2017年秋季新版华东师大版九年级数学上学期第24章、解直角三角形单元复习试卷2
- 格式:doc
- 大小:197.50 KB
- 文档页数:5
华东师大版数学-九年级上册-第二十四章-解直角三角形-巩固练习一、单选题1.Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,且a:b=3:4,斜边c=15,则b的值是()A. 12B. 9C. 4D. 32.三角形在方格纸中的位置如图所示,则tanα的值是()A. B. C. D.3.正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A. B. C. D.4.如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30度,则坝底AD的长度为()A. 56米B. 66米C. (56+20)米D. (50+20)米5.在△ABC中,∠C=90°,cosA=则tanB的值为( )A. B. C. D.6.如图,测得BD=120m,DC=60m,EC=50m,则河宽AB为()A. 120mB. 100mC. 75mD. 25m7.如图,在坡角为30°的斜坡上要栽两棵树,要求它们之间的水平距离AC为6m,则这两棵树之间的坡面AB的长为()A. 12mB. 3mC. 4mD. 12m8.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB 等于()A. 4.5米B. 6米C. 7.2米D. 8米9.如图,在菱形ABCD中,AE⊥BC于点E,EC=4,,则菱形的周长是()A. 10B. 20C. 40D. 28二、填空题10.如图,身高是1.6m的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长分别为1.2m和9m.则旗杆的高度为________m.11.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为________米(结果保留根号).12.如图,在△ABC中,AB=7,AC=6,,点D、E分别在边AB、BC上,将△BDE 沿着DE所在直线翻折,点B落在点P处,PD、PE分别交边AC于点M、N,如果AD=2,PD ⊥AB,垂足为点D,那么MN的长是________.13.若直角三角形两条边长分别是和,则斜边上的中线长为________.14.如图,在处利用测角仪测得某建筑物的顶端点的仰角为60°,点的仰角为45°,点到建筑物的距离为米,则________米.15.在Rt△ABC中,∠ACB=90°,CD为斜边AB上的高,若BC=4,sinA= ,则BD的长为________.16.在一次数学实验活动中,老师带领学生去测一条南北流向的河的宽度.如图,某同学在河东岸点A处观测河对岸水边有点C,测得C在A北偏西31°的方向上,沿河岸向北前行20米到达B处,测得C在B北偏西45°的方向上,则这条河的宽度________米.(参考数据:)17.已知三角形的两边长分别为3和6,那么第三边长x的取值范围是________.三、解答题18.位于河南省郑州市的炎黄二帝巨型塑像,是为代表中华民族之创始、之和谐、之统一.塑像由山体CD和头像AD两部分组成.某数学兴趣小组在塑像前50米处的B处测得山体D 处的仰角为45°,头像A处的仰角为70.5°,求头像AD的高度.(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)19.某商场为方便顾客使用购物车,准备将滚动电梯的坡面坡度由1:1.8改为1:2.4(如图).如果改动后电梯的坡面长为13米,求改动后电梯水平宽度增加部分BC的长.四、综合题20.如图,某学校为了加固一篮球架,在下面焊接了一根钢筋撑杆AC,它与水平的钢板箱体成60°的夹角,且AB=0.5m.原有的上撑杆DE=1.6m,且∠BDE=135°.(1)求撑杆AC的长;(2)若篮板是边长为1m的正方形,上撑杆端点E在其中心位置,球篮连接篮板处为F,且EF=m,下面的钢板箱体厚度为0.3m,CD=1.8m,则点F距地面的高度约为多少米?(结果精确到0.1m,参考数据:≈1.41,≈1.73.21.如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,然后沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:(斜坡的铅直高度与水平宽度的比),经过测量AB=10米,AE=15米.(1)求点B到地面的距离;(2)求这块宣传牌CD的高度.(测角器的高度忽略不计,结果保留根号)22.有一只拉杆式旅行箱(图1),其侧面示意图如图2所示.已知箱体长AB=50cm,拉杆的伸长距离最大时可达35cm,点A,B,C在同一条直线上.在箱体底端装有圆形的滚轮⊙A,⊙A与水平地面MN相切于点D.在拉杆伸长至最大的情况下,当点B距离水平地面38cm 时,点C到水平地面的距离CE为59cm.设AF∥MN.(1)求⊙A的半径长;(2)当人的手自然下垂拉旅行箱时,人感到较为舒服.某人将手自然下垂在C端拉旅行箱时,CE为80cm,=64°.求此时拉杆BC的伸长距离.(精确到1cm,参考数据:,,)答案一、单选题1.【答案】A【解析】【分析】设a=3x,则b=4x,再根据勾股定理求出x的值,进而可得出结论.【解答】∵Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,且a:b=3:4,∴设a=3x,则b=4x.∵a2+b2=c2,即(3x)2+(4x)2=152,解得x=3,∴b=4x=12.故选:A2.【答案】A【解析】【分析】根据三角函数的定义就可以解决.【解答】在直角三角形中,正切值等于对边比上邻边,∴tanα=.故选A.【点评】本题考查了锐角三角函数的定义3.【答案】B【解析】【解答】解:如图,C为OB边上的格点,连接AC,根据勾股定理,AO==2,AC==,OC==,所以,AO2=AC2+OC2=20,所以,△AOC是直角三角形,cos∠AOB===.故选B.【分析】找出OB边上的格点C,连接AC,利用勾股定理求出AO、AC、CO的长度,再利用勾股定理逆定理证明△AOC是直角三角形,然后根据余弦=计算即可得解.4.【答案】C【解析】【解答】解:作BE⊥AD,CF⊥AD,垂足分别为点E,F,则四边形BCFE是矩形,由题意得,BC=EF=6米,BE=CF=20米,斜坡AB的坡度i为1:2.5,在Rt△ABE中,∵=,∴AE=50米,在Rt△CFD中,∵∠D=30°,∴DF=CFcot∠D=20米,∴AD=AE+EF+FD=50+6+20=(56+20)米.故选C.【分析】过梯形上底的两个顶点向下底引垂线,得到两个直角三角形和一个矩形,利用相应的性质求解即可.5.【答案】C【解析】【分析】现根据∠A的正切值求出b、c之间的关系,然后根据勾股定理求出a,根据正切函数的定义求解.【解答】由cosA=b=,设b=3x,则c=5x.由勾股定理知,a=4x.∴tanB==.故选C.