信号检测与估计试题及答案
- 格式:pdf
- 大小:310.43 KB
- 文档页数:4
信号检测与估计试题答案三、(15分)现有两个假设00,11,:,1,2,,:,1,2,,j j j j j j H y u z j K H y u z j K=+==+=其中观测样本j y 为复信号,0,1,,j j u u 是复信号样本,j z 是均值为零、方差为2*z j j E z z σ⎡⎤=⎣⎦的复高斯白噪声,代价因子为001101100,1c c c c ====,先验概率010.5ππ==(1)试写出两假设下的似然函数()0p y 和()1p y ,其中12[,,,]T K y y y y =;(4分)(2)采用贝叶斯准则进行检测,给出信号检测的判决规则表达式;(6分) (3)在上题基础上,计算虚警概率。
(5分) 解:(1)观测样本j y 在假设0H 下的概率密度函数为()20,0221exp 1,2,,j jj z z y u p y j K πσσ⎧⎫-⎪⎪=-=⎨⎬⎪⎪⎩⎭……..(2分)由于样本间互相独立,则K 个观测样本的联合概率密度函数为()()()()()20010200,22111exp K K j j Kj z z p y p y p y p y y u σπσ=⎧⎫==--⎨⎬⎩⎭∑…….(1分)同理可得,在假设1H 下的似然函数为()()()()()21111211,22111exp K K j j Kj z z p y p y p y p y y u σπσ=⎧⎫==--⎨⎬⎩⎭∑…….(1分)(2)首先计算似然比:()()(){}{}1**011,0,22221102222exp Re Re K K j j j j j j z z z z p y L y y u y u p y εεσσσσ==⎧⎫==--+⎨⎬⎩⎭∑∑其中∑==K j j u 12,00||21ε,∑==K j j u 12,11||21ε。
……..(2分) 然后,计算贝叶斯准则似然比门限为()()010********B C C C C πτπ-==-………(2分)因此,根据{}{}1**011,0,22221102222exp Re Re 1K K j j j j j j z z z z D y u y u D εεσσσσ==≥⎧⎫--+⎨⎬<⎩⎭∑∑ 化简可得最后的判决表达式:(){}1*1,0,101Re Kj j j j D y u u D εε=≥--<∑ ……..(2分) (3)在假设0H 下,j y 是均值为0,j u 、方差为2z σ的复高斯随机变量,因此,统计决策量(){}*1,0,1Re Kj j j j y u u μ==-∑ 为高斯分布随机变量,其均值和方差分别为:{}002r E H με=- (1分){}()()220101222z r z r Var H σμεεσεε=+-=+- (1分)其中,*0,1,Kj jr i uuJ ρρρ=+=∑ 定义为两信号的相关系数。
一、概念:1. 匹配滤波器。
概念:所谓匹配滤波器是指输出判决时刻信噪比最大的最佳线性滤波器。
应用:在数字信号检测和雷达信号的检测中具有特别重要的意义。
在输出信噪比最大准则下设计一个线性滤波器是具有实际意义的。
2. 卡尔曼滤波工作原理及其基本公式(百度百科)首先,我们先要引入一个离散控制过程的系统。
该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。
A和B是系统参数,对于多模型系统,他们为矩阵。
Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。
W(k)和V(k)分别表示过程和测量的噪声。
他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。
下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。
首先我们要利用系统的过程模型,来预测下一状态的系统。
假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k|k-1)=A X(k-1|k-1)+B U(k) (1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。
到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。
我们用P表示covariance:P(k|k-1)=A P(k-1|k-1) A’+Q (2)式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。
《信号检测与估计》第十章习题解答10.1 设线性滤波器的输入信号为()()()t n t s t x +=,其中()[]0E =t s ,()[]0E =t n ,并且已知()ττ-e =S R ,()ττ-2e=N R ,()0=τsn R ,求因果连续维纳滤波器的传递函数。
