信号检测与估计理论简答
- 格式:doc
- 大小:68.50 KB
- 文档页数:3
一、概念:1. 匹配滤波器。
概念:所谓匹配滤波器是指输出判决时刻信噪比最大的最佳线性滤波器。
应用:在数字信号检测和雷达信号的检测中具有特别重要的意义。
在输出信噪比最大准则下设计一个线性滤波器是具有实际意义的。
2. 卡尔曼滤波工作原理及其基本公式(百度百科)首先,我们先要引入一个离散控制过程的系统。
该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。
A和B是系统参数,对于多模型系统,他们为矩阵。
Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。
W(k)和V(k)分别表示过程和测量的噪声。
他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。
下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。
首先我们要利用系统的过程模型,来预测下一状态的系统。
假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k|k-1)=A X(k-1|k-1)+B U(k) (1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。
到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。
我们用P表示covariance:P(k|k-1)=A P(k-1|k-1) A’+Q (2)式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。
信号的平稳性如何定义?与各态历经性的关联?如果一个随机过程x(t)经过实践Δt后,其统计特性保持不变,则该过程具有严格的平稳性。
如果N阶都是平稳的,称为严格平稳。
遍历过程一定是平稳的,平稳的过程不一定都是遍历的。
随机信号的频域特性为什么要用功率谱密度来描述,而不是用频谱?与自相关函数是什么关系?由于平稳随机过程x(t)持续时间无限长,因此不满足绝对可积的条件,故其频谱密度不存在。
但是随机过程的平均功率是有限的。
Pw是自相关函数的傅里叶变换,自相关函数式功率谱密度的傅里叶逆变换。
窄带信号:如果信号的带宽远小于f0,w0/2π。
检测:感兴趣的信号在观测样本中受噪声干扰,根据接收到的测量值样本判决信号的有无。
先验概率:不依赖于测量值或观测样本的条件下,某事件(假设)发生或成立的概率。
p(H0),p(H1)。
后验概率:在已掌握观测样本或测量值y的前提下,某事件(假设)发生或成立的概率。
p(H0/y),p(H1/y) 。
似然函数:在某假设H0或H1成立的条件下,观测样本y出现的概率。
似然比:L(y)=p(y|H1)p(y|H0)虚警概率:无判定为有;漏报概率:有判定为无平均风险:r=(P00C00+P10C10)∙P(H0)+(P01C01+P11C11)∙P(H1)最大后验概率准则:似然比为:L(y)=p(y|H1)/p(y|H0)判别准则:L(y)<P(H0)/P(H1),则判定为H0成立。
L(y)≥P(H0)/P(H1),则判定H1成立。
最佳门限值:由先验概率决定。
要求在先验概率已知的条件下进行判决。
即:以观测样本为依据,以似然比为检测统计量,以后验概率最大为衡量标准(准则),以先验概率比为检测门限。
四种可能性:虚警、漏报、正确检测、正确判断没信号最小错误概率准则:门限取在加权后二者相交处总错误概率最小。
为什么要加权?所有的密度函数都是非加性的。
总错误概率:P e=P(H0)/P f+P(H1)/P m似然比为:L(y)=p(y|H1)/p(y|H0)判别准则:L(y)<P(H0)/P(H1),则判定为H0成立。
1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。