【点评】本题考查了互余两角三角函数的关系,求锐角三角函数值,可用设合适参数,利用锐角三角函数的概念和勾股定理来求解.6.【答案】B【解析】【解答】解:∵AB⊥BC,CE⊥BC,∴AB∥CE,∴△ABD∽△ECD,∴,即:,∴AB=100(m).故选B.【分析】先证明△ABD∽△ECD,然后利用相似比计算AB的长即可.7.【答案】C【解析】【解答】解:如图,∵∠BAC=30°,∠ACB=90°,AC=6m,∴AB= = =4(m).故选C.【分析】AB是Rt△ABC的斜边,这个直角三角形中,已知一边和一锐角,满足解直角三角形的条件,可求出AB的长.8.【答案】B【解析】【分析】由于人和地面是垂直的,即和路灯到地面的垂线平行,构成两组相似.根据对应边成比例,列方程解答即可.【解答】如图,GC⊥BC,AB⊥BC,∴GC∥AB,∴△GCD∽△ABD(两个角对应相等的两个三角形相似),∴,设BC=x,则,同理,得,∴,∴x=3,∴,∴AB=6.故选B.【点评】本题考查相似三角形性质的应用.在解答相似三角形的有关问题时,遇到有公共边的两对相似三角形,往往会用到中介比,它是解题的桥梁,如该题中的“”.9.【答案】C【解析】【解答】解:∵,∴cosB=.∵在菱形ABCD中,AE⊥BC于点E,EC=4,∴BE:AB=(BC﹣EC):BC=3:5,∴BC=10,则菱形的周长=10×4=40.故选C.【分析】根据菱形的性质和同角三角函数的关系,可知EC和菱形边长的关系,从而求出菱形的周长.二、填空题10.【答案】12【解析】【解答】解:设旗杆的高度为xm,根据题意得:解得x=12则旗杆的高度为12米。
华师大版九年级上册数学第24章解直角三角形含答案一、单选题(共15题,共计45分)1、下列各组长度的线段能构成三角形的是()A.1,2,4B.4,5,9C.4,6,8D.5,5,112、如图,在2×2正方形网格中,以格点为顶点的△ABC的面积等于,则sin∠CAB=()A. B. C. D.3、如图,已知菱形ABCD,DF1BC交AC于点,交C于点F,若tan∠BDF= ,AB=30,则CE的长是()A. B. C. D.4、在△ABC中,AB=6,AC=8,则BC边上中线AD的取值范围为()(提示:可以构造平行四边形)A.2<AD<14B.1<AD<7C.6<AD<8D.12<AD<165、在Rt△ABC中,∠C=90°,∠B=30°,斜边AB的长为2,则AC长为()A.4B.2C.1D.6、如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,且BE∥AC,CE∥DB,连接DE,则tan∠EDC=()A. B. C. D.7、如图,小颖身高为160cm,在阳光下影长AB=240cm,当她走到距离墙角(点D)150cm处时,她的部分影子投射到墙上,则投射在墙上的影子DE的长度为()A.50B.60C.70D.808、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的一组是()A.2、4、6B.4、6、8C.8、10、12D.6、8、109、如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形顶点上,则tan∠ACB的值为()A. B. C. D.310、如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;② ;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是()A.①②③B.②③C.①③④D.②④11、在下面四根木棒中,选一根能与长为4cm,9cm的两根木棒首尾依次相接钉成一个三角形的是()A.4cmB.5cmC.9cmD.13cm12、下列是无理数的是()A. B. C.0.202002000… D.13、已知三角形两边长分别为2和9,第三边的长为二次方程x2-14x+48=0的一根,则这个三角形的周长为( )A.11B.17C.17或19D.1914、在△ABC中,∠C=90°,cosA=, AC=6,则AB的长度为()A.8B.10C.12D.1415、如图,⊙O的直径AB=2,点C在⊙O上,弦AC=1,则∠D的度数是()A.30°B.60°C.45°D.75°二、填空题(共10题,共计30分)16、如图,在△ABC中,AB=AC=5,BC=8.若∠BPC= ∠BAC,则tan∠BPC=________.17、如图,在Rt△ABC中,∠ACB=90°,,CM是斜边AB的中线,将△ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A=________.18、点P是菱形ABCD的对角线AC上的一个动点,已知AB=1,∠ADC=120°, 点M,N分别是AB,BC边上的中点,则△MPN的周长最小值是________.19、一个直角三角形斜边上的高与中线分别是5㎝和6㎝,则它的面积是________ .20、等腰三角形的两边长为3 和,那么它的周长为________.21、如图,已知,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE.点P,C,E在一条直线上,,M、N分别是对角线AC、BE的中点.当点P在线段AB上移动时,点M、N之间的距离最短为________.22、在扇形纸片AOB中,∠AOB=90°,OA=4,将扇形纸片AOB按如图所示折叠,使对折后点A与点O重合,折痕为DE,则的长度为________.23、如图,Rt△ACB中,∠ACB=90°,AC=2BC=4,点P为AB边中点,点D为AC 边上不与端点重合的一动点,将△ADP沿着直线PD折叠得△PDE,若DE⊥AB,则AD的长度为________。
华师大版九年级上册数学第24章解直角三角形含答案一、单选题(共15题,共计45分)1、如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的值为()A.3B.C.D.22、课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB在地面上的影长BC为24米,那么旗杆AB的高度约是()A.12米B. 米C.24米D. 米3、已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为( )A.2a+2b-2cB.2a+2bC.2cD.04、三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.12B.14C.12或14D.以上都不对5、在△ABC中,∠C=90°,BC=2,AB=3,则cosB的值为A. B. C. D.6、如图,在矩形纸片ABCD中,已知AB=,BC=1,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE折叠,得到多边形AFGE,点B,C的对应点分别为点F、G.在点E从点C移动到点D的过程中,则点F运动的路径长为()A.