解:连续维纳滤波器与离散维纳滤波器的形式是相同的,即()()()()+⎦⎤⎢⎣⎡−⋅⋅=s B s P s B s H xs w112opt σ 因此需要求解()t s 的复功率谱和()t x 的时间信号模型。
考虑到信号与噪声不相关,因此观测数据的功率谱就等于信号的复功率谱加上噪声的复功率谱。
对观测数据的复功率谱进行谱分解,就可以得到()t x 的时间信号模型。
()t s 的复功率谱为()()()20s -10s 1-s --121111e e e e s s s d d d s P S −=−++=+==∫∫∫∞−+∞++∞∞−τττττττ ()t n 的复功率谱为()2s -2-44e es d s P N −==∫+∞∞−τττ因此,观测数据的复功率谱为()()()()()()()()()s s s s ss ss s P s P s P N S X −+−++=−+−=+=2211-226441122 取12=w σ()()()()s s ss B +++=2126()()()()()()()()()s s s s s s s s B s P s B s P N xs +=−==1-2-262-2-1-2612--2令()()()s B s P s F xs -=,()τf 是()s F 的拉普拉斯反变换。
要求()τf 是因果的,可将s 平面右半平面的极点扔掉,()()()[]12e 61,e Re e21-s s +=−==∫τττπτs F s ds s F jf C给()τf 取因果,并做拉普拉斯变换,得到()s d s F +⋅+=⋅⋅+=∫∞++11126e e 1260s --τττ()()()()()()())()()122261112626211112opt +++=+×+×+++×=⎦⎤⎢⎣⎡−⋅⋅=+ss ss s s s B s P s B s H xs wσ10.2 设已知()()()n n n s n x +=,以及()()()z z z G S 4.014.0192.01−−=−,()1=z G N ,()0=z G sn ()n s 和()n n 不相关。
信号检测与估计答案15-2 若观测方程为i i x s n =+()1,2,,i N =,其中信号()2~0,s s N σ,噪声()()2~0,1,2,,i n n N i N σ=独立同分布,且信号与噪声满足{}0i E sn =。
求s 的最大后验概率估计ˆMAP s。
解:依题意,以信号s 为条件的观测样本的概率密度函数为()()()2112221,,|exp 22N i i N Nnnx s f x x s σπσ=⎡⎤-⎢⎥⎢⎥=-⎢⎥⎢⎥⎣⎦∑信号s 的概率密度函数为()222ss f s σ⎛⎫=- ⎪⎝⎭则由上面两式可得()()()()()211222212221ln ,,|ln exp 221ln 22N i i N N nn Ni i N n n x s f x x s ss x s s σπσσπσ==⎧⎫⎡⎤⎧⎫-⎪⎪⎢⎥⎪⎪∂∂⎪⎪⎪⎪⎢⎥=-⎨⎨⎬⎬∂∂⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎩⎭⎣⎦⎩⎭⎡⎤-⎢⎥∂⎢⎥=-∂⎢⎥⎢⎥⎣⎦∑∑()22222ln ln 22s s s s f s s s s s s⎧⎫⎡⎤⎛⎫∂∂⎪⎪=-⎥⎨⎬ ⎪∂∂⎥⎝⎭⎪⎪⎦⎩⎭⎡⎤∂=-⎢⎥∂⎢⎥⎣⎦=-σσσ最大后验概率准则为()ˆmax |MAP f θθθ=x ,即()ˆ|0MAPf θθθθ=∂⎡⎤=⎢⎥∂⎣⎦x ,又可表示为()()ˆln |ln 0MAPf f θθθθθθ=∂∂⎡⎤+=⎢⎥∂∂⎣⎦x ,将之前结果带入其中可得2221ˆNs MAP ii ns sx N σσσ==+∑ 。
5-4已知观测信号0()cos()()x t A t n t ωθ=++(0)t T ≤≤,式子中()n t 是零均值,功率谱为2N 的高斯白噪声,θ是在[0,2)π上均匀分布的随机变量,求A 的最大似然估计和估计量的均方误差。
解:0()cos()()x t A t n t ωθ=++()x t 的似然函数为:020002220000022000000()cos()()1(|,)exp [()cos()]1exp [()2()cos()cos ()]12exp [()()cos()2TTTTTT x t A t n t f x A F x t A t dt N F x t dt x t A t dt At dt N A A T F x t dt x t t dt N N N ωθθωθωθωθωθ=++⎧⎫=⋅--+⎨⎬⎩⎭⎧⎫=⋅--+++⎨⎬⎩⎭⎧⎫=⋅-++-⎨⎬⎩⎭⎰⎰⎰⎰⎰⎰因为1(),022f θθππ=≤≤ 所以202200000(|)(|,)()12exp{}exp [()()2Tf x A f x A f d A TAq F x t dt I N N N πθθθ=⎧⎫=⋅--⎨⎬⎩⎭⎰⎰ 其中22200002200000()sin ()cos 12ln (|)ln ()ln ()2T TT q x t tdt x t tdt A T Aqf