组合数学CH1.1,1.2
- 格式:ppt
- 大小:1.85 MB
- 文档页数:38
《1.2.2组合》教学案教学目标:知识与技能:理解组合的意义,能写出一些简单问题的所有组合.明确组合与排列的联系与区别,能判断一个问题是排列问题还是组合问题.过程与方法:了解组合数的意义,理解排列数mn A 与组合数 之间的联系,掌握组合数公式,能运用组合数公式进行计算.情感、态度与价值观:能运用组合要领分析简单的实际问题,提高分析问题的能力.教学重点:组合的概念和组合数公式教学难点:组合的概念和组合数公式教学过程:一、复习引入:1、分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++L种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯L 种不同的方法3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号mn A 表示5.排列数公式:(1)(2)(1)mn A n n n n m =---+L (,,m n N m n *∈≤)6.阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=. 7.排列数的另一个计算公式:mn A =!()!n n m -8.提出问题:示例1:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?mnC示例2:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法? 引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而示例2只要求选出2名同学,是与顺序无关的引出课题:组合.二、讲解新课:1组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同 例1.判断下列问题是组合还是排列(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?有多少种不同的飞机票价?(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?选出三人参加某项劳动,有多少种不同的选法?(4)10个人互相通信一次,共写了多少封信? (5)10个人互通电话一次,共多少个电话? 问题:(1)1、2、3和3、1、2是相同的组合吗? (2)什么样的两个组合就叫相同的组合2.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号mn C 表示.3.组合数公式的推导:(1)从4个不同元素,,,a b c d 中取出3个元素的组合数34C 是多少呢?启发:由于排列是先组合再排列,而从4个不同元素中取出3个元素的排列数34A 可以求得,故我们可以考察一下34C 和34A 的关系,如下:组 合 排列dcbcdb bdc dbc cbd bcd bcddca cda adc dac cad acd acd dbabda adb dab bad abd abdcba bca acb cab bac abc abc ,,,,,,,,,,,,,,,,,,,,→→→→由此可知,每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数34A ,可以分如下两步:① 考虑从4个不同元素中取出3个元素的组合,共有34C 个;② 对每一个组合的3个不同元素进行全排列,各有33A 种方法.由分步计数原理得:34A =⋅34C 33A ,所以,333434A A C =.(2)推广:一般地,求从n 个不同元素中取出m 个元素的排列数mn A ,可以分如下两步: ① 先求从n 个不同元素中取出m 个元素的组合数mn C ;② 求每一个组合中m 个元素全排列数m m A ,根据分步计数原理得:m n A =m n C mm A ⋅.(3)组合数的公式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+==L或)!(!!m n m n C mn -=),,(n m N m n ≤∈*且规定: 01n C =.三、讲解范例:例1.用计算器计算710C . 解:由计算器可得例2.计算:(1)47C ; (2)710C ; (1)解: 4776544!C ⨯⨯⨯==35;(2)解法1:710109876547!C ⨯⨯⨯⨯⨯⨯==120.解法2:71010!10987!3!3!C ⨯⨯===120. 例3.求证:11+⋅-+=m n mn C mn m C . 证明:∵)!(!!m n m n C mn -=111!(1)!(1)!m nm m n C n mn m m n m +++⋅=⋅--+-- =1!(1)!()(1)!m n m n m n m +⋅+---=!!()!n m n m -∴11+⋅-+=m n mn C mn m C例4.设,+∈N x 求321132-+--+x x x x C C 的值解:由题意可得:⎩⎨⎧-≥+-≥-321132x x x x ,解得24x ≤≤,∵x N +∈, ∴2x =或3x =或4x =,当2x =时原式值为7;当3x =时原式值为7;当4x =时原式值为11. ∴所求值为4或7或11.