}{a,b}{a,b}中取数,则有CniC_n^iCni?种情况取到iii个aaa、n?in-in?i个bbb,故aibn?ia^ib^{n-i}aibn?i项的系数为CniC_n^iCni?。
quad(1) ∑i=0nCni=2nsum_{i=0}^n C_n^i=2^n∑i=0n?Cni?=2n quadquad 当a=b=1a=b=1a=b=1时,(a+b)n=2n=∑i=0nCni(a+b)^n=2^n=sum_{i=0}^nC_n^i(a+b)n=2n=∑i=0n?Cni?;quad(2)Cm+nk=∑i=0kCmiCnk?iC_{m+n}^k=sum_{i=0}^kC_m^iC_n^{k-i}Cm+n k?=∑i=0k?Cmi?Cnk?i?quadquad 因为(1+x)m+n=(1+x)m(1+x)n(1+x)^{m+n}=(1+x)^m(1+x)^n(1+x)m+n=(1+ x)m(1+x)n,即∑j=0m+nCm+njxj=(∑j=0mCmjxj)?(∑j=0nCnjxj)sum_{j=0}^{m+n}C _{m+n}^jx_j=(sum_{j=0}^mC_m^jx_j)cdot(sum_{j=0}^nC_n^jx_j)∑j=0m+n?Cm+nj?xj?=(∑j=0m?Cmj?xj?)?(∑j=0n?Cnj?xj?),由等式两边同幂项系数相同知Cm+nk=∑i=0kCmiCnk?iC_{m+n}^k=sum_{i=0}^kC_m^iC_n^{k-i}Cm+n k?=∑i=0k?Cmi?Cnk?i?。
组合飞花令⼀⼀数字⼀和植物中国诗词⼤会第五季第五场,组合飞花令出的是数字和植物组合。
今天⼩编整理了⼀组数字“⼀'和植物的组合,希望⼤家喜欢。
1.两个黄鹂鸣翠柳,⼀⾏⽩鹭上青天。
2.稻花⾹⾥说丰年,听取蛙声⼀⼀⽚。
3.忽如⼀夜春风来,千树万树梨花开。
4.中有⼀⼈字太真,雪肤花貌参差是。
5.⽟容寂寞泪阑⼲,梨花⼀枝春带⾬。
6.碧⽟妆成⼀树⾼,万条垂下绿丝绦。
7.⼭重⽔复疑⽆路,柳暗花明⼜⼀村。
8.遥知兄弟登⾼处,遍插茱萸少⼀⼈。
9.此地⼀为别,孤蓬万⾥征。
10.离离原上草,⼀岁⼀枯荣。
11.梅须逊雪三分⽩,雪却输梅⼀段⾹。
12.⼭⼀程,⽔⼀程,⾝向榆关那畔⾏,夜深千帐灯。
13.梨落疏疏⼀径深,树头花落未成阴。
14.吴酒⼀杯春⽵叶,吴娃双舞醉芙蓉。
15.最是⼀年春好处,绝胜烟柳满皇都。
16.贤愚千载知谁是,满眼蓬蔫共⼀丘。
17.⽔晶帘动微风起,满架蔷薇⼀院⾹。
18.⼀年好景君须记,正是橙黄橘绿时。
19.知有⼉童挑促织,夜深篱落⼀灯明。
20.不解藏踪迹,浮萍⼀道开。
21.桃花⼀处开⽆主,可爱深红爱浅红。
22.春种⼀粒粟,秋成万颗⼦。
23.池上碧苔三四点,叶底黄鹂⼀两声,⽇长飞絮轻。
24.蒲苇⼀时纫,便作旦⼣间。
25.满眼游丝兼絮落,红杏开时,⼀霎清明⾬。
26.晓来⾬过,遗踪何在?⼀池萍碎。
27.风声⼀何盛,松枝⼀何劲。
28.⽓下落梅如雪,乱拂了⼀⾝还满。
29.绣⾯芙蓉⼀笑开,斜飞宝鸭衬⾹腮。
30.⼀树寒梅⽩⽟条,迥临林村傍谿桥。
31.明敕星驰封宝剑,辞君⼀夜取楼兰。
32.⼩楼⼀夜听春⾬,深巷明朝卖杏花。
33.何须浅碧轻红⾊,⾃是花中第⼀流。
34.岂知⼀夜秦楼客,偷看吴王苑内花。
35.试上超然台上望,半壕春⽔⼀城花。
36.忆来何事最销魂,第⼀折枝花样画罗裙。
37.桃波⼀步地,了了语声闻。
38.郎听采菱⼥,⼀道夜歌归。
39.叶上初阳⼲宿⾬,⽔⾯清圆,⼀⼀风荷举。
40.飞絮飞花何处是,层冰积雪摧残,疏疏⼀树五更寒。
7-5-1.组合的基本应用(一)教学目标1.使学生正确理解组合的意义;正确区分排列、组合问题;2.了解组合数的意义,能根据具体的问题,写出符合要求的组合;3.掌握组合的计算公式以及组合数与排列数之间的关系;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对组合的一些计数问题进行归纳总结,重点掌握组合的联系和区别,并掌握一些组合技巧,如排除法、插板法等.知识要点一、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C .