πB. πC. πD. π7、在Rt△ABC中,∠C=90°,AB=13,AC=12,则sinB的值是()A. B. C. D.8、已知锐角α,且sinα=cos38°,则α=()A.38°B.62°C.52°D.72°9、已知sinA= ,那么锐角等于()A.15°B.30°C.45°D.60°10、已知两条线段的长度分别为2cm、8cm,下列能与它们构成三角形的线段长度为()A.4cmB.6cmC.8cmD.10cm11、在△ABC中,若,则∠C的度数为( )A.30°B.60°C.90°D.120°12、下列长度的三条线段能组成三角形的是()A.1,2,3B.3,4,5C.3,1,1D.3,4,713、如图,是屋架设计图的一部分,立柱BC垂直于横梁AC,AB=12m,∠A=30°,则立柱BC的长度为()A.4 mB.6 mC.8 mD.12 m14、平行四边形的对角线分别为x、y,一边长为 12,则x、y 的值可能是()A.8 与 14B.10 与 14C.18 与 20D.4 与 2815、如图是某河坝横断面示意图,迎水坡,为背水坡,过点A作水平面的垂线,设斜坡的坡度为,坡角为,斜坡的坡度为,坡角为,则下列结论正确的是( )A. B. C. D.二、填空题(共10题,共计30分)16、将一副三角尺如图所示叠放在一起,若 AB=4 cm,则阴影部分的面积是________cm217、如图,将矩形绕点旋转至矩形位置,此时的中点恰好与点重合,交于点.若=1,则矩形的面积为________.18、纸片中,,将它折叠使与重合,折痕交于点,则线段的长为________.19、如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部的俯角为60°,热气球A与楼的水平距离为120 m,这栋楼的高度BC是________m(≈1.732,结果取整数).20、如图,在△ABC中,已知BC=5,,∠C=30°,EF 垂直平分BC,点 P 为直线EF上一动点,则 AP+BP 的最小值是________.21、在等腰△ABC中,AB=AC,如果cosC=,那么tanA=________.22、如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AC=4,BC=3,则∠DCB的正切值为________.23、如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是________.24、在Rt△ABC中,∠C=90°,AC=5,BC=12,则sinA=________25、如图一张长方形纸片ABCD,其长AD为a,宽AB为b(a>b),在BC边上选取一点M,将△ABM沿AM翻折后B至B′的位置,若B′为长方形纸片ABCD的对称中心,则的值为________.三、解答题(共5题,共计25分)26、计算:.27、为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图.按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入.(其中AB=9m,BC=0.5m)为标明限高,请你根据该图计算CE.(精确到0.1m)(参考数值,,)28、在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,且a= ,b= ,求这个直角三角形的其他元素。
华师大版九年级上册数学第24章解直角三角形含答案一、单选题(共15题,共计45分)1、数学兴趣小组的小明想测量教学楼前的一棵树的高度.下午课外活动时他测得一根长为1m的竹竿的影长是0.8m.但当他马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图).他先测得留在墙壁上的树影高为1.2m,又测得地面的影长为2.6m,请你帮他算一下,下列哪个数字最接近树高()m.A.3.04B.4.45C.4.75D.3.82、已知:如图,⊙O的半径为9,弦AB⊥半径OC于H,sin∠BOC=,则AB 的长度为()A.6B.9C.12D.33、如图为张小亮的答卷,每个小题判断符合题意得20分,他的得分应是()A.100分B.80分C.60分D.40分4、如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.asinx+bsinxB.acosx+bsinxC.asinx+bcosxD.acosx+bcos x5、如图,已知一坡面的坡度i=:,则坡角α为()A.15°B.20°C.30°D.45°6、在中,,若,则().A. B. C. D.7、如图,在△ABC中,CD⊥AB于点D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A.5B.6C.7D.88、如果一个等腰三角形的两边长分别是4cm和6cm,那么此三角形的周长是()A.14cmB.16cm或14cmC.17cmD.16cm9、如图,是屋架设计图的一部分,立柱BC垂直于横梁AC,AB=12m,∠A =30°,则立柱BC的长度为()A.4 mB.6 mC.8 mD.12 m10、如图,以Rt△ABC的直角边AB为直径作⊙O交BC于点D,连接AD,若∠DAC=30°,DC=1,则⊙O的半径为()A.2B.C.2﹣D.111、如图,若两条宽度为1的带子相交成30°的角,则重叠部分(图中阴影部分)的面积是()A.2B.C.1D.12、如果三角形的两边长分别为3和5,则第三边L的取值范围是( )A.2<L<15B.L<8C.2<L<8D.10<L<1613、已知a>b>c>0,则以a,b,c为三边组成三角形的条件是()A.b+c>aB.a+c>bC.a+b>cD.以上都不对14、一等腰三角形的底边长为5,周长被一腰上的中线分成的两部分的差为3,则腰长为()A.2cmB.3cmC.8cmD.2cm或8cm15、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①作出AD的依据是SAS;②∠ADC=60°③点D在AB的中垂线上;④S△DAC :S△ABD=1:2.A.1B.2C.3D.4二、填空题(共10题,共计30分)16、如图,点为的AB边上的中点,点E为AD的中点,为正三角形,给出下列结论,① ,② ,③,④若,点是上一动点,点到、边的距离分别为,,则的最小值是3.其中正确的结论是________(填写正确结论的番号)17、若两个三角形的相似比为2∶3,则这两个三角形周长的比为________ .18、如图,∠XOY=45°,一把直角三角尺△ABC的两个顶点A、B分别在OX,OY 上移动,其中AB=10,那么点O到顶点A的距离的最大值为________.19、如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为49,则cosα=________.20、如图,已知点B在数轴负半轴上,O为原点,点A在过O且垂直于数轴的直线上,∠BAO=60°,AB=4,点C在数轴上,当ΔABC是以AB为腰的等腰三角形时,点C表示的数为________.21、方程的两个根是等腰三角形的底和腰,则这个等腰三角形周长是________.22、如图,现有一张矩形纸片ABCD,其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,使点B落在梯形AECD内,记为点B′,那么B′、C两点之间的距离是________ cm.23、如图,某公园入口处原有三阶台阶,每级台阶高为20cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡的坡度i= ,则AC的长度是________cm.24、如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D,若AB=4,AC=3,则cos∠BAD的值为________.25、在等腰三角形中,它的两边长分别为和则它的周长为________ .