第五章信号检测与估计理论(3)
- 格式:ppt
- 大小:1.69 MB
- 文档页数:70
信号检测与估计信号检测与估值理论是从 40 年代第二次世界大战中逐步形成和发展起来的。
整个40 年代是这个理论的初创和奠基时期。
在这期间,美国科学家维纳和苏联科学家柯尔莫格洛夫等作出了杰出的贡献。
他们将随机过程和数理统计的观点引入到通信和控制系统中来,揭示了信息传输和处理过程的统计本质,建立了最佳线性滤波理论,后人称之为维纳滤波理论。
这样,就把经典的统计判决理论和统计估值理论与通信工程紧密结合起来,为信号检测与估值理论奠定了基础。
信号检测:由于许多实际的通信和控制问题都具有二元的性质,可把收到的信号划分为1或0,所以信号检测问题主要就是根据收到的信号在两个假设之中选择其中一个假设的问题。
为了形成最优推断程序,应假定每个正确的或错误的推断代表接收端观察者的得益或损失,称为损失函数。
常用的信号检测方法有参数检测法、非参数检测法、鲁棒检测法和自适应检测法等。
信号估计:在通信和控制中常常需要利用受干扰的发送信号序列来尽可能精确地估计该发送信号的某些参量值。
信号估计问题主要是求最优估计算子,即设计一个能处理各种观察数据而产生最优估计的滤波器。
滤波器的期望输出就是信号的估值,它可以是信号本身,也可以是信号的延迟或导前,这就是滤波、平滑和预测问题。
通常把信号估计分为两大类,有条件的和无条件的。
无条件估计算子不需要利用发送信号先验概率的知识,即认为先验概率密度分布是均匀的。
条件估计算子则需要利用发送信号的概率密度分布的知识。
评价信号估计的准则最常用的是均方误差最小准则。
信号检测与估值理论是现代信息理论的一个重要分支,是以率论与数理统计为工具,综合系统理论与通信工程的一门学科。
它为通信、雷达、声纳、自动控制等技术领域提供理论基础。
此外,它在统计识模、射电天文学、雷达天文学、地震学、生物物理学以及医学等领域里,也获得了广泛的应用。
我们知道,在信息的传输与交换过程中,都是通过信号这一物理实体来实现的。
信号是信息的载荷者、传送者。
12第2部分教学内容1.1 信号检测与估计的研究对象及应用1.信号检测与估计的概念(1)信息传输的重要性:在信息时代,信息已经成为人类社会赖以生存和发展的重要资源,信息传输已经成为人类社会对信息资源开发和利用的手段。
(2)信息:是客观事物状态的反映,是意义和符号的统一体,以语言、文字或图象的形式表现出来。
(3)信息传输系统:传输信息的全部设备和传输媒介所构成的总体。
(4)信号:是携带或表现信息的物理量,是信息的载体。
(5)信息传输:是信息传输系统通过传输载有信息的信号的过程。
(6)信号检测与估计产生的原因:信号作为信息的载体,在产生和传输过程中,受到各种噪声的影响而产生畸变,信息接收者无法直接使用,需要接收设备对所接收的信号加以处理,才能提供给信息接收者使用。
对受噪声影响的接收信号加以处理就产生了信号检测与估计。
信号检测与估计所要解决的问题是信息传输系统的基本问题。
(7)信号检测与估计:是研究从噪声环境中检测出信号,并估计信号参量或信号波形的理论,是现代信息理论的一个重要分支,广泛应用于电子信息系统、自动控制、模式识别、射电天文学、气象学、地震学、生物医学工程及航空航天系统工程等领域。
2.信号检测与估计的研究对象1)信息传输系统的一般模型(组成)信息传输系统的一般模型如图1.1.1所示。
它通常由信息源、发送设备、信道、接收设备、终端设备以及噪声源组成。
信息源和发送设备统称为发送端。
接收设备和终端设备统称为接收端。
图1.1.1 信息传输系统(1)信息源,简称信源:是指向信息传输系统提供信息的人或设备,简单地说就是信息的发出者。
信源发出的信息可以归纳为两类:一类是离散信息;另一类是连续信息。
信源也就可分为模拟信源和数字信源。
(2)发送设备:将信源产生的信息变换为适合于信道传输(频段、带宽、功率)的信号,送往信道。
(3)信道,又称为传输媒介(质):将来自发送设备的信号传送到接收设备的物理媒介3(质),是介于发送设备和接收设备之间的信号传输通道。
信号检测与估计简介
信号检测与估计是一种重要的信号处理技术,它在通信、雷达、生物医学、图像处理等领域中得到广泛应用。
本文将简要介绍信号检测与估计的基本概念、方法和应用。
信号检测是指在已知噪声统计特性的情况下,通过观测信号来判断信号是否存在的过程。
在信号检测中,我们通常需要确定一个阈值,当观测信号的功率超过该阈值时,我们认为信号存在。
