z0的Talor展开式的收敛半径R等于从z0到
f (z)的最近的一个奇点之间的距离,即, R z0
(2) 在收敛圆上,这是因为f (z)在收敛 圆 内 解 析, 所 以 奇 点不 可 能 在 收 敛 圆 内 . 又奇点不可能在收敛圆外,不然的话, 收敛半径还可以扩大,因此,奇点只能在
则 f (z0 ) a0,再由幂级数的逐项求导性质得,
f '(z) a1 2a2 (z z0 ) nan (z z0 )n1 f '(z0 ) a1
, 依此 类推 得,an
1 n!
f
(n) (z0 )
n 0,1,2,
由此可见,任何解析函数展开成幂级数就是Talor 级数,因而是唯一的。
的 圆 域 z0 r,圆k的 半 径r可 以 任 意 增 大,
只 要 圆k及 其 内 部 包 含 在D内 即 可, f (z)在 解 析 点z0处 的Taylor级 数 收 敛 半 径 至 少 等 于 从z0到D的 边 界 上 各 点 的 最 短 距离.证 毕!
证明 (不讲)
(1) 若f (z)有奇点, 那么f (z)在解析点
以下定理给出了肯定回答: 任何解析函数都一定能用幂级数表示。
定理(泰勒展开定理)
设f (z)在 区 域D内 解 析, z0 D, R为z0到D的 边 界 上 各 点 的 最 短 距 离 当 z z0 R时,
f (z) cn(z z0 )n
n0
(1)
f (z)在z0处 的Taylor级数
正 向 封 闭 路 线 的 积 分 为0。 (4) f (z)在 点z0的 某 一 邻 域 内 可 展 成 幂级 数 。
§4.4 罗朗(Laurent)级数