三、解答题(共5题,共计25分)26、先化简,再求值:,其中.27、已知菱形ABCD的周长为48cm,两个邻角∠A与∠B的比是1:2,求这个菱形的面积.28、如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:,.29、如图,在某建筑物AC上,挂着“魅力湖州”的宣传条幅BC,小明站在点F 处,看条幅顶端B,测得仰角为30°,再往条幅方向前行20米到达点E处,看到条幅顶端B,测得仰角为60°,求宣传条幅BC的长(小明的身高不计).30、如图所示,在△ABC中,∠C=90°,∠BAC=60°,AB的垂直平分线DE交AB于D,交BC于E,若CE=3cm,求BE的长.参考答案一、单选题(共15题,共计45分)1、B2、C3、B4、B5、C6、C7、D8、B9、B10、B11、A12、C13、A14、C15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、29、30、。
;华东师大版九年级数学上册第24章解直角三角形单元复习题一、选择题1.如图,利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,AB:AC=1:9,则建筑物CD的高是( )A.9.6m B.10.8m C.12m D.14m2.如图,在矩形中,已知于,,,则的长为( )A.3B.2C.D.3.已知,是锐角,则的度数为( )A.B.C.D.4.用计算器求的值,以下按键顺序正确的是( )A.B.C.D.5.如图,在中,,,则的值为( )A.2B.3C.D.6.如图,利用标杆BE测量建筑物的高度,已知标杆高,测得.则建筑物的高是( )A.B.C.D.7.边长为5,7,8的三角形的最大角和最小角的和是( ).A.90°B.150°C.135°D.120°8.如图,在中,,若,,点是上一点,且,则的值为( ).A.B.C.D.9.如图,某超市电梯的截面图中,的长为15米,与的夹角为,则高是( )A.米B.米C.米D.米10.如图,在一笔直的沿湖道路l上有、两个游船码头,观光岛屿在码头北偏东的方向,在码头北偏西的方向,.游客小张准备从观光岛屿乘船沿回到码头或沿回到码头,设开往码头、的游船速度分别为、,若回到、所用时间相等,则( )A.B.C.4D.6二、填空题11.如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米,CA=1米,则树的高度为 米.12.已知在中,,,,,则BC的长等于 .13.如图,已知大正方形的面积是25,小正方形的面积是1,那么 .14.河堤横断面如图所示,斜坡的坡度(即BC:AC),,则的长是 .三、解答题15.为测量一棵大树的高度,设计的测量方案如图所示:标杆高度,人的眼睛A、标杆的顶端C和大树顶端M在一条直线上,标杆与大树的水平距离,人的眼睛与地面的高度,人与标杆的水平距离,B、D、N三点共线,,求大树的高度.16.如图,在矩形中,两条对角线相交于点O,,求这个矩形对角线的长.17.先化简,再求代数式的值,其中.18.如图,小聪全家自驾到某风景区旅游,到达A景点后,导航显示沿北偏西方向行驶8千米到达B景点,在B景点查询C景点显示在北偏东方向上,到达C景点,小聪发现C景点恰好在A 景点的正北方向,求B,C两景点的距离.四、综合题19.小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物的影长为16米,的影长为20米,小明的影长为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且,.已知小明的身高为1.8米.(1)求建筑物OB的高度;(2)求旗杆的高AB.20.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=8,AB=12,求的值.21.如图,点是矩形中边上一点,沿折叠为,点落在上.(1)求证:;(2)若,,求的值.22.如图,在一片海域中有三个岛屿,标记为,,.经过测量岛屿在岛屿的北偏东,岛屿在岛屿的南偏东,岛屿在岛屿的南偏东.(1)直接写出的三个内角度数;(2)小明测得较近两个岛屿,求、的长度(最终结果保留根号,不用三角函数表示).答案解析部分1.【答案】B【解析】【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴,即,∴CD=10.8(米).故答案为:B.【分析】利用EB∥CD可证得△ABE∽△ACD,利用相似三角形的对应边成比例,可得比列式,即可求出CD的长.2.【答案】B【解析】【解答】解:四边形为矩形,,,,,,故答案为:B.【分析】由矩形的性质求出∠ABD=90°,利用三角形内角和求出∠BAE=30°,再根据含30°角的直角三角形的性质即可求解.3.【答案】A【解析】【解答】解:∵,且是锐角,∴,故答案为:A.【分析】根据特殊角的三角函数值进行解答.4.【答案】A【解析】【解答】解:先按键“sin”,再输入角的度数24°37′,按键“=”即可得到结果.故答案为:A.【分析】利用计算器的使用步骤得到结论。
第24章解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB,AC于点D,E,则下列结论正确的是()A.AE=3CEB.AE=2CEC.AE=BDD.BC=2CE2、如图,线段是⊙的直径,弦,垂足为,点是上任意一点,,则的值为()A. B. C. D.3、在Rt△ABC中,∠C=90°,若AB=2AC,则sinA 的值是()A. B. C. D.4、如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A. B. C. D.5、已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为()A.45°B.75°C.45°或15°或75°D.60°6、以下列各组线段为边,能组成三角形的是()A.4cm,5cm,6cmB.8cm,2cm,5cmC.12cm,5cm,6cm D.3cm,6cm,3cm7、如图,,是角平分线上一点,,垂足为,点是的中点,且,如果点是射线上一个动点,则的最小值是()A.1B.C.2D.8、如图,已知∠ACB=60°,PC=12,点M,N在边CB上,PM=PN.