这个阈值的选择对于信号检测的性能至关重要,通常需要根据具体应用场景进行优化。
信号估计是指在已知信号模型和噪声统计特性的情况下,通过观测信号来估计信号的参数。
在信号估计中,我们通常需要选择一个合适的估计方法,例如最小二乘法、最大似然估计等。
这些方法的选择也需要根据具体应用场景进行优化。
在实际应用中,信号检测与估计经常需要结合使用。
例如,在雷达信号处理中,我们需要检测目标的存在并估计其距离、速度等参数。
在生物医学信号处理中,我们需要检测心电图中的心跳信号并估计心率等参数。
在图像处理中,我们需要检测图像中的目标并估计其位置、大小等参数。
除了基本的信号检测与估计方法,还有许多高级技术可以用于提高性能。
例如,信号处理中的小波变换、自适应滤波等技术可以用于
降噪和特征提取。
机器学习中的神经网络、支持向量机等技术可以用于分类和回归问题。
这些技术的选择也需要根据具体应用场景进行优化。
信号检测与估计是一种重要的信号处理技术,它在许多领域中都有广泛应用。
在实际应用中,我们需要根据具体场景选择合适的方法和技术,以提高性能和效率。
信号检测与估计理论介绍信号检测与估计理论是数字通信和统计信号处理中的一个重要领域。
它研究的是如何准确地检测到信号的存在以及对信号进行估计。
该理论在许多实际应用中具有重要意义,包括雷达系统、通信系统、生物医学信号处理等。
信号检测在信号检测中,我们的目标是从观测到的信号中确定是否存在某个特定的信号。
通常情况下,我们将信号检测问题建模为一个假设检验问题,其中有两个假设:零假设H0表示没有信号存在,备择假设H1表示信号存在。
在信号检测中,我们通过设计一个检测器来根据观测到的信号样本进行决策。
常用的检测器包括最大似然检测器、贝叶斯检测器等。
这些检测器利用观测到的信号样本的统计特性,通过最大化某个准则函数(如似然比)来做出决策。
信号估计信号估计是根据观测到的信号样本,估计出信号的参数或者信号本身的过程。
信号估计有多种方法,包括参数估计和非参数估计。
在参数估计中,我们假设信号遵循某个已知的参数化模型,并通过观测到的信号样本去估计这些参数。
常用的参数估计方法有极大似然估计、最小二乘估计等。
这些方法基于最优准则来选择最优参数估计。
非参数估计不需要对信号满足某个特定的参数化模型的假设,它们通常利用样本的统计特性来进行估计。
常用的非参数估计方法有最小二乘法、核方法等。
检测与估计的性能评价在信号检测与估计中,我们需要对检测与估计的性能进行评价。
通常情况下,我们使用概率误差、均方误差等作为评价指标。
在信号检测中,我们常用的评价指标有误报概率和漏报概率。
误报概率指当信号不存在时,检测器判定信号存在的概率;漏报概率指当信号存在时,检测器未能正确判定信号存在的概率。
在信号估计中,我们常用的评价指标有均方误差和偏差方差平衡等。
均方误差指估计值和真实值之间的平均平方误差;偏差方差平衡则是指在估计和真实值之间平衡偏差和方差。
应用领域信号检测与估计理论在许多领域都有广泛的应用。
其中,雷达系统是一个重要的应用领域。
在雷达系统中,我们需要通过检测和估计来实现目标检测、目标定位等功能。
信号检测与估计理论
现代信号处理是一门涉及到研究信号及其处理的众多领域的复杂学科,它将信号检测
理论应用于数据的采集、分析和编码,以实现更高的信号保真和传输效率。
信号检测理论
是指以信号检测及其具体实现方法为内容的理论,是一门研究信号以及信号检测算法应用
于实践中新信号几率和信号模型、信号处理系统设计、系统评价指标和系统优化等问题的
理论。
信号检测理论包括信号检测和信号估计两个主要研究领域。
信号检测即在信号实际存
在且满足特定条件的情况下,将其从噪声中识别出来的技术。
信号检测的理论基础是概率
理论,研究的内容一般包括判决准则的设计、概率传输理论、灵敏度指标的计算、检测误
差最优化等。
信号估计是从检测信号中恢复信号参数值和状态信息的技术,它是根据信号
的内容和自身特性进行分析,重构信号形式,从而恢复和克服噪声干扰,最终使信号达到
某种需求尺度以达到预先设定的信号识别、显示、记录等目标。
信号检测和估计是现代信号处理理论的重要基础,应用于实际工程中,检测的精确性
和准确性,或估计的准确性,对信号处理结果的质量也是至关重要的。
因此,信号检测估
计理论的研究,涉及到信号检测的实现方法、检测决策的准则,以实现信号的恢复、显示、记录等操作,及信号估计指标计算、估计误差最优化等内容,是提高实际工程研究质量和
信号处理效率、增强应用竞争力的重要实现方式。