《信号检测与估计》第九章习题解答
- 格式:pdf
- 大小:166.74 KB
- 文档页数:3
《信号检测与估计》第十章习题解答10.1 设线性滤波器的输入信号为()()()t n t s t x +=,其中()[]0E =t s ,()[]0E =t n ,并且已知()ττ-e =S R ,()ττ-2e=N R ,()0=τsn R ,求因果连续维纳滤波器的传递函数。
解:连续维纳滤波器与离散维纳滤波器的形式是相同的,即()()()()+⎦⎤⎢⎣⎡−⋅⋅=s B s P s B s H xs w112opt σ 因此需要求解()t s 的复功率谱和()t x 的时间信号模型。
考虑到信号与噪声不相关,因此观测数据的功率谱就等于信号的复功率谱加上噪声的复功率谱。
对观测数据的复功率谱进行谱分解,就可以得到()t x 的时间信号模型。
()t s 的复功率谱为()()()20s -10s 1-s --121111e e e e s s s d d d s P S −=−++=+==∫∫∫∞−+∞++∞∞−τττττττ ()t n 的复功率谱为()2s -2-44e es d s P N −==∫+∞∞−τττ因此,观测数据的复功率谱为()()()()()()()()()s s s s ss ss s P s P s P N S X −+−++=−+−=+=2211-226441122 取12=w σ()()()()s s ss B +++=2126()()()()()()()()()s s s s s s s s B s P s B s P N xs +=−==1-2-262-2-1-2612--2令()()()s B s P s F xs -=,()τf 是()s F 的拉普拉斯反变换。
要求()τf 是因果的,可将s 平面右半平面的极点扔掉,()()()[]12e 61,e Re e21-s s +=−==∫τττπτs F s ds s F jf C给()τf 取因果,并做拉普拉斯变换,得到()s d s F +⋅+=⋅⋅+=∫∞++11126e e 1260s --τττ()()()()()()())()()122261112626211112opt +++=+×+×+++×=⎦⎤⎢⎣⎡−⋅⋅=+ss ss s s s B s P s B s H xs wσ10.2 设已知()()()n n n s n x +=,以及()()()z z z G S 4.014.0192.01−−=−,()1=z G N ,()0=z G sn ()n s 和()n n 不相关。
一、概念:1. 匹配滤波器。
概念:所谓匹配滤波器是指输出判决时刻信噪比最大的最佳线性滤波器。
应用:在数字信号检测和雷达信号的检测中具有特别重要的意义。
在输出信噪比最大准则下设计一个线性滤波器是具有实际意义的。
2. 卡尔曼滤波工作原理及其基本公式(百度百科)首先,我们先要引入一个离散控制过程的系统。
该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。
A和B是系统参数,对于多模型系统,他们为矩阵。
Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。
W(k)和V(k)分别表示过程和测量的噪声。
他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。
下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。
首先我们要利用系统的过程模型,来预测下一状态的系统。
假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k|k-1)=A X(k-1|k-1)+B U(k) (1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。
到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。
我们用P表示covariance:P(k|k-1)=A P(k-1|k-1) A’+Q (2)式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。