例5. 一位教练的足球队共有 17 名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:(l )这位教练从这 17 名学员中可以形成多少种学员上场方案?(2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?分析:对于(1),根据题意,17名学员没有角色差异,地位完全一样,因此这是一个从 17 个不同元素中选出11个元素的组合问题;对于( 2 ) ,守门员的位置是特殊的,其余上场学员的地位没有差异,因此这是一个分步完成的组合问题.解: (1)由于上场学员没有角色差异,所以可以形成的学员上场方案有 C }手= 12 376 (种) .(2)教练员可以分两步完成这件事情:第1步,从17名学员中选出 n 人组成上场小组,共有1117C 种选法; 第2步,从选出的 n 人中选出 1 名守门员,共有111C 种选法. 所以教练员做这件事情的方法数有1111711C C ⨯=136136(种).例6.(1)平面内有10 个点,以其中每2 个点为端点的线段共有多少条? (2)平面内有 10 个点,以其中每 2 个点为端点的有向线段共有多少条?解:(1)以平面内 10 个点中每 2 个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段共有2101094512C⨯==⨯(条). (2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每 2 个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段共有21010990A =⨯=(条).例7.在 100 件产品中,有 98 件合格品,2 件次品.从这 100 件产品中任意抽出 3 件 .(1)有多少种不同的抽法?(2)抽出的 3 件中恰好有 1 件是次品的抽法有多少种? (3)抽出的 3 件中至少有 1 件是次品的抽法有多少种?解:(1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数,所以共有31001009998123C⨯⨯=⨯⨯= 161700 (种).(2)从2 件次品中抽出 1 件次品的抽法有12C 种,从 98 件合格品中抽出 2 件合格品的抽法有298C 种,因此抽出的 3 件中恰好有 1 件次品的抽法有12298C C ⋅=9506(种).(3)解法 1 从 100 件产品抽出的 3 件中至少有 1 件是次品,包括有1件次品和有 2 件次品两种情况.在第(2)小题中已求得其中1件是次品的抽法有12298C C ⋅种,因此根据分类加法计数原理,抽出的3 件中至少有一件是次品的抽法有12298C C ⋅+21298C C ⋅=9 604 (种) .解法2 抽出的3 件产品中至少有 1 件是次品的抽法的种数,也就是从100件中抽出3 件的抽法种数减去3 件中都是合格品的抽法的种数,即3310098C C -=161 700-152 096 = 9 604 (种).说明:“至少”“至多”的问题,通常用分类法或间接法求解. 变式:按下列条件,从12人中选出5人,有多少种不同选法?(1)甲、乙、丙三人必须当选; (2)甲、乙、丙三人不能当选; (3)甲必须当选,乙、丙不能当选; (4)甲、乙、丙三人只有一人当选; (5)甲、乙、丙三人至多2人当选; (6)甲、乙、丙三人至少1人当选; 四、组合数的两个性质组合数的性质1:mn n m n C C -=.一般地,从n 个不同元素中取出m 个元素后,剩下n m -个元素.因为从n 个不同元素中取出m 个元素的每一个组合,与剩下的n m 个元素的每一个组合一一对应,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n m 个元素的组合数,即:m n n m n C C -=.在这里,主要体现:“取法”与“剩法”是“一一对应”的思想证明:∵)!(!!)]!([)!(!m n m n m n n m n n C mn n -=---=-又 )!(!!m n m n C mn -=,∴mn n m n C C -=说明:①规定:10=n C ;②等式特点:等式两边下标同,上标之和等于下标; ③此性质作用:当2n m >时,计算m n C 可变为计算mn n C -,能够使运算简化. 例如20012002C =200120022002-C =12002C =2002;④yn x n C C =y x =⇒或n y x =+.2.组合数的性质2:m n C 1+=m n C +1-m nC .一般地,从121,,,+n a a a Λ这n +1个不同元素中取出m 个元素的组合数是mn C 1+,这些组合可以分为两类:一类含有元素1a ,一类不含有1a .含有1a 的组合是从132,,,+n a a a Λ这n 个元素中取出m 1个元素与1a 组成的,共有1-m nC 个;不含有1a 的组合是从132,,,+n a a a Λ这n 个元素中取出m 个元素组成的,共有mn C 个.根据分类计数原理,可以得到组合数的另一个性质.