解:第①问 利用()X F x 右连续的性质 k =1 第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x ke x -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问()112f xd x k ∞-∞==⎰ 第②问 {}()()()211221x x P x X xF x F xfx d x<≤=-=⎰ 随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。
{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。
设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。
信号检测与估计理论简答题1.维纳滤波器与卡尔曼滤波器的区别维纳滤波器:1)只用于平稳随机过程。
2)该系统常称为最佳线性滤波器。
它根据全部过去和当前的观测信号来估计信号的波形,它的解是以均方误差最小条件所得到的系统的传递函数H(Z)的形式给出的。
3)信号和噪声是用相关函数表示的。
卡尔曼滤波器:1)平稳随机过程和不平稳随机过程均适用。
2)该系统常称为线性最优滤波器。
它不需要全部过去的观测数据,可根据前一个的估计值和最近的观察数据来估计信号的当前值,它是用状态方程和递推方法进行估计的,其解是以估计的形式给出的。
3)信号和噪声是用状态方程和测量方程表示的。
2.解释白噪声情况下正交函数集的任意性设)0)(()()(T t t n t s t x ≤≤+=中,噪声n(t)是零均值、功率谱密度为2/)(0N w P n =的白噪声,其自相关函数)(2)(0u t N u t r n -=-δ。
于是,任意取正交函数集)()},({t x t f k 的展开系数jx 和kx (k=1,2,…)的协方差为)])([(k k j j s x s x E --])()()()([00⎰⎰=Tk j Tdu u f u n dt t f t n E⎰⎰⎥⎦⎤⎢⎣⎡=T Tk j dt du u f u n t n E t f 00)()]()([)(⎰⎰⎥⎦⎤⎢⎣⎡-=TT k j dt du u f u t t f N 000)()()(2δjk k Tj N dt t f t f Nδ2)()(2==⎰当k j ≠时,协方差0)])([(=--k k j j s x s x E ,这说明,在n(t)是白噪声的条件下,取任意正交函数集)}({t f k 对平稳随机过程k x (k=1,2,…)之间都是互不相关的。
这就是白噪声条件下正交函数集的任意性。
3.请说明非随机参量的任意无偏估计量的克拉美-罗不等式去等号成立的条件和用途克拉美-罗不等式])),(ln [(1])ˆ[(22θθθθ∂∂≥-x p E E 或)]),(ln [(1])ˆ[(222θθθθ∂∂-≥-x p E E 当且仅当对所有的x 和θ都满足k x p )ˆ(),(ln θθθθ-=∂∂时,不等式去等号成立。
第二章检测理论1 •二元检测:①感兴趣的信号在观测样本中受噪声干扰,根据接收到的测量值样本判决信号的有无。
②感兴趣的信号只有两种可能的取值,根据观测样本判决是哪一个。
2•二元检测的数学模型:感兴趣的信号s,有两种可能状态:sO、si。
在接收信号的观测样本y中受到噪声n的污染,根据测量值y作出判决:是否存在信号s,或者处于哪个状态。
即:y(t)=si(t)+n(t) i=0,1假设:H o :对应s o状态或无信号,H i:对应s i状态或有信号。
检测:根据y及某些先验知识,判断哪个假设成立。
3.基本概念与术语先验概率:不依赖于测量值或观测样本的条件下,某事件(假设)发生或成立的概率。
p(H o),p(H i)。
后验概率:在已掌握观测样本或测量值y的前提下,某事件(假设)发生或成立的概率。
p(H o/y),p(H i/y)。
似然函数:在某假设H o或H i成立的条件下,观测样本y出现的概率。
似然比:L(y)3Hi)p(y|H o)虚警概率P f:无判定为有;漏报概率P m:有判疋为无;(正确)检测概率P d :有判定为有。
