1.1 复数的代数形式的定义: 满足:i2=-1
对于∀ x, y ∈ R, 称 z = x + yi或 z = x + iy 为复数.
实部 记做:Rez=x
虚部 记做:Imz=x
当 x = 0, y ≠ 0 时, z = iy 称为纯虚数;
当 y = 0 时, z = x + 0i, 我们把它看作实数 x.
10
1.4 极坐标表示(三角表示) y
复数 z = x + iy 可以用复平
y
z = x + iy
z = (x, y)
面上的点向量oz 表示.
uur
o
x
x
z = x + iy ⇔ 向量oz ⇔(r,θ)
x = r cosθ y = r sinθ z = r(cosθ + i sinθ )
1.5 指数表示
15
关于 ∞ 的四则运算规定如下 :
(1) 加法 : α + ∞ = ∞ + α = ∞, (α ≠ ∞)
(2) 减法 : α − ∞ = ∞ − α = ∞, (α ≠ ∞)
(3) 乘法 : α ⋅ ∞ = ∞ ⋅α = ∞, (α ≠ 0)
(4)除法 :
α ∞
=
0,
∞ α
=
∞,
(α
≠
∞),Biblioteka α = ∞,(α ≠ 0) 0
用来表示复数 , 通常把横轴叫实轴或 x 轴, 纵轴
叫虚轴或 y 轴. 这种用来表示复数的平 面叫复平
面.
复数的向量表示法
复数 z = x + iy 可以用复平 面上的点 ( x, y) 表示 .
y z = x + iy