c)
设
f (z) P(z), P(z) Q(z)
及
Q(z) 在
z 0 都解析,
如果 P ( z 0 ) 0 , Q ( z 0 ) 0 , Q ( z 0 ) 0 ,那末 z 0
为一级极点, 且有Refs(z[),z0]Q P((zz00)).
13
3)无穷远点的留数
1.定义 设函数 f (z)在圆环域 0z内解析
成洛朗级数求 c 1
(3) 如果 z 0 为 f (z)的极点, 则有如下计算规则 a) 如果 z 0 为 f (z)的一级极点, 那末
R f ( z e )z 0 ] , s l z z [ 0 i ( z m z 0 ) f ( z z 0 )
12
b) 如果 z 0 为 f (z)的 m级极点, 那末 Rfe (z)z s 0 ,] [(m 1 1 )l z !z i0d d m z m m 1 1 [z( z 0 )m f(z)]
17
2)无穷积分
I R(x)dx.其中 R(x)是x的有理,分 函母 数
的次数至少比 数分 高子 两 ,且R的 (次 z)在 次实轴 没有孤.立奇点
任意一条简单闭曲线 C 的积分 f (z)dz 的值除
C
以 2i 后所得的数称为 f(z)在z0的留.数 记作 Ref(sz)[z,0]. (即f(z)在z0为中心的圆环 域内的洛朗级数中负 幂c项 1(zz0)1的系 .) 数
10
1)留数定理 设函数 f (z) 在区域 D内除有限个孤 立奇点 z1,z2, ,zn外处处解析, C 是 D内包围诸奇 点的一条正向简单闭曲线, 那末
f (z) 的 m 级零点.
ii)零点与极点的关系