x A F x t dt I N N N ωω⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦=--+⎰⎰⎰令000ln (|)20()0f x A AT AqI A N A N ∂∂=⇒-++∂∂ (1)假设SNR,即02Aq N 足够大,则00022()Aq AqI N N ≈0022ˆ(1)0MLAT q q A N N T⇒-+=⇒=由2220000()sin ()cos T Tq x t tdt x t tdt ωω⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰知22202221()exp(())()242T T TqA T qATf q q I σσσ=-+所以222323240001()2T T qq x x q T q E qf q dq AT e dq e AT x e dx AT σσσ=-+∞+∞+∞-⎛⎫−−−→ ⎪==←−−− ⎪⎝⎭⎰⎰⎰ 所以221ˆ()()2MLE A E q AT A T T ==⋅= (无偏估计) 200024ˆvar(),var()44T ML N T N T N q A T T σ====5-11. 假定已知信号112()cos cos 2...cos p s t a t a t a p t ωωω=+++212()sin sin 2...sin p s t b t b t b p tωωω=+++观测信号12()()()()x t s t s t n t =++,()n t 是均值为0、均方差为1的高斯白噪声。
《信号检测与估计》第十二章习题解答12.1 采用下式给出的有偏自相关函数的定义,并加窗,得到BT 谱估计器:()()()()()()⎪⎩⎪⎨⎧−−−−−=−+=+=∑∗1,,2,11ˆ1,,1,01ˆL L N N m m R N m m n x n x N m R X X ()⎪⎩⎪⎨⎧−≤=其它011N m m W N()()()()∑−−−=−⋅⋅=11e ˆˆN N m m j X N X m R m W G ωω证明该BT 估计器与周期图相同。
解:()()()()()()()()()()()()()()()()()211111111e 1e e 1e e 1e 1e ˆˆωωωωωωωωj N N m n m j nj N N m nj n m j N N m m j N N N m m j X N XX N m n x n x N m n x n x N m n x n x N m W m R m W G =⋅+⋅⋅=⋅⋅+=⋅⎥⎦⎤⎢⎣⎡+⋅=⋅⋅=∑∑∑∑∑∑∑−−−=+−−∗−−−=−+−∗−−−=−∗−−−=− 12.2 设自相关函数()3,2,1,0,==m m R m X ρ。
试用Levinson-Durbin 递推法求解AR (3)模型参量。
解: ()()ρ−=−=0111X X R R a 110=a()()221121101ρσ−=⋅−=X R a ()()012211122=+−=σX X R a R a ρ−=⋅+=11221121a a a a ()2212222211ρσσ−=⋅−=a因此模型为一阶 ()()[]()012322222133=⋅+−=σX X X R a R a R a021332232=⋅+=a a a aρ−=⋅+=22332131a a a a()2222332311ρσσ−=⋅−=a 所以模型为()()()n w n x n x +−=1ρ12.3 设5=N 的数据记录为:10=x ,21=x ,32=x ,43=x ,54=x ,AR 模型的阶数3=p 试用Levinson-Durbin 递推法求模型参量。
《信号检测与估计》第七章习题解答7.1 在二元数字通信系统中,两个假设下的观测波形()t x 分别为L ,2,1,1:1=+=i n x H i iL ,2,1,:0==i n x H i i式中,i n 是均值为零、方差为1的高斯白噪声,要求虚警概率410−=α,漏报概率110−=β,且()()5.010==H P H P 。
求:(1)序贯似然比检测的判决门限及判决规则。
(2)序贯似然比检测的平均观测取样数。
(3)若采用常规的固定样本数的似然比检测,求满足检测性能所要求的取样数。
解:(1)单次观测所得随机变量x 的似然函数为2)1(1221)|(−−=x e H x f π 20221)|(x e H x f −=π得到似然必为2101)()()(−==x e H x f H x f x l对应的对数似然比为21ln )(ln 21−==−x e x l x 假定顺序得到取样,则第N 步的对数似然比为 22121ln )](ln[122)1(1212N x e e l N i i x N x N N N i i N i i −=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=∑=∑−∑−−==ππx 两个检测门限值分别为303.21ln ln 0−=⎟⎠⎞⎜⎝⎛−=αβl 