2011《信号检测与估计》复习纲要“信号检测与估计”理论是现代信息科学的一个重要组成部分,它是把所要处理的问题,归纳为一定的“数学模型”→运用“概率论”、“随机过程”、“数理统计”等数学工具→以普遍化的形式提出,以寻求普遍化的答案和结论,并且理论与工程实践相结合,以雷达系统、通信系统、声纳系统为主要研究对象,主要内容包括:● 随机信号与噪声理论(The Theory of Random Signals and Noise)——分析随机信号与噪声的数学工具● 统计判决(检测)理论(Statistical Decision Theory)——研究在噪声干扰背景中,所关心的信号是属于哪种状态的最佳判决问题(Detection of Signals in Noise)● 参量估计理论(Estimation Theory of Signal Parameters)——研究在噪声干扰背景中,通过对信号的观测,如何构造待估计参数的最佳估计量问题(Estimation of Signal Parameters)● 滤波理论(Filtering Theory)——为了改善信号质量,研究在噪声干扰中所感兴趣信号波形的最佳恢复问题,或离散状态下表征信号在各离散时刻状态的最佳动态估计问题(Estimation of Signal Waveform) 复习重点:信号检测与参量估计 ● 信号检测:根据有限观测,“最佳”区分一个物理系统不同状态的理论 ● 参量估计:根据有限观测,“最佳”找出一个物理系统不同参数的理论如何选择一个估计量&估计量选择的决策过程信号处理否估计量LSE经典方法贝叶斯方法如何选择一个检测器-二元信号检测如何选择一个检测器-多元信号检测*注:ARMA:自回归滑动平均BLUE:最佳线性无偏估计CFAR:恒虚警率CRLB :Cramer-Rao下限EM:数学期望最大化GLRT:广义似然比检验IID:独立同分布LLR:对数似然比LMMSE:线性最小均方误差LMP:局部最大势LRT:似然比检验LSE:最小二乘估计LSI:线性时不变MAP:最大后验概率MLE:最大似然估计MMSE:最小均方误差估计MVU:最小方差无偏NP:Neyman-Pearson准则PRN:伪随机噪声RBLS:Rao-Blackwell-Lehmann-Scheffe定理ROC:接收机工作特性UMP:一致最大势WGN:白色高斯噪声WSS:广义平稳2011《信号检测与估计》复习参考题参数估计部分:1.基本概念理解:最小方差无偏估计,最佳线性无偏估计,最大似然估计,最小二乘估计,矩方法估计,最小均方误差估计,最大似然估计,线性最小均方误差估计,一般(经典)线性模型和贝叶斯线性模型。
3一、简答题注释简答题(每题5分,共20分)或(每题4分,共20分)二、第1章简答题1.从系统和信号的角度看,简述信号检测与估计的研究对象。
答:从系统的角度看,信号检测与估计的研究对象是加性噪声情况信息传输系统中的接收设备。
从信号的角度看,信号检测与估计的研究对象是随机信号或随机过程。
2.简述信号检测与估计的基本任务和所依赖的数学基础。
答:解决信息传输系统接收端信号与数据处理中信息恢复与获取问题,或从被噪声及其他干扰污染的信号中提取、恢复所需的信息。
信号检测与估计所依赖的数学基础是数理统计中贝叶斯统计的贝叶斯统计决策理论和方法。
3.概述信号在传输过程中与噪声混叠在一起的类型。
答:信号在传输过程中,噪声与信号混杂在一起的类型有3种:噪声与信号相加,噪声与信号相乘(衰落效应),噪声与信号卷积(多径效应)。
与信号相加的噪声称为加性噪声,与信号相乘的噪声称为乘性噪声,与信号卷积的噪声称为卷积噪声。
加性噪声是最常见的干扰类型,也是最基本的,因为乘性噪声和卷积噪声的情况均可转换为加性噪声的情况。
三、第2章简答题1.简述匹配滤波器概念及其作用。
答:匹配滤波器是在输入为确定信号加平稳噪声的情况下,使输出信噪比达到最大的线性系统。
匹配滤波器的作用:一是使滤波器输出有用信号成分尽可能强;二是抑制噪声,使滤波器输出噪声成分尽可能小,减小噪声对信号处理的影响。
2.根据匹配滤波器传输函数与输入确定信号及噪声的关系,简述匹配滤波器的原理。
答:匹配滤波器传输函数等于输入确定信号频谱的复共轭除以输入平稳噪声的功率谱密度,再附加相位项T ω-,其中T 为输入确定信号的持续时间或观测时间。
由于匹配滤波器传输函数的幅频特性与输入确定信号的幅频特性成正比,与输入噪声的功率谱密度成反比;对于某个频率点,信号越强,该频率点的加权系数越大,噪声越强,加权越小。