若MN=3,则CM的长为()A.3B.C.4D.9、定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角的正对记作,即底边:腰.如图,在中,,.则()A. B. C.1 D.210、等腰三角形的两边长分别为5cm和10cm,则此三角形的周长是()A.25cmB.20cmC.15cmD.20cm或25cm11、如图,已知P是射线OB上的任意一点,PM⊥OA于M,且OM:OP=4:5,则cosα的值等于( )A. B. C. D.12、已知:如图,在△ABC中,∠AED=∠B,则下列等式成立的是()A. B. C. D.13、如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A. B. C. D.14、如图,正方形中,为的中点,为上一点,,设,则的值等于().A. B. C. D.15、在中,,,则的值等于()A. B. C. D. 或二、填空题(共10题,共计30分)16、计算:2sin45°cos45°=________.17、如图,已知等边的边长是6,点D在AC上,且延长BC到E,使,连接点F,G分别是AB,DE的中点,连接FG,则FG的长为________.18、如图,优弧纸片所在的半径为2,,点为优弧上一点(点不与,重合),将图形沿折叠,得到点的对称点.当与相切时,则折痕的长________.19、如图,在△ABC中,,,AD是△ABC的中线,AE是∠BAD的角平分线,DF//AB交AE的延长线于点F,则DF的长为________.20、如图,点是圆形纸片的圆心,将这个圆形纸片按下列要求折叠,使弧和弧都经过圆心,已知的半径为,则阴影部分的面积是________.21、已知等边的边长为3,点在直线上,点在直线上,且,若,则的长为________.22、在直角三角形ABC中,若2AB=AC,则cosC=________.23、已知tanα= ,那么sinα=________.(其中α为锐角)24、如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30o得到正方形AB′C′D′,则它们的公共部分的面积等于________ 。
第24章知识升华一、知识脉络:二、典例分析:例1 在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,CD ⊥AB 于点D ,求∠BCD 的四个三角函数值.【分析】求∠BCD 的四个三角函数值,关键要弄清其定义,由于∠BCD 是在Rt △BCD 中的一个内角,根据定义,仅一边BC 是已知的,此时有两条路可走,一是设法求出BD 和CD ,二是把∠BCD 转化成∠A ,显然走第二条路较方便,因为在Rt △ABC 中,三边均可得出,利用三角函数定义即可求出答案.【解】 在Rt △ABC 中,∵ ∠ACB =90°∴∠BCD +∠ACD =90°,∵CD ⊥AB ,∴∠ACD +∠A =90°,∴∠BCD =∠A .在Rt △ABC 中,由勾股定理得,AB =22AC BC =10,∴sin ∠BCD =sinA =BC AB =45 ,cos ∠BCD =cosA =AC AB =35 ,tan ∠BCD =tanA =BC AC =43 ,cot ∠BCD =cotA =AC BC =34.【说明】本题主要是要学生了解三角函数定义,把握其本质,应强调转化的思想,即本题中角的转换.例2 如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪离AB为1.5米,求拉线CE的长.(结果保留根号)【分析】求CE的长,此时就要借助于另一个直角三角形,故过点A作AG⊥CD,垂足为G,在Rt△ACG中,可求出CG,从而求得CD,在Rt△CED中,即可求出CE的长.【解】过点A作AG⊥CD,垂足为点G,在Rt△ACG中,∵∠CAG=30°,BD=6,∴tan30°=CGAG,∴CG=6×33=2 3 ,∴CD=2 3 +1.5,在Rt△CED中,sin60°=CDEC,∴EC=CDsin60°=23+1.53=4+ 3 .答:拉线CE的长为4+ 3 米.【说明】在直角三角形的实际应用中,利用两个直角三角形的公共边或边长之间的关系,往往是解决这类问题的关键,在复习过程中应加以引导和总结.例3 如图,某县为了加固长90米,高5米,坝顶宽为4米的迎水坡和背水坡,它们是坡度均为1∶0.5,橫断面是梯形的防洪大坝,现要使大坝顺势加高1米,求⑴坡角的度数;⑵完成该大坝的加固工作需要多少立方米的土?【分析】大坝需要的土方=橫断面面积×坝长;所以问题就转化为求梯形ADNM的面积,在此问题中,主要抓住坡度不变,即MA与AB的坡度均为1∶0.5.【解】⑴∵i=tanB,即tanB=10.5=2,∴∠B=63.43°.⑵过点M、N分别作ME⊥AD,NF⊥AD,垂足分别为E、F.由题意可知:ME=NF=5,∴MEAE=10.5,∴AE=DF=2.5,∵AD=4,∴MN=EF=1.5,∴S梯形ADNM=12(1.5+4)×1=2.75.∴需要土方为2.75×90=247.5 (m3) .【说明】本题的关键在于抓住前后坡比不变来解决问题,坡度=垂直高度水平距离 =坡角的正切值.例4 某风景区的湖心岛有一凉亭A ,其正东方向有一棵大树B ,小明想测量A 、B 之间的距离,他从湖边的C 处测得A 在北偏西45°方向上,测得B 在北偏东32°方向上,且量得B 、C 间距离为100米,根据上述测量结果,请你帮小明计算A 、B 之间的距离.(结果精确到1米,参考数据:sin 32°≈0.5299,cos 32°≈0.8480,tan s 32°≈0.6249,cot 32°≈1.600)【分析】本题涉及到方位角的问题,要解出AB 的长,只要去解Rt △ADC 和Rt △BDC 即可. 【解】过点C 作CD ⊥AB ,垂足为D .由题知:∠α=45°,∠β=32°.在Rt △BDC 中,sin 32°=BD BC ,∴BD =100sin 32°≈52.99.cos 32°=CDBC,∴CD =100 cos 32°≈84.80.在Rt △ADC 中,∵∠ACD =45°,∴AD =DC =84.80. ∴AB =AD +BD ≈138米.答:AB 间距离约为138米.【说明】本题中涉及到方位角的问题,画图是本题的难点,找到两个直角三角形的公共边是解题的关键,在复习中应及时进行归纳、总结由两个直角三角形构成的各种情形.例5 在某海滨城市O 附近海面有一股台风,据监测,当前台风中心位于该城市的东偏南70°方向200千米的海面P 处,并以20千米/ 时的速度向西偏北25°的PQ 的方向移动,台风侵袭范围是一个圆形区域,当前半径为60千米,且圆的半径以10千米/ 时速度不断扩张.(1)当台风中心移动4小时时,受台风侵袭的圆形区域半径增大到 千米;又台风中心移动t 小时时,受台风侵袭的圆形区域半径增大到 千米.(2)当台风中心移动到与城市O 距离最近时,这股台风是否侵袭这座海滨城市?请说明理由(参考数据2 1.41≈,3 1.73≈).【分析】先要计算出OH 和PH 的长,即可求得台风中心移动时间,而后求出台风侵袭的圆形区域半径,此圆半径与OH 比较即可.