105.91ln ln 1=⎟⎠⎞⎜⎝⎛−=αβl 序贯似然比检测的判决规则如下303.221−≤−∑=N xN i i 0H 假设为真 105.921≥−∑=N xN i i1H 假设为真105.92303.21<−<−∑=N x N i i 增加一次观测转入下一检测阶段 []21211]|)21[(|)(ln 11=−=−=H x E H x l E []21210]|)21[(|)(ln 00−=−=−=H x E H x l E (2)将各参数的取值分别代入1H 假设为真时的平均取样数和0H 假设为真时的平均取样数公式得[]93.15|)(ln ln ln )1(]|[1011=+−=H x l E l l H N E ββ []60.4|)(ln ln )1(ln ]|[0010=−+=H x l E l l H N E αα总的平均取样数为265.10]|[)(]|[)(][1100=+=H N E H P H N E H P N E因此取样数为11就可以达到预期的检测性能。
一、简答题注释简答题(每题5分,共20分)或(每题4分,共20分)二、第1章简答题1.从系统和信号的角度看,简述信号检测与估计的研究对象。
答:从系统的角度看,信号检测与估计的研究对象是加性噪声情况信息传输系统中的接收设备。
从信号的角度看,信号检测与估计的研究对象是随机信号或随机过程。
2.简述信号检测与估计的基本任务和所依赖的数学基础。
答:解决信息传输系统接收端信号与数据处理中信息恢复与获取问题,或从被噪声及其他干扰污染的信号中提取、恢复所需的信息。
信号检测与估计所依赖的数学基础是数理统计中贝叶斯统计的贝叶斯统计决策理论和方法。
3.概述信号在传输过程中与噪声混叠在一起的类型。
答:信号在传输过程中,噪声与信号混杂在一起的类型有3种:噪声与信号相加,噪声与信号相乘(衰落效应),噪声与信号卷积(多径效应)。
与信号相加的噪声称为加性噪声,与信号相乘的噪声称为乘性噪声,与信号卷积的噪声称为卷积噪声。
加性噪声是最常见的干扰类型,也是最基本的,因为乘性噪声和卷积噪声的情况均可转换为加性噪声的情况。
三、第2章简答题1.简述匹配滤波器概念及其作用。
答:匹配滤波器是在输入为确定信号加平稳噪声的情况下,使输出信噪比达到最大的线性系统。
匹配滤波器的作用:一是使滤波器输出有用信号成分尽可能强;二是抑制噪声,使滤波器输出噪声成分尽可能小,减小噪声对信号处理的影响。
2.根据匹配滤波器传输函数与输入确定信号及噪声的关系,简述匹配滤波器的原理。
答:匹配滤波器传输函数等于输入确定信号频谱的复共轭除以输入平稳噪声的功率谱密度,再附加相位项T ω-,其中T 为输入确定信号的持续时间或观测时间。
由于匹配滤波器传输函数的幅频特性与输入确定信号的幅频特性成正比,与输入噪声的功率谱密度成反比;对于某个频率点,信号越强,该频率点的加权系数越大,噪声越强,加权越小。
从而起到加强信号,抑制噪声的作用。
对于信号,匹配滤波器的相频特性与输入信号的相位谱互补,使输入信号经过匹配滤波器以后,相位谱将全部被补偿掉。
《信号检测与估计》第九章习题解答9.1 接收信号(((t n t A t x ++=θω0sin ,其中(t n 是高斯白噪声,θ在(π20,均匀分布,现在需求振幅A 的最大似然估计量。
由于θ的先验知识已知,故可先对θ求平均得到(A x f ,试问要求振幅A 的最大似然估计量必须解什么样的方程? 解:接收信号(t x 的似然函数为((([]((((((((⎟⎠⎞⎜⎝⎛+++−−+++−−+−−∫∫∫∫∫===T TT TTdt t A dt t t x A dt t x N dtt A t t Ax t xN dtt A t x N FeFeFeA x f 0002200200022020200sin sin 21sin sin 21sin 1,θωθωθωθωθωθ由于(((∫=+−=∫+TTT dt t dt t 0000222cos 121sin θωθω,得到 ((((020000202sin 21,N TA dt t t x N A dtt x N e eFeA x f T T−+−∫∫=θωθ对θ积分,得到(((((((((θπθπθθθπθωθωπθωπd eeFed e e Fed f A x f A x f dt t t t x N A N T A dt t x N dt t t x N A N T A dt t x N T TTT∫∫∫∫∫∫∫+−−+−−===20cos cos sin sin 22120sin 221 2000000202000020202121,令(ϕωcos cos 00z dt t t x x Tc ==∫,(ϕωsin sin 00z dt t t x x T s ==∫,得到222s cx x z +=,csx x arctg =ϕ (((((⎟⎟⎠⎞⎜⎜⎝⎛====∫∫∫∫∫−+++0020cos 220cos cos sin sin 220cos sin 220 cos cos sin sin 22212121210 000N Az I d ed ed e d eN Azz z N Ax x N Adt t t t x N A c s Tθπθπθπθππϕθπθϕθϕπθθπθωθω 上式中,[](cos exp 21020x I d x =∫πθθπ为零阶修正贝塞尔函数。