平均风险:r =[R o C oo +P io C io] ・P(H°) +[P oi C oi + R i C ii] ・P(H i) 4.1最大后验概率准则(MAP )在二元检测的情况下,有两种可能状态:so、si,根据测量值y作出判决:是否存在信号s,或者处于哪个状态。
即:y(t)=si(t)+n(t) i=o,i假设:H o:对应s o状态或无信号,H i:对应s i状态或有信号。
如果P(H°|y) P(H i|y)成立,判定为H o成立;否则P(H i |y) . P(H o |y)成立,判定为H成立。
利用贝叶斯定理:P(H o|y)p(y)二p(y|H o)P(H o)可以得到:如果p(y|H o)P(H o) . p(y| H i)P(H i)成立,判定为H o成立;如果p(y|H i)P(H i) ■ p(y |H o)P(H o)成立,判定为H i 成立;定义似然比为:L(y)二p(y|H i)/p(y|H o)得到判决准则:[如果L(y) cth MAP =P(H°)/P(H i)成立,判定为H o成立;、如果L(y)3th MAP =P(H o)/P(HJ成立,判定为也成立;这就是最大后验准则。
第三章 估计理论1. 估计的分类矩估计:直接对观测样本的统计特征作出估计。
参数估计:对观测样本中的信号的未知参数作出估计。
待定参数可以是未知的确定量,也可以是随机量。
点估计:对待定参量只给出单个估计值。
区间估计:给出待定参数的可能取值范围及置信度。
(置信度、置信区间) 波形估计:根据观测样本对被噪声污染的信号波形进行估计。
预测、滤波、平滑三种基本方式。
✓ 已知分布的估计✓ 分布未知或不需要分布的估计。
✓ 估计方法取决于采用的估计准则。
2. 估计器的性能评价✧ 无偏性:估计的统计均值等于真值。
✧ 渐进无偏性:随着样本量的增大估计值收敛于真值。
✧ 有效性:最小方差与实际估计方差的比值。
✧ 有效估计:最小方差无偏估计。
达到方差下限。
✧ 渐进有效估计:样本量趋近于无穷大时方差趋近于最小方差的无偏估计。
✧ 一致性:随着样本量的增大依概率收敛于真值。
✧ Cramer-Rao 界: 其中为Fisher 信息量。
3. 最小均方误差准则模型:假定: 是观测样本,它包含了有用信号 及干扰信号 ,其中 是待估计的信号随机参数。
根据观测样本对待测参数作出估计。
最小均方误差准则:估计的误差平方在统计平均的意义上是最小的。
即使达到最小值。
此时 从而得到的最小均方误差估计为: 即最小均方误差准则应是观测样本Y 一定前提下的条件均值。
需借助于条)()(1αα-≥F V ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡∂∂=⎭⎬⎫⎩⎨⎧∂∂-=2212122);,(ln );,(ln )(αααααm m y y y p E y y y p E F )(),()(t n t s t y +=θ)(t n T N ),,,(21θθθθ=),(θts {}{})ˆ()ˆ()ˆ,(2θθθθθθ--=T E e E {}0)ˆ,(ˆ2=⎥⎦⎤⎢⎣⎡=MSE e E d d θθθθθθθθθd Y f Y MSE )|()(ˆ⎰=件概率密度求解,是无偏估计。
3一、简答题注释简答题(每题5分,共20分)或(每题4分,共20分)二、第1章简答题1.从系统和信号的角度看,简述信号检测与估计的研究对象。
答:从系统的角度看,信号检测与估计的研究对象是加性噪声情况信息传输系统中的接收设备。
从信号的角度看,信号检测与估计的研究对象是随机信号或随机过程。
2.简述信号检测与估计的基本任务和所依赖的数学基础。
答:解决信息传输系统接收端信号与数据处理中信息恢复与获取问题,或从被噪声及其他干扰污染的信号中提取、恢复所需的信息。
信号检测与估计所依赖的数学基础是数理统计中贝叶斯统计的贝叶斯统计决策理论和方法。
3.概述信号在传输过程中与噪声混叠在一起的类型。
答:信号在传输过程中,噪声与信号混杂在一起的类型有3种:噪声与信号相加,噪声与信号相乘(衰落效应),噪声与信号卷积(多径效应)。
与信号相加的噪声称为加性噪声,与信号相乘的噪声称为乘性噪声,与信号卷积的噪声称为卷积噪声。
加性噪声是最常见的干扰类型,也是最基本的,因为乘性噪声和卷积噪声的情况均可转换为加性噪声的情况。
三、第2章简答题1.简述匹配滤波器概念及其作用。