【解】⑴100; (6010)t +.⑵作OH ⊥PQ 于点H ,可算得1002141OH =(千米),设经过t 小时时,台风中心从P 移动到H ,则201002PH t ==,算得52t =(小时),此时,受台风侵袭地区的圆的半径为:601052130.5+⨯≈(千米)<141(千米).∴城市O 不会受到侵袭.【说明】本题是在新的情境下涉及到方位角的解直角三角形问题,对于此类问题常常要构造直角三角形,利用三角函数知识来解决.第24章测试题设计一、选择题:1、某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米B .83米C .833米 D .433米 2、如图,ABC △中BC 边上的高为1h ,DEF △中DE 边上的高为2h ,下列结论正确的是( ) A .12h h >B .12h h <C .12h h =D .无法确定3、已知在ABC △中,90C ∠=,设sinB n =,当B ∠是最小的内角时,n 的取值范围是 A .202n <<B .102n << C .303n << D .302n << 4、如图,矩形ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N .则DM +CN 的值为(用含a 的代数式表示)( )A .aB .a 54C .a 22D . a 23 5、已知α为锐角,则m =sinα+cosα的值( ) A .m >1B .m =1C .m <1D .m ≥16、如果方程2430x x -+=的两个根分别是Rt△ABC 的两条边,△ABC 最小的角为A ,那么tan A 的值为( ). A、34或13B 、24C 、13D 、13或247、已知α为锐角,且cos (90°-α)=3,则α的度数为( ) A .30° B .60° C .45° D .75° 8、如图,在Rt △ABC 中,∠C =90°, AM 是BC 边上的中线,53sin =∠CAM ,则B ∠tan 的值为( ).A 、32 B 、34 C 、12D 、139、在△ABC 中,AB =8,∠ABC =30°,AC =5,那么BC 的长等于( )A 、43B 、43+3C 、43-3D 、43+3或43-3 10、如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m(即小颖的眼睛距地面的距离),那么这棵树高是( ) A .(5332+)m B .(3532+)m C . 53m D .4m二、填空题:11、如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点.C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)12、长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了 m .13、如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 的值为 .14、某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个坡面的坡度为_________.15、如图,是一张宽m 的矩形台球桌ABCD ,一球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点. 如果MC n =,CMN α∠=.那么P 点与B 点的距离为 .16、如图所示,某河堤的横断面是梯形ABCD ,BC AD ∥,迎水坡AB 长13米,且12tan 5BAE ∠=,则河堤的高BE 为 米.17、如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC = 米(用根号表示).18、水管的外部需要包扎,包扎时用带子缠绕在管道外部.若要使带子全部包住管道且不重叠(不考虑管道两端的情况),需计算带子的缠绕角度α(α指缠绕中将部分带子拉成图中所示的平面ABCD 时的∠ABC ,其中AB 为管道侧面母线的一部分).若带子宽度为1,水管直径为2,则α的余弦值为 .19、如图,在Rt △ABC 中,∠CAB =90°,AD 是∠CAB 的平分线,tan B =21,则CD ∶DB = .20、若等腰梯形ABCD 的上、下底之和为4,并且两条对角线所夹锐角为60,则该等腰梯形的面积为 (结果保留根号的形式). 三、解答题:21、计算:(1)1sin 60cos302⋅-; (233602cos 458-+;22、一种千斤顶利用了四边形的不稳定性. 如图,其基本形状是一个菱形,中间通过螺杆连接,转动手柄可改变ADC ∠的大小(菱形的边长不变),从而改变千斤顶的高度(即A 、C 之间的距离).若AB=40cm ,当ADC ∠从60︒变为120︒时,千斤顶升高了多少?2 1.414,3 1.732,结果保留整数)23、某大草原上有一条笔直的公路,在紧靠公路相距40千米的A、B两地,分别有甲、乙两个医疗站,如图,在A地北偏东45°、B地北偏西60°方向上有一牧民区C.一天,甲医疗队接到牧民区的求救电话,立刻设计了两种救助方案,方案I:从A地开车沿公路到离牧民区C最近的D 处,再开车穿越草地沿DC方向到牧民区C.方案II:从A地开车穿越草地沿AC方向到牧民区C.已知汽车在公路上行驶的速度是在草地上行驶速度的3倍.(1)求牧民区到公路的最短距离CD.(2)你认为甲医疗队设计的两种救助方案,哪一种方案比较合理?并说明理由.(结果精确到0.1,参考数据:3取1.73,2取1.41)24、如图,小唐同学正在操场上放风筝,风筝从A处起飞,几分钟后便飞达C处,此时,在AQ 延长线上B处的小宋同学,发现自己的位置与风筝和旗杆PQ的顶点P在同一直线上.(1)已知旗杆高为10米,若在B处测得旗杆顶点P的仰角为30°,A处测得点P的仰角为45°,试求A、B之间的距离;(2)此时,在A处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC 约为多少?(结果可保留根号)25、某大学计划为新生配备如图(1)所示的折叠椅.图(2)是折叠椅撑开后的侧面示意图,其中椅腿AB 和CD 的长相等,O 是它们的中点.为使折叠椅既舒适又牢固,厂家将撑开后的折叠椅高度设计为32cm ,∠DOB =100°,那么椅腿的长AB 和篷布面的宽AD 各应设计为多少cm ?(结果精确到0.1cm )26、路边的路灯的灯柱BC 垂直于地面,灯杆BA 的长为2米,灯杆与灯柱BC 成120°角,锥形灯罩的轴线AD 与灯杆AB 垂直,且灯罩轴线AD 正好通过道路里面的中心线(D 在中心线上),已知C 点与D 点之间的距离为12米,求灯柱BC 的高(结果保留根号)27、如图,家住江北广场的小李经西湖桥到教育局上班,路线为A →B →C →D .因西湖桥维修封桥,他只能改道经临津门渡口乘船上班,路线为A →F →E →D .已知BC EF ∥,BF CE ∥,AB BF ⊥,CD DE ⊥,200AB =米,100BC =米,37AFB ∠=°,53DCE ∠=°.