从而起到加强信号,抑制噪声的作用。
对于信号,匹配滤波器的相频特性与输入信号的相位谱互补,使输入信号经过匹配滤波器以后,相位谱将全部被补偿掉。
一、简答题注释简答题(每题5分,共20分)或(每题4分,共20分)二、第1章简答题1.从系统和信号的角度看,简述信号检测与估计的研究对象。
答:从系统的角度看,信号检测与估计的研究对象是加性噪声情况信息传输系统中的接收设备。
从信号的角度看,信号检测与估计的研究对象是随机信号或随机过程。
2.简述信号检测与估计的基本任务和所依赖的数学基础。
答:解决信息传输系统接收端信号与数据处理中信息恢复与获取问题,或从被噪声及其他干扰污染的信号中提取、恢复所需的信息。
信号检测与估计所依赖的数学基础是数理统计中贝叶斯统计的贝叶斯统计决策理论和方法。
3.概述信号在传输过程中与噪声混叠在一起的类型。
答:信号在传输过程中,噪声与信号混杂在一起的类型有3种:噪声与信号相加,噪声与信号相乘(衰落效应),噪声与信号卷积(多径效应)。
与信号相加的噪声称为加性噪声,与信号相乘的噪声称为乘性噪声,与信号卷积的噪声称为卷积噪声。
加性噪声是最常见的干扰类型,也是最基本的,因为乘性噪声和卷积噪声的情况均可转换为加性噪声的情况。
三、第2章简答题1.简述匹配滤波器概念及其作用。
答:匹配滤波器是在输入为确定信号加平稳噪声的情况下,使输出信噪比达到最大的线性系统。
匹配滤波器的作用:一是使滤波器输出有用信号成分尽可能强;二是抑制噪声,使滤波器输出噪声成分尽可能小,减小噪声对信号处理的影响。
2.根据匹配滤波器传输函数与输入确定信号及噪声的关系,简述匹配滤波器的原理。
答:匹配滤波器传输函数等于输入确定信号频谱的复共轭除以输入平稳噪声的功率谱密度,再附加相位项T ω-,其中T 为输入确定信号的持续时间或观测时间。
由于匹配滤波器传输函数的幅频特性与输入确定信号的幅频特性成正比,与输入噪声的功率谱密度成反比;对于某个频率点,信号越强,该频率点的加权系数越大,噪声越强,加权越小。
从而起到加强信号,抑制噪声的作用。
对于信号,匹配滤波器的相频特性与输入信号的相位谱互补,使输入信号经过匹配滤波器以后,相位谱将全部被补偿掉。
《信号检测与估计》第九章习题解答9.1 接收信号(((t n t A t x ++=θω0sin ,其中(t n 是高斯白噪声,θ在(π20,均匀分布,现在需求振幅A 的最大似然估计量。
由于θ的先验知识已知,故可先对θ求平均得到(A x f ,试问要求振幅A 的最大似然估计量必须解什么样的方程? 解:接收信号(t x 的似然函数为((([]((((((((⎟⎠⎞⎜⎝⎛+++−−+++−−+−−∫∫∫∫∫===T TT TTdt t A dt t t x A dt t x N dtt A t t Ax t xN dtt A t x N FeFeFeA x f 0002200200022020200sin sin 21sin sin 21sin 1,θωθωθωθωθωθ由于(((∫=+−=∫+TTT dt t dt t 0000222cos 121sin θωθω,得到 ((((020000202sin 21,N TA dt t t x N A dtt x N e eFeA x f T T−+−∫∫=θωθ对θ积分,得到(((((((((θπθπθθθπθωθωπθωπd eeFed e e Fed f A x f A x f dt t t t x N A N T A dt t x N dt t t x N A N T A dt t x N T TTT∫∫∫∫∫∫∫+−−+−−===20cos cos sin sin 22120sin 221 2000000202000020202121,令(ϕωcos cos 00z dt t t x x Tc ==∫,(ϕωsin sin 00z dt t t x x T s ==∫,得到222s cx x z +=,csx x arctg =ϕ (((((⎟⎟⎠⎞⎜⎜⎝⎛====∫∫∫∫∫−+++0020cos 220cos cos sin sin 220cos sin 220 cos cos sin sin 22212121210 000N Az I d ed ed e d eN Azz z N Ax x N Adt t t t x N A c s Tθπθπθπθππϕθπθϕθϕπθθπθωθω 上式中,[](cos exp 21020x I d x =∫πθθπ为零阶修正贝塞尔函数。