答:匹配滤波器是在输入为确定信号加平稳噪声的情况下,使输出信噪比达到最大的线性系统。
匹配滤波器的作用:一是使滤波器输出有用信号成分尽可能强;二是抑制噪声,使滤波器输出噪声成分尽可能小,减小噪声对信号处理的影响。
2.根据匹配滤波器传输函数与输入确定信号及噪声的关系,简述匹配滤波器的原理。
答:匹配滤波器传输函数等于输入确定信号频谱的复共轭除以输入平稳噪声的功率谱密度,再附加相位项T ω-,其中T 为输入确定信号的持续时间或观测时间。
由于匹配滤波器传输函数的幅频特性与输入确定信号的幅频特性成正比,与输入噪声的功率谱密度成反比;对于某个频率点,信号越强,该频率点的加权系数越大,噪声越强,加权越小。
从而起到加强信号,抑制噪声的作用。
对于信号,匹配滤波器的相频特性与输入信号的相位谱互补,使输入信号经过匹配滤波器以后,相位谱将全部被补偿掉。
一、简答题注释简答题(每题5分,共20分)或(每题4分,共20分)二、第1章简答题1.从系统和信号的角度看,简述信号检测与估计的研究对象。
答:从系统的角度看,信号检测与估计的研究对象是加性噪声情况信息传输系统中的接收设备。
从信号的角度看,信号检测与估计的研究对象是随机信号或随机过程。
2.简述信号检测与估计的基本任务和所依赖的数学基础。
答:解决信息传输系统接收端信号与数据处理中信息恢复与获取问题,或从被噪声及其他干扰污染的信号中提取、恢复所需的信息。
信号检测与估计所依赖的数学基础是数理统计中贝叶斯统计的贝叶斯统计决策理论和方法。
3.概述信号在传输过程中与噪声混叠在一起的类型。
答:信号在传输过程中,噪声与信号混杂在一起的类型有3种:噪声与信号相加,噪声与信号相乘(衰落效应),噪声与信号卷积(多径效应)。
与信号相加的噪声称为加性噪声,与信号相乘的噪声称为乘性噪声,与信号卷积的噪声称为卷积噪声。
加性噪声是最常见的干扰类型,也是最基本的,因为乘性噪声和卷积噪声的情况均可转换为加性噪声的情况。
三、第2章简答题1.简述匹配滤波器概念及其作用。
答:匹配滤波器是在输入为确定信号加平稳噪声的情况下,使输出信噪比达到最大的线性系统。
匹配滤波器的作用:一是使滤波器输出有用信号成分尽可能强;二是抑制噪声,使滤波器输出噪声成分尽可能小,减小噪声对信号处理的影响。
2.根据匹配滤波器传输函数与输入确定信号及噪声的关系,简述匹配滤波器的原理。
答:匹配滤波器传输函数等于输入确定信号频谱的复共轭除以输入平稳噪声的功率谱密度,再附加相位项T ω-,其中T 为输入确定信号的持续时间或观测时间。
由于匹配滤波器传输函数的幅频特性与输入确定信号的幅频特性成正比,与输入噪声的功率谱密度成反比;对于某个频率点,信号越强,该频率点的加权系数越大,噪声越强,加权越小。
从而起到加强信号,抑制噪声的作用。
对于信号,匹配滤波器的相频特性与输入信号的相位谱互补,使输入信号经过匹配滤波器以后,相位谱将全部被补偿掉。
信号检测与估计简介
信号检测与估计是一种重要的信号处理技术,它在通信、雷达、生物医学、图像处理等领域中得到广泛应用。
本文将简要介绍信号检测与估计的基本概念、方法和应用。
信号检测是指在已知噪声统计特性的情况下,通过观测信号来判断信号是否存在的过程。
在信号检测中,我们通常需要确定一个阈值,当观测信号的功率超过该阈值时,我们认为信号存在。
这个阈值的选择对于信号检测的性能至关重要,通常需要根据具体应用场景进行优化。
信号估计是指在已知信号模型和噪声统计特性的情况下,通过观测信号来估计信号的参数。
在信号估计中,我们通常需要选择一个合适的估计方法,例如最小二乘法、最大似然估计等。
这些方法的选择也需要根据具体应用场景进行优化。
在实际应用中,信号检测与估计经常需要结合使用。
例如,在雷达信号处理中,我们需要检测目标的存在并估计其距离、速度等参数。
在生物医学信号处理中,我们需要检测心电图中的心跳信号并估计心率等参数。
在图像处理中,我们需要检测图像中的目标并估计其位置、大小等参数。
除了基本的信号检测与估计方法,还有许多高级技术可以用于提高性能。
例如,信号处理中的小波变换、自适应滤波等技术可以用于
降噪和特征提取。
机器学习中的神经网络、支持向量机等技术可以用于分类和回归问题。
这些技术的选择也需要根据具体应用场景进行优化。