请你计算小李上班的路程因改道增加了多少?(结果保留整数)温馨提示:sin370.60cos370.80tan370.75︒°≈,≈,°≈.28、如图,在小山的西侧A 处有一热气球,以30米/分钟的速度沿着与垂直方向所成夹角为30°的方向升空,40分钟后到达C 处,这时热气球上的人发现,在A 处的正东方向有一处着火点B ,十分钟后,在D 处测得着火点B 的俯角为15°,求热气球升空点A 与着火点B 的距离.(结果保留根号,参考数据:(42615sin -=︒,42615cos +=︒,3215tan -=︒,3215cot +=︒).参考答案:一、选择题: 1、C 2、C 3、A 4、C 5、A 6、D 7、B 8、A 9、D 10、A二、填空题:11、3.512、2(32)- 13、33 14、1:215、tan tan m n αα-⋅ 16、1217、325018、π21 19、1∶2 20、43或433 三、解答题:21、(1)14;(2)2.5 22、解: 连结AC ,与BD 相交于点O ,四边形ABCD 是菱形,AC BD ,ADB =CDB ,AC =2AO , 当ADC =60时,△ADC 是等边三角形,AC =AD =AB =40 . 当ADC =120时,ADO =60,AO =AD sinADO =40×32=203,AC =403 ,因此增加的高度为40340=400.73229(cm )23、解:(1)设CD 为x 千米,由题意得,∠CBD=30°,∠CAD=45°,∴AD=CD=x.在Rt △BCD 中,tan30°=BDx ,所以BD=3x. ∵AD +DB=AB=40,∴x +3x=40.解得 x ≈14.7,所以,牧民区到公路的最短距离CD 为14.7千米.(2)设汽车在草地上行驶的速度为v ,则在公路上行驶的速度为3v ,在Rt △ADC 中,∠CAD=45°,∴AC=2CD ,方案I 用的时间t 1=v CD v CD AD v CD v AD 34333=+=+;方案II 用的时间t 2=v CD v AC 2=; 所以t 1-t 2=v CD v CD 342-=vCD 3)423(-.因为32-4>0,所以t 1-t 2>0.所以方案I 用的时间少,方案I 比较合理.24、解:(1) 在Rt△BPQ 中,PQ =10米,∠B =30°,则BQ =cot30°×PQ =103,又在Rt△APQ 中,∠PAB =45°,则AQ =cot45°×PQ =10, 即:AB =(103+10)(米);(2) 过A 作AE ⊥BC 于E ,在Rt△ABE 中,∠B =30°,AB =103+10,∴ AE =sin30°×AB =12(103+10)=53+5,∵∠CAD =75°,∠B =30°,∴ ∠C =45°,在Rt△CAE 中,sin45°=AE AC,∴AC =2(53+5)=(56+52)(米)25、解:连接AC ,BD , ∵OA=OB=OC=OB ,∴四边形ACBD 为矩形∵∠DOB=100º, ∴∠ABC=50º,由已知得AC=32,在Rt △ABC 中,sin∠ABC=AB AC,∴AB=ABC AC ∠sin =︒50sin 32≈41.8(cm ),tan∠ABC=BC AC ,∴BC=ABC AC ∠tan =︒50tan 32≈26.9(cm ),∴AD=BC =26.9 (cm )答:椅腿AB 的长为41.8cm ,篷布面的宽AD 为26.9cm .26、解:设灯柱BC 的长为h 米,过点A 作AD ⊥CD 于点H ,过B 作BE ⊥AH 于点E ,∴四边形BCHE 为矩形,∵∠ABC =120°,∴∠ABE =30°,又∵∠BAD =∠BCD =90°,∴∠ADC =60°,在Rt △AEB 中,∴AE =AB sin30°=1,BE =AB cos303∴CH 3,又CD =12,∴DH =123,在Rt △AHD 中,tan ∠ADH =AH HD 3123=-h =3-4(米),∴灯柱BC 的高为(34)米.27、解:在Rt ABF △中, 37200333sin 37AB AFB AB AF ∠===°,,≈,°267tan 37AB BF =≈°, BC EF BF CE ∴∥,∥,四边形BCEF 为平行四边形.267CE BF ∴==,100BC EF ==.在Rt CDE △中,53DCE ∠=°,CD DE ⊥,37CED ∴∠=°,cos37214DE CE =≈·°,sin37160CD CE =︒≈·,∴ 增加的路程∴ =()()AF EF DE AB BC DC ++-++(333100214)++≈-(200100160)187++=(米).28、解:由题意可知,AD =(40+10)×30=1500(米)过点D 作DH ⊥BA ,交BA 延长线于点H. 在Rt △DAH 中,DH =AD ·sin60°=1500×23=7503(米).AH =AD ·cos60°=1500×21=750(米).在Rt △DBH 中, BH =DH ·cos15°=7503×(2+3)=(15003+2250)(米),∴BA =BH -AH =15003+2250-750=1500(3+1)(米).答:热气球升空点A 与着火点B 的距离为1500(3+1)(米)。
第24章检测题时间:100分钟 满分:120分一、选择题(每小题3分,共30分) 1.(2016·无锡)sin 30°的值为( A ) A.12 B.32 C.22 D.332.在Rt △ABC 中,∠C =90°,sin A =35,则tan B 的值为( A )A.43B.45C.54D.343.在等腰△ABC 中,AB =AC =5,BC =6,那么sin B 的值是( C ) A.35 B.34 C.45 D.434.(2016·安顺)如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( D )A.55 B.255 C .2 D.12,第4题图) ,第5题图) ,第6题图) ,第7题图)5.如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为( C )A.30tan α米 B .30sin α米 C .30tan α米 D .30cos α米 6.(2016·牡丹江)如图,在△ABC 中,AD ⊥BC ,垂足为点D ,若AC =62,∠C =45°,tan ∠ABC =3,则BD 等于( A )A .2B .3C .3 2D .2 37.如图,为了测得电视塔的高度AB ,在D 处用高为1米的测角仪CD ,测得电视塔顶端A 的仰角为30°,再向电视塔方向前进100米到达F 处,又测得电视塔顶端A 的仰角为60°,则这个电视塔的高度AB(单位:米)为( C )A .50 3B .51C .503+1D .1018.如图,在▱ABCD 中,点E 是AD 的中点,延长BC 到点F ,使CF ∶BC =1∶2,连结DF ,EC.若AB =5,AD =8,sin B =45,则DF 的长等于( C )A.10B.15C.17 D .2 5,第8题图) ,第9题图),第10题图)9.