第二章 随机信号及其统计描述1.求在实数区间[]b a ,内均匀分布的随机变量X 均值和方差。
解: 变量X 的概率密度 ⎪⎪⎩⎪⎪⎨⎧≤≤-=其他,,01)(b x a a b x p均值 []⎰∞∞-+===2)(ba dx x xp X E m X方差 ⎰∞∞--=-=12)()()(222a b dx x p m x X Xσ2.设X 是具有概率密度函数)(x p 的随机变量,令x 的函数为0),exp(>-=a ax y试求随机变量y 的概率密度函数)(y p 。
解: 反函数0,ln 1>-=a y ax 雅可比式为 aydy dx J 1-==所以 0),ln 1(1)ln 1()(>-=-⋅=a y ap ay y a p J y p 4. 随机过程)(t X 为)sin()cos()(00t B t A t X ωω+=式中,0ω是常数,A 和B 是两个互相独立的高斯随机变量,而且0][][==B E A E ,222][][σ==B E A E 。
求)(t X 的均值和自相关函数。
7. 设有状态连续、时间离散的随机过程)2sin()(t t X Ω=π,式中t 只能取正整数,即 ,3,2,1=t ,而Ω为在区间)1,0(上均匀分布的随机变量,试讨论)(t X 的平稳性。
8.平稳随机过程)(t X 的自相关函数为1)10cos(22)(10++=-τττe R X ,求)(t X 均值、二阶原点矩和方差。
解: 可按公式求解[])()0(,)0()(,)(222∞-==∞=X X X X X X R R R t X E R m σ。
但在求解周期性分量时,不能得出)(∞R ,为此把自相关函数分成两部分: ()12)10cos(2)()()(1021++=+=-τττττeR R R X X X由于)10cos(2)(1ττ=X R 的对应的随机过程为 是随机变量为常数,ϕϕA t A t X ),10cos()(1+=所以[]0)(1=t X E而对于12)(102+=-ττeR X ,有1)(2=∞X R ,即[]1)(2±=t X E所以[][][]1)()()(21±=+=t X E t X E t X E 可理解为1)(=∞X R从而有 []5)0()(2==X R t X E ,)()0(2∞-=X X X R R σ=4因此)(t X 的均值、二阶原点矩和方差分别为[]1)(±=t X E []5)(2=t X E 42=X σ9. 若随机过程)(t X 的自相关函数为)cos(21)(0τωτ=X R ,求)(t X 的功率谱密度。
第九章 作业参考答案1。
什么叫匹配滤波器?其最大输出信噪比与哪些因素有关?与哪些因素无关? 教材参考:P312匹配滤波器就是以输出最大信噪比为准则的最佳线性滤波器。
通过公式0max 2N E d ==输出噪声平均功率信号输出功率最大峰值可以看出,输出端最大信噪比只取决于输入信号的能量E 和输入噪声功率谱密度N 0/2。
与输入信号波形无关。
2。
提高脉冲雷达发射机能量可以采用哪些措施?教材参考:P332在发射机平均功率允许的条件下,可以通过通过:增加发射机脉冲功率、增大脉冲宽度、采用复杂的信号形式等提高反射信号能量。
3。
根据匹配滤波器理论,在白噪声背景下,滤波器输出端最大功率信噪比是多少?教材参考:P314根据匹配滤波器理论,在白噪声背景下,滤波器输出端信号噪声功率比的最大峰值为2E/N 0,即当噪声功率谱密度给定后,决定雷达检测能力的是信号能量E 。
4。
什么叫大时宽带宽积信号?LFM 信号经过匹配滤波器的输出信号有什么特点?其输入、输出信号的宽度压缩比、振幅比分别是多少?教材参考:P314,P317如果在宽脉冲内采用附加的频率或相位调制,以增加信号带宽B ,那么,当接收时用匹配滤波器进行处理,可将长脉冲压缩到1/B 宽度,这样既可使雷达用长的脉冲去获得大的能量, 同时又可以得到短脉冲所具备的距离分辨力。
这种信号称为脉冲压缩信号或称为大时宽带宽积信号。
LFM 信号经过匹配滤波器后输出信号是一个固定载频的信号。
其包络调制函数为'2cos '2|'|1'2sin 2)'(02t f t t t kA t s o πτμττμτ⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=。
当t ′<<τ时,包络近似为辛克(sinc)函数。