一般地,求从n 个不同元素中取出的m 个元素的排列数n m P 可分成以下两步:第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法;第二步:将每一个组合中的m 个元素进行全排列,共有m mP 种排法.根据乘法原理,得到m m m n n mP C P =⋅.因此,组合数12)112321⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⋅⋅ m m n nm m P n n n n m C P m m m ()(()()().这个公式就是组合数公式.二、组合数的重要性质一般地,组合数有下面的重要性质:m n m n nC C -=(m n ≤)这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n m n C -表示从n 个元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元素中选出m 个元素的分组方法恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组方法.例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255C C =.规定1n n C =,01n C =.例题精讲模块一、组合之计算问题【例1】计算:⑴26C ,46C ;⑵27C ,57C .【例2】计算:⑴198200C ;⑵5556C ;⑶981001001002C C -.【巩固】计算:⑴312C ;⑵9981000C ;⑶2288P C -.模块二、组合之体育比赛中的数学【例3】某校举行排球单循环赛,有12个队参加.问:共需要进行多少场比赛?【巩固】芳草地小学举行足球单循环赛,有24个队参加.问:共需要进行多少场比赛?【例4】六个人传球,每两人之间至多传一次,那么最多共进行次传球.【例5】一批象棋棋手进行循环赛,每人都与其他所有的人赛一场,根据积分决出冠军,循环赛共要进行78场,那么共有多少人参加循环赛?【例6】某校举行男生乒乓球比赛,比赛分成3个阶段进行,第一阶段:将参加比赛的48名选手分成8个小组,每组6人,分别进行单循环赛;第二阶段:将8个小组产生的前2名共16人再分成4个小组,每组4人,分别进行单循环赛;第三阶段:由4个小组产生的4个第1名进行2场半决赛和2场决赛,确定1至4名的名次.问:整个赛程一共需要进行多少场比赛?【例7】有8个队参加比赛,采用如下图所示的淘汰制方式.问在比赛前抽签时,可以得到多少种实质不同的比赛安排表?模块三、组合之数字问题【例8】从分别写有1、3、5、7、9的五张卡片中任取两张,做成一道两个一位数的乘法题,问:⑴有多少个不同的乘积?⑵有多少个不同的乘法算式?【巩固】9、8、7、6、5、4、3、2、1、0这10个数字中划去7个数字,一共有多少种方法?【巩固】从分别写有1、2、3、4、5、6、7、8的八张卡片中任取两张,做成一道两个一位数的加法题,有多少种不同的和?【例9】有红、黄、蓝、绿四种颜色的卡片各5张,且每种颜色的卡片上分别标有1,2,3,4,5,从这些卡片中取出5张,要求1、2、3、4、5各一张,但四种颜色都要有,求共有________种取法?【例10】在1~100中任意取出两个不同的数相加,其和是偶数的共有多少种不同的取法?【巩固】从19、20、……、93、94这76个数中,选取两个不同的数,使其和为偶数的选法总数是多少?【例11】一个盒子装有10个编号依次为1,2,3, ,10的球,从中摸出6个球,使它们的编号之和为奇数,则不同的摸法种数是多少?【例12】用2个1,2个2,2个3可以组成多少个互不相同的六位数?用2个0,2个1,2个2可以组成多少个互不相同的六位数?【例13】从1,3,5,7,9中任取三个数字,从2,4,6,8中任取两个数字,组成没有重复数字的五位数,一共可以组成多少个数?【例14】从0、0、1、2、3、4、5这七个数字中,任取3个组成三位数,共可组成多少个不同的三位数?(这里每个数字只允许用1次,比如100、210就是可以组成的,而211就是不可以组成的).【例15】用2个1,2个2,2个3可以组成多少个互不相同的六位数?用2个0,2个1,2个2可以组成多少个互不相同的六位数?【巩固】用两个3,一个2,一个1,可以组成多少个不重复的4位数?。