信号检测与估计是一种重要的信号处理技术,它在许多领域中都有广泛应用。
在实际应用中,我们需要根据具体场景选择合适的方法和技术,以提高性能和效率。
信号检测与估计理论介绍信号检测与估计理论是数字通信和统计信号处理中的一个重要领域。
它研究的是如何准确地检测到信号的存在以及对信号进行估计。
该理论在许多实际应用中具有重要意义,包括雷达系统、通信系统、生物医学信号处理等。
信号检测在信号检测中,我们的目标是从观测到的信号中确定是否存在某个特定的信号。
通常情况下,我们将信号检测问题建模为一个假设检验问题,其中有两个假设:零假设H0表示没有信号存在,备择假设H1表示信号存在。
在信号检测中,我们通过设计一个检测器来根据观测到的信号样本进行决策。
常用的检测器包括最大似然检测器、贝叶斯检测器等。
这些检测器利用观测到的信号样本的统计特性,通过最大化某个准则函数(如似然比)来做出决策。
信号估计信号估计是根据观测到的信号样本,估计出信号的参数或者信号本身的过程。
信号估计有多种方法,包括参数估计和非参数估计。
在参数估计中,我们假设信号遵循某个已知的参数化模型,并通过观测到的信号样本去估计这些参数。
常用的参数估计方法有极大似然估计、最小二乘估计等。
这些方法基于最优准则来选择最优参数估计。
非参数估计不需要对信号满足某个特定的参数化模型的假设,它们通常利用样本的统计特性来进行估计。
常用的非参数估计方法有最小二乘法、核方法等。
检测与估计的性能评价在信号检测与估计中,我们需要对检测与估计的性能进行评价。
通常情况下,我们使用概率误差、均方误差等作为评价指标。
在信号检测中,我们常用的评价指标有误报概率和漏报概率。
误报概率指当信号不存在时,检测器判定信号存在的概率;漏报概率指当信号存在时,检测器未能正确判定信号存在的概率。
在信号估计中,我们常用的评价指标有均方误差和偏差方差平衡等。
均方误差指估计值和真实值之间的平均平方误差;偏差方差平衡则是指在估计和真实值之间平衡偏差和方差。
应用领域信号检测与估计理论在许多领域都有广泛的应用。
其中,雷达系统是一个重要的应用领域。
在雷达系统中,我们需要通过检测和估计来实现目标检测、目标定位等功能。
信号检测与估计理论
现代信号处理是一门涉及到研究信号及其处理的众多领域的复杂学科,它将信号检测
理论应用于数据的采集、分析和编码,以实现更高的信号保真和传输效率。
信号检测理论
是指以信号检测及其具体实现方法为内容的理论,是一门研究信号以及信号检测算法应用
于实践中新信号几率和信号模型、信号处理系统设计、系统评价指标和系统优化等问题的
理论。
信号检测理论包括信号检测和信号估计两个主要研究领域。
信号检测即在信号实际存
在且满足特定条件的情况下,将其从噪声中识别出来的技术。
信号检测的理论基础是概率
理论,研究的内容一般包括判决准则的设计、概率传输理论、灵敏度指标的计算、检测误
差最优化等。
信号估计是从检测信号中恢复信号参数值和状态信息的技术,它是根据信号
的内容和自身特性进行分析,重构信号形式,从而恢复和克服噪声干扰,最终使信号达到
某种需求尺度以达到预先设定的信号识别、显示、记录等目标。
信号检测和估计是现代信号处理理论的重要基础,应用于实际工程中,检测的精确性
和准确性,或估计的准确性,对信号处理结果的质量也是至关重要的。
因此,信号检测估
计理论的研究,涉及到信号检测的实现方法、检测决策的准则,以实现信号的恢复、显示、记录等操作,及信号估计指标计算、估计误差最优化等内容,是提高实际工程研究质量和
信号处理效率、增强应用竞争力的重要实现方式。
信号检测与估计理论简答题
1。
维纳滤波器与卡尔曼滤波器的区别
维纳滤波器:
1)只用于平稳随机过程。
2)该系统常称为最佳线性滤波器。
它根据全部过去和当前的观测信号来估计信号的波形,它的解是以均方误差最小条件所得到的系统的传递函数H(Z )的形式给出的。
3)信号和噪声是用相关函数表示的。
卡尔曼滤波器:
1)平稳随机过程和不平稳随机过程均适用。
2)该系统常称为线性最优滤波器。
它不需要全部过去的观测数据,可根据前一个的估计值和最近的观察数据来估计信号的当前值,它是用状态方程和递推方法进行估计的,其解是以估计的形式给出的.
3)信号和噪声是用状态方程和测量方程表示的.