如图,两个宽度都为1的平直纸条,交叉叠放在一起,两纸条边缘的夹角为α,则它们重叠部分(图中阴影部分)的面积为( C )A .1B .sin α C.1sin α D.1sin 2α10.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2 km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( B )A .4 kmB .(2+2) kmC .2 2 kmD .(4-2) km 二、填空题(每小题3分,共24分)11.在Rt △ABC 中,∠C =90°,AB =5,BC =1,则tan B =__2__. 12.在△ABC 中,AC ∶BC ∶AB =3∶4∶5,则sin A +sin B =__75__.13.如图,△ABC 中,∠ACB =90°,AC =BC =2,点O 是BC 的中点,点P 是射线AO 上的一个动点,则当∠BPC =90°时,AP 的长为.,第13题图) ,第14题图),第15题图) ,第16题图)14.如图,一束光线照在坡度为1∶3的斜坡上,被斜坡上的平面镜反射成与地面平行的光线,则这束光线与坡面的夹角α是__30__度.15.如图,菱形的两条对角线分别是8和4,较长的一条对角线与菱形的一边的夹角为θ,则cos θ=516.为测量某观光塔的高度,如图,一人先在附近一楼房的底端A 点处观测观光塔顶端C 处的仰角是60°,然后爬到该楼房顶端B 点处观测观光塔底部D 处的俯角是30°.已知楼房高AB 约是45 m ,根据以上观测数据可求观光塔的高CD 是__135__米.17.如图,河流两岸a ,b 互相平行,点A ,B 是河岸a 上的两座建筑物,点C ,D 是河岸b 上的两点,A ,B 的距离约为200米.某人在河岸b 上的点P 处测得∠APC =75°,∠BPD =30°,则河流的宽度约为__100__米.18.(2016·盐城)已知△ABC 中,tan B =23,BC =6,过点A 作BC 边上的高,垂足为点D ,且满足BD ∶CD =2∶1,则△ABC 面积的所有可能值为__8或24__.三、解答题(共66分) 19.(8分)计算:(1)3tan 30°+cos 245°-2sin 60°; (2)tan 260°-2sin 45°+cos 60°.解:原式=12 解:原式=72-220.(8分)△ABC 中,∠C=90°.(1)已知c =83,∠A=60°,求∠B,a ,b ; (2)已知a =36,∠A =30°,求∠B ,b ,c. 解:(1)∠B =30°,a =12,b =43 (2)∠B =60°,b =92,c =6621.(8分)如图,在Rt △ABC 中,∠ABC =90°,BD ⊥AC 于点D ,点E 为线段BC 的中点,AD =2,tan ∠ABD =12.(1)求AB 的长;(2)求sin ∠EDC 的值.解:(1)∵AD =2,tan ∠ABD =12,∴BD =2÷12=4,∴AB =AD 2+BD 2=22+42=25 (2)∵BD ⊥AC ,E 点为线段BC 的中点,∴DE =CE ,∴∠EDC =∠C ,∵∠C +∠CBD =90°,∠CBD +∠ABD =90°,∴∠C =∠ABD ,∴∠EDC =∠ABD ,在Rt △ABD 中,sin ∠ABD =AD AB =225=55,即sin ∠EDC =5522.(8分)小明坐于堤边垂钓,如右图,河堤AC 的坡角为30°,AC 长332米,钓竿AO的倾角为60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离.解:延长OA 交BC 的延长线于点D ,则△BOD 为等边三角形,则由题意知∠CAD =90°,AD =AC ·tan ∠ACD =32(m ),CD =AC cos ∠ACD =3(m ),BD =OD =3+32=4.5(m ),∴BC =1.5(m )23.(10分)(2016·自贡)某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A ,B 两处均探测出建筑物下方C 处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB =4米,求该生命迹象所在位置C 的深度.(结果精确到1米,参考数据:sin 25°≈0.4,cos 25°≈0.9,tan 25°≈0.5,3≈1.7)解:作CD ⊥AB 交AB 延长线于点D ,设CD =x 米.Rt △ADC 中,∠ADC =25°,∵tan25°=CD AD =0.5,∴AD =CD 0.5=2x.Rt △BDC 中,∠DBC =60°,由tan60°=x 2x -4=3,解得x =3.即生命迹象所在位置C 的深度约为3米24.(12分)如图所示,一幢楼房AB 背后有一台阶CD ,台阶每层高0.2米,且AC =17.2米,设太阳光线与水平地面的夹角为α,当α为60°时,测得楼房在地面上的影长AE =10米,现有一只小猫睡在台阶的MN 这层上晒太阳.(3取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.解:(1)当α=60°时,在Rt △ABE 中,∵tan60°=AB AE =AB 10,∴AB =10·tan60°=103≈10×1.73=17.3米,即楼房的高度约为17.3米(2)当α=45°时,小猫仍可以晒到太阳.理由如下:假设没有台阶,当α=45°时,从点B 射下的光线与地面AD 的交点为点F ,与MC 的交点为点H.∵∠BFA =45°,∴tan45°=AB AF=1,此时的影长AF =AB =17.3米,∴CF =AF -AC =17.3-17.2=0.1米,∴CH =CF =0.1米,∴大楼的影子落在台阶MC 这个侧面上,∴小猫仍可以晒到太阳25.(12分)(2016·资阳)如图,“中国海监50”正在南海海域A 处巡逻,岛礁B 上的中国海军发现点A 在点B 的正西方向上,岛礁C 上的中国海军发现点A 在点C 的南偏东30°方向上,已知点C 在点B 的北偏西60°方向上,且B ,C 两地相距120海里.(1)求出此时点A 到岛礁C 的距离; (2)若“中国海监50”从A 处沿AC 方向向岛礁C 驶去,当到达点A ′时,测得点B 在A ′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)解:(1)如图,延长BA ,过点C 作CD ⊥BA 延长线于点D ,由题意可得∠CBD =30°,BC =120海里,则DC =60海里,故cos30°=DC AC =60AC =32,解得AC =403,即点A 到岛礁C 的距离为403海里(2)如图,过点A ′作A ′E ⊥AD 于点E ,作A ′N ⊥BC 于点N ,可得∠1=30°,∠BA ′A =45°,则∠2=15°,∴A ′B 平分∠CBA ,A ′N =A ′E ,设AA ′=x ,则A ′E =32x ,故CA ′=2A ′N =2×32x =3x ,∵3x +x =403,解得x =60-20 3.即此时“中国海监50”的航行距离为160-203海里。