线性调频信号输入脉冲宽度τ与输出脉宽τ′之比通常称为压缩比D ,M MB B D ττττ===/1'。
脉冲功率与信号振幅平方成正比, 故得压缩前后脉冲振幅比为D AA ='。
信号检测估计复习资料第二章随机信号及其统计描述1.两个随机过程不相关一定独立。
()2.严格的平稳随机过程不一定是宽平稳随机过程。
()3.平稳随机过程的功率谱密度与自相关函数是一对傅里叶变换。
()4.白噪声是一种理想化模型,在实际中是不存在的。
()5.功率谱密度是样本函数x在单位频带内在1欧姆电阻上的平均功率值。
()6.加性噪声按功率谱密度分为()噪声和()噪声。
7.有色噪声的功率谱密度在频率范围内是均匀分布的。
()8.对于白噪声下面哪个量是均匀分布的()。
A.噪声电压B.噪声电流C.噪声功率D.噪声功率谱密度9.在信号检测与估计理论中,通信接收机中的噪声可以近似为平稳随机过程。
()第三章经典检测理论1.什么是二元检测,其本质是什么?画出其理论模型。
2.二元检测中有两类错误的判决概率,两类正确判决概率。
( )3.下面哪种概率是虚警概率()。
A.P(D0|H0)B.P(D1|H0)C.P(D1|H1)D. P(D0|H1)4.二元检测中有先验概率和后验概率,P(H0)是()概率,P (H0|x)是()概率。
5.下面哪个为后验概率密度函数()。
A.f(x|H0)B.f(x|H1,a)C.f(a|x)D.f(a)6.经典检测理论中常用的4个检测准则分别为()、()、()和()。
7.最大后验概率准则和最小错误概率准则判决公式是不同的。
()8.最大后验概率准则为何称为理想观测者准则?9.极大极小风险准则是在先验概率未知的情况下,使可能出现的最大风险达到极小的判别准则。
()10.Neyman-Pearson准则规定,在给定( )概率情况下,使得()概率尽可能大。
11.最大后验估计和最大似然估计的使用条件。
12.下面哪种判决准则是时平均风险最小的准则()。
A.最大后验概率准则B.最小错误概率准则C.Bayes准则D.Neyman-Pearson准则13.当先验概率未知和代价函数均未知时,使用的判决准则是Neyman-Pearson准则。
信号检测与估计理论简答题1.维纳滤波器与卡尔曼滤波器的区别维纳滤波器:1)只用于平稳随机过程。
2)该系统常称为最佳线性滤波器。
它根据全部过去和当前的观测信号来估计信号的波形,它的解是以均方误差最小条件所得到的系统的传递函数H(Z)的形式给出的。
3)信号和噪声是用相关函数表示的。
卡尔曼滤波器:1)平稳随机过程和不平稳随机过程均适用。
2)该系统常称为线性最优滤波器。
它不需要全部过去的观测数据,可根据前一个的估计值和最近的观察数据来估计信号的当前值,它是用状态方程和递推方法进行估计的,其解是以估计的形式给出的。
3)信号和噪声是用状态方程和测量方程表示的。
2.解释白噪声情况下正交函数集的任意性设)0)(()()(T t t n t s t x ≤≤+=中,噪声n(t)是零均值、功率谱密度为2/)(0N w P n =的白噪声,其自相关函数)(2)(0u t N u t r n -=-δ。
于是,任意取正交函数集)()},({t x t f k 的展开系数jx 和kx (k=1,2,…)的协方差为)])([(k k j j s x s x E --])()()()([00⎰⎰=Tk j Tdu u f u n dt t f t n E⎰⎰⎥⎦⎤⎢⎣⎡=T Tk j dt du u f u n t n E t f 00)()]()([)(⎰⎰⎥⎦⎤⎢⎣⎡-=TT k j dt du u f u t t f N 000)()()(2δjk k Tj N dt t f t f Nδ2)()(2==⎰当k j ≠时,协方差0)])([(=--k k j j s x s x E ,这说明,在n(t)是白噪声的条件下,取任意正交函数集)}({t f k 对平稳随机过程k x (k=1,2,…)之间都是互不相关的。
这就是白噪声条件下正交函数集的任意性。
3.请说明非随机参量的任意无偏估计量的克拉美-罗不等式去等号成立的条件和用途克拉美-罗不等式])),(ln [(1])ˆ[(22θθθθ∂∂≥-x p E E 或)]),(ln [(1])ˆ[(222θθθθ∂∂-≥-x p E E 当且仅当对所有的x 和θ都满足k x p )ˆ(),(ln θθθθ-=∂∂时,不等式去等号成立。