2.解释白噪声情况下正交函数集的任意性
设)0)(()()(T t t n t s t x ≤≤+=中,噪声n(t)是零均值、功率谱密度为2/)(0N w P n =的白噪声,其自相关函数)(2)(0
u t N u t r n -=
-δ。
于是,任意取正交函数集)()},({t x t f k 的展开
系数
j
x 和
k
x (k=1,2,…)的协方差为
)])([(k k j j s x s x E --]
)()()()([00⎰⎰=T
k j T
du u f u n dt t f t n E
⎰⎰⎥⎦⎤⎢⎣⎡=T T
k j dt du u f u n t n E t f 00)()]()([)(⎰
⎰⎥⎦⎤⎢⎣⎡-=T
T k j dt du u f u t t f N 0
00)()()(2
δjk k T
j N dt t f t f N
δ2)()(2
=
=⎰
当k j ≠时,协方差0
)])([(=--k k j j s x s x E ,这说明,在n(t )是白噪声的条件下,取任
意正交函数集)}({t f k 对平稳随机过程k x (k =1,2,…)之间都是互不相关的。
这就是白噪声条件下正交函数集的任意性。
3。
请说明非随机参量的任意无偏估计量的克拉美—罗不等式去等号成立的条件和用途
克拉美-罗不等式]
)),(ln [(1
])ˆ[(2
2θ
θθ
θ∂∂≥-x p E E 或
)]
),(ln [(1
])ˆ[(22
2θθθ
θ∂∂-≥-x p E E 当且仅当对
所有的x 和θ
都满足
k x p )ˆ(),(ln θ
θθθ-=∂∂时,不等式去等号成立。
其中k 是任意非零常
数。
用途:当不等式去等号的条件成立时,均方误差取克拉美—罗界,估计量θˆ
是无偏有效的。
以此,随机参量下的克拉美-罗不等式和取等号的条件可用来检验随机参量θ的任意无偏估计量θˆ
是否有效。
若估计量无偏有效,则其均方误差可由计算克拉美-罗界求得。
4.简述最小的均方误差估计与线性最小均方误差估计的关系。
在贝叶斯估计中讨论的随机矢量θ的最小均方误差估计,估计矢量mse θ可以是观测矢量x 的非线性函数,而线性最小均方误差估计,估计矢量mse
θ 一定是观测矢量x的线性函
数。
所以,尽管二者都要求估计得均方误差最小,但前者可以是非线性估计,而后者仅限于线性估计,二者是不一样的。
但是,如果被估计矢量θ与线性观测模型下的观测噪声矢量n 是互不相关的高斯随机矢量,那么观测矢量x 与被估计矢量θ是联合高斯分布的。
在这种情况下,已知x和θ的前二阶距知识与已知它们的概率密度函数是一样的,因此,线性最先均方误差估计与最小均方误差估计是相同的,即线性最小均方误差估计也是所有估计中的最佳估计。
5.解释奈曼—皮尔逊准则解的存在性
关于奈曼—皮尔逊准则解得存在性,我们结合下图从概念上加以说明,图中,第一种判决域的划分为R01和R11保证P 1(H 1|H0)=α,并有相应的P1(H 1|H 1);第二种判决域的划分为R 02和R 12,扔保证P 2(H 1|H 0)= α,也有相应的P 2 (H1|H1);第三种判决域的划分为R03和R 13,还是保证P 3 (H1|H 0)= α,它也有相应的P3 (H 1|H 1)…….这就是说,原则上判决域R0和R1有无限多种划分方法,它们都可以保证错误判决概率P(H 1|H0)= α,但每种划分所对应的正确判决概率P (H 1|H 1)一般是不一样的。
既然这样,其中至少有一种判决域R 0,R 1的划分,既能保证P(H 1|H0)= α,又能使P(H1|H1)最大,这意味着奈曼—皮尔逊准则的解是存在的。
6、请解释匹配滤波器的适应性
匹配滤波器岁振幅和时延参量不同的新号具有适应性,而对频移新号不具有适应性。
若输入信号s(t)的匹配滤波器的系统函数为H (w)=kS* (w)e —j wt 0,那么,它对所有与s(t)波形相同,仅振幅A 和时延 不同的信号s 1(t)=As(t - τ)而言,也是匹配的。