在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.证明:)]!1([)!1(!)!(!!1---+-=+-m n m n m n m n C C m n m n )!1(!!)1(!+-++-=m n m m n m n n)!1(!!)1(+-++-=m n m n m m n )!1(!)!1(+-+=m n m n m n C 1+= ∴mn C 1+=mn C +1-m nC .说明:①公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与大的相同的一个组合数;②此性质的作用:恒等变形,简化运算例8.一个口袋内装有大小不同的7个白球和1个黑球, (1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法? (3)从口袋内取出3个球,使其中不含黑球,有多少种取法?解:(1)5638=C ,或=38C +27C 37C ,;(2)2127=C ;(3)3537=C . 例9.(1)计算:69584737C C C C +++;(2)求证:n m C 2+=n m C +12-n m C +2-n m C .解:(1)原式4565664889991010210C C C C C C C =++=+===;证明:(2)右边1121112()()n n n n n n nm m m m m m m C C C C C C C ----+++=+++=+==左边例13.解方程:(1)3213113-+=x x C C ;(2)解方程:333222101+-+-+=+x x x x x A C C .解:(1)由原方程得123x x +=-或12313x x ++-=,∴4x =或5x =,又由111312313x x x N *⎧≤+≤⎪≤-≤⎨⎪∈⎩得28x ≤≤且x N *∈,∴原方程的解为4x =或5x =上述求解过程中的不等式组可以不解,直接把4x =和5x =代入检验,这样运算量小得多.(2)原方程可化为2333110x x x CA -++=,即5333110x x C A ++=,∴(3)!(3)!5!(2)!10!x x x x ++=-⋅,∴11120(2)!10(1)(2)!x x x x =-⋅-⋅-,∴2120x x --=,解得4x =或3x =-, 经检验:4x =是原方程的解 例10.证明:pn p m p m p n n m C C C C --⋅=⋅.证明:原式左端可看成一个班有m 个同学,从中选出n 个同学组成兴趣小组,在选出的n 个同学中,p 个同学参加数学兴趣小组,余下的p n -个同学参加物理兴趣小组的选法数.原式右端可看成直接在m 个同学中选出p 个同学参加数学兴趣小组,在余下的p m -个同学中选出p n -个同学参加物理兴趣小组的选法数.显然,两种选法是一致的,故左边=右边,等式成立.例11.证明:++-110m m n m m n C C C C …mn m m m n C C C +=+0(其中m n ≥).证明:设某班有n 个男同学、m 个女同学,从中选出m 个同学组成兴趣小组,可分为1+m 类:男同学0个,1个,…,m 个,则女同学分别为m 个,1-m 个,…,0个,共有选法数为++-110m m n m m n C C C C …0m m n C C +.又由组合定义知选法数为mn m C +,故等式成立.例12.证明:+++32132n n n C C C (1)2-=+n n n n nC .证明:左边=+++32132n n n C C C …n n nC +=+++313212111n n n C C C C C C …nn n C C 1+,其中in i C C 1可表示先在n 个元素里选i 个,再从i 个元素里选一个的组合数.设某班有n 个同学,选出若干人(至少1人)组成兴趣小组,并指定一人为组长.把这种选法按取到的人数i 分类(,,21=i …n ,),则选法总数即为原式左边.现换一种选法,先选组长,有n 种选法,再决定剩下的1-n 人是否参加,每人都有两种可能,所以组员的选法有12-n 种,所以选法总数为12-n n 种.显然,两种选法是一致的,故左边=右边,等式成立.五、小结 :组合的意义与组合数公式;解决实际问题时首先要看是否与顺序有关,从而确定是排列问题还是组合问题,必要时要利用分类和分步计数原理六、教学反思:排列组合问题联系实际生动有趣,题型多样新颖且贴近生活,解法灵活独到但不易掌握,许多学生面对较难问题时一筹莫展、无计可施,尤其当从正面入手情况复杂、不易解决时,可考虑换位思考将其等价转化,使问题变得简单、明朗.教科书在研究组合数的两个性质①m n n m n C C -=,②11-++=m n m n m n C C C 时,给出了组合数定义的解释证明,即构造一个组合问题的模型,把等式两边看成同一个组合问题的两种计算方法,由组合个数相等证出要证明的组合等式.这种构造法证明构思精巧,把枯燥的公式还原为有趣的实例,能极大地激发学习兴趣.本文试给几例以说明.教学反思:1、注意区别“恰好”与“至少”2、特殊元素(或位置)优先安排3、“相邻”用“捆绑”,“不邻”就“插空”4、混合问题,先“组”后“排”5、分清排列、组合、等分的算法区别6、分类组合,隔板处理。