时间:6月16日(星期一)晚上6:30-8:30 地点:六教104室(上课教室)试卷共8题,其中4题属于教材第一章内容,其余4题分别的其他章节。
请同学们对匹配滤波器,离散卡尔曼滤波,离散维纳滤波,高斯白噪声下确知信号的检测,K -L 展开,高斯白噪声信道中的单参量信号估计等内容重点关注。
1.1 (付柏成 20060150)在例1.2中,设噪声均方差电压值为σ=2v ,代价为f c =2,m c =1。
信号存在的先验概率P =0.2。
试确定贝叶斯意义下最佳门限β,并计算出相应的平均风险。
解:根据式(1-15),可以算出00.8280.21f mQc Pc ⨯Λ===⨯ 而判决门限2201ln 0.52ln88.822βσ=+Λ=+= 根据式(1-21)可知平均风险1010Pr 0.2r 0.8R Qr r =+=+01100.2(|)0.8(|)m f c P D H c P D H =+ 而011(|)(|)D P D H p x H dx =⎰1100(|)(|)D P D H p x Hdx =⎰而212(1)(|)]2x p x H σ-=-202(|)]2x p x H σ=-所以20112(1)(|)(|)]2D D x P D H p x H dx dx σ-==-⎰⎰22(1)]2x dx βσ-=-⎰=17.82()()(3.91)22β-Φ=Φ=Φ 同理1121002(|)(|)]2D D x P D H p x H dx dx σ==-⎰⎰22)2x dx βσ∞=- 8.821()1()1(4.41)22β=-Φ=-Φ=-Φ 所以0.21(3.91)0.82[1(4.41)]R =⨯⨯Φ+⨯⨯-Φ 1.2 (关瑞东 20060155)假定加性噪声()n t 服从均值为零,方差为的正态分布。
此时,两个假设为01:()():()1()H x t n t H x t n t ==+我们根据()x t 的两次独立测量值12,x x 作判断,则12,x x 是统计独立的,在假设1H 下其均值为1a =1,在假设0H 下均值为0a =0,因而在两种假设下它们的联合概率密度函数可写为22/221()(|)(2)exp()2nn i k k i x a p x H πσσ-=-=-∑ (0,1;2)k n == 于是,似然比等于22011012210()(|)()exp[](|)2n ii a a n a a p x H x x p x H σσ=--Λ==-∑如果0()x Λ≥Λ,则选择假设1H ,否则选择假设0H 。
22]exp[22228.8)])R pp101022]p x x H ss 22]1x x s +似然函数为221/22()(|)(2/2)exp[]2/2x k x k m a P m H ps s --= (k=1,0)虚警概率100(|)(|)[]/2x x P D H P m H dm erfc bb s ¥==ò漏报概率0111(|)1(|)1[]/2x x P D H P m H dm erfc bb s ¥-=-=-ò平均风险011001Pr (|)(|)f m R Qr Qc P D H Pc P D H =+=+=1[]{1[]}/2/2f m Qc erfc Pc erfc b b s s -+-其中b 为(1)式确定1.3只用一次观测x 来对下面两个假设作选择,0H :样本x 为零均值、方差20s 的高斯变量,1H :样本x 为零均值、方差21s 的高斯变量,且21s >20s 。
根据观测结果x ,确定判决区域0D 和1D 。
画出似然比接收机框图。
1H 为真而选择了0H 的概率如何? 解:(1)似然函数221(|)exp()2*2k k kx P x H s s p -= (k=1,0) 似然比2100220101(|)111exp[()](|)2P x H x P x H s s s s =-³L 判为1H 化简得2220101221002ln 0x s s sb s s s L³=>- (21s >20s ) 判为1H得 1:||D x b ³ 0:||D x b <0L 根据选取准则而定21exp()2bbbbs s p(2s p12s p 222lns ps=b ||1x b > |1b £则||x—bx ³0 判为1H<0 判为0H1001(|)(|)2P D H P x H dx dx bbbbb a --====òò所以得判决区域为1:||||1D x x a £> 0:||1D x a <£1.7 1.7 根据一次观测,用极大极小化检验对下面两个假设做判断根据一次观测,用极大极小化检验对下面两个假设做判断根据一次观测,用极大极小化检验对下面两个假设做判断1H :()1()x t n t =+0H :()()x t n t =设n (t )为零均值和功率为2s 的高斯过程,且00111001,1c c c c ===。