设信号s (t)的频谱函数为S (w),则信号s 1 (t)=As(t -τ)的频谱函数S1(w)=AS(w)e τ
jw -,因而与信号s 1(t),相匹配的滤波器的系统函数为H 1(w )=kS (w)e =k
AS 1*(w)e =AH (w)e )
(1
τ--t jw ,式中,t 0是匹配滤波器H(w)输出功率信噪比达到最大的时刻;t 1是匹配滤波器H 1(w)输出功率信噪比达到最大的时刻。
如果输出达到最大的时刻都选在信号的末尾,由于信号s 1(t)相对信号s(t )在时间上延迟了τ,所以t 1相应地比t0在时间上延迟了 。
即t 1=t 0+τ。
这样,式1变为H1(w )=A H(w).这一结果说明,两个匹配滤波器的系数函数之间,除了一个表示相对放大量得系数A 之外,它们的频率特性是完全一样的.所以,与信号s(t)相匹配的滤波器的系统函数H(w )对于信号s 1(t)=A s(t —τ)来说,也是匹配的,只不过最大输出功率信噪比出现的时刻延迟了τ。
匹配滤波器对频移信号不具有适应性。
设输入信号为s (t)的匹配滤波器的系统函数为H (w )=k S*(w)e 0
jwt -。
若滤波器的频移输入信号s 2(t )=s (t)e jwt 其频谱函数为S 2(w )=S (w+v),其中,v为信号的频移。
信号s2(t)的匹配滤波器的系统函数为H
2(w)=kS 2*(w)e0
jwt
-=kS * (w+v)e 0
jwt -。
显然,当v ≠0时,H 2(w)的频率特性和H(w )的频率特性是不一样的。
所以匹配滤波器对频移信号不具有适应性。
7 信号检测与信号估计有何区别
信号检测:研究在噪声干扰背景下,所关心的信号是属于哪种状态的最佳判决的问题。
信号估计:研究在噪声干扰背景中,通过对信号的观测,如何构造带估计参数的最佳估计量.
区别:信号检测问题主要就是根据收到的信号在两个假设之中选择其中一个假设的问题。
信号估计问题主要是求最优估计算子,即设计一个能处理各种观察数据而产生最优估计的滤波器。
8 最小平均错误概率准则,最大后验概率准则,极小极大化准则,奈曼·皮尔逊准则他们
之间的区别是什么?
(1)最小平均误差概率准则是使平均错误概率最小的检测准则,当选择代价因子C00=C11=0,
C10=C 01=1时,(正确判决不付出代价,错误判决代价相同),平均代价C 恰好是平均错误概率P,最小平均错误概率准则是贝叶斯准则的特例。
(2)按最小平均代价的贝叶斯准则在C10—C00=C01—C11的条件下,就成为最大后验概率准则
(3)采用贝叶斯准则,除了给定各种判决的代价因子Ci j外,还必须知道假设H 0和假设H1为真的先验概率P(H0)和P (H1).当预先无法确定各个假设的先验概率P(j )时,就不能应用叶贝斯准则。
而极小化极大化准则是在已经给定代价因子Cij ,但无法确定先验概率P (Hj)的条件下的一种信号检测准则.
(4)既不知先验概率P(Hj ),也无法对各种判决概率P(H1|H 0)和P(H 1|H1)且希望错误判决概率P(H1|H0)尽可能小,而正确判决概率P(H1|H 1)尽可能的大时,采用奈曼·皮尔逊准则(N—P)准则。
9 什么是虚警概率?什么是漏报概率? S x H1 [P (x|H 1)] H2 [P(x|H 0)]
当假设H0为真而判决为H1,即本来无信号而判为有信号,成为虚警:P(H 1|H0)为虚警概率.
当假设H1为真而判决为H0,即本来有信号时判为无信号,成为漏报:P(H0|H1)为漏报概率。
10 什么是信号参量估计的无偏性和一致性,估计量的数学期望值
E{)(x θ}=dx x p x XN
⎰)/()(~θθ,若对所有的χθ∈~都有E{)(~x θ}=θ,则这种估计被称
为无偏估计。
根据N 此观测,估计量)
(~
x N θ对于任意小的正数ε,若0]|)(~[|lim =>-∝-εθθx N N p 则称估计量)(~x N θ是一致估计量。