2021高考数学必考点解题方式秘籍 涂色问题 理(1)
- 格式:docx
- 大小:90.47 KB
- 文档页数:12
涂色问题解题通法定理1(直线型结构):用(2)m m ≥种颜色给如图所示的由(2)n n ≥个区域组成的直线型结构图涂色,则总的不同涂法有()11n mn L m m -=-种.证明:由分步计数原理按序号逐个涂色即可。
定理2(星型结构):用(2)m m ≥种颜色给如图所示的由(2)n n ≥个区域组成的星型结构图涂色,则总的不同涂法有()11n mn S m m -=-种.证明:由分步计数原理按序号逐个涂色即可。
定理3(环形结构):用(2)m m ≥种颜色给如图所示的由(3)n n ≥个区域组成的环形结构图涂色,则总的不同涂法有()()()111nnm n R m m =-+--种。
证明:1m m m n n n R R L -+=(m n L 中头尾不同的涂法数为mn R ,头尾相同时,头尾看作一个区域,涂法数为1m n R -),即()111n m mn n R R m m --+=-,∴()()1111n n mmn n R m R m --⎡⎤--=---⎣⎦,求通项即可 或()()1221mmmn n n R m R m R --=-+-定理4(全连通型结构):用()m m n ≥种颜色给由n 个区域组成的全连通型结构图(任何两个区域都连通,如图)涂色,则总的不同涂法有m nn m T A =种.证明:任何两个区域都连通,所以颜色各不相同。
方法应用例1。
将三种作物种植在如图所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植一种作物,不同的种植方法有 种。
(以数字作答)答:结构抽象如右图,涂法数为:()()515132255333122148642L L C ---=⨯--⨯⨯-=-=例2.某城市在中心广场建造一个花圃,花圃分为6个部分(如图)。
现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有 种。
(以数字作答)答:结构抽象如右图,涂法数为:()()()55354431311120R ⎡⎤⨯=⨯-+--=⎣⎦(先涂中间)例3。
排列组合问题之涂色问题(四个方面)
1区域涂色问题
1、根据分步计数原理,对各个区域分步涂色,这是处理区域染色问题的基本方法。
2、根据共用了多少种颜色讨论,分别计算出各种情形的种数,再用分类计数原理求出不同的涂色方法种数。
3、根据某两个不相邻区域是否同色分类讨论。
从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用分类计数原理求出不同涂色方法总数。
4、根据相间区域使用颜色分类讨论。
5、用数列递推公式解决扇形区域涂色问题。
2点涂色问题
3线段涂色问题
方法:㈠根据共用了多少颜色分类讨论。
㈡根据相对线段是否同色分类讨论。
解决线段涂色问题,要特别注意对各条线段依次涂色。
4面涂色问题。
正方体涂色问题记忆口诀1. 前言哎呀,说到正方体涂色问题,大家是不是有点摸不着头脑啊?这可不是简单的画个方块,涂上颜色那么简单。
我们得从不同的角度去看看,才能真正理解这道题。
首先,正方体有六个面,每个面可以涂上不同的颜色,想想就觉得有点眼花缭乱。
不过别担心,今天咱们就来聊聊如何记住这些涂色的诀窍,让你轻松应对这个问题,赢得满堂彩!2. 正方体的基本知识2.1 正方体的构成好啦,先简单介绍一下正方体。
正方体就像一个小盒子,有六个面,八个顶点,还有十二条边。
每个面都是正方形,大家都知道,正方形四条边都相等,角度都是90度。
所以,当我们在给正方体涂色的时候,就得考虑每一个面。
想象一下,如果你把正方体放在桌子上,那这个盒子就成了我们涂色的舞台。
2.2 涂色的原则接下来,咱们来说说涂色的原则。
涂色不是随便涂涂就好了,要有策略!比如,假设我们有三种颜色:红、蓝、绿。
涂的时候,先想好一个顺序。
比如,你可以先涂上面的面,再涂侧面,最后涂下面的面。
这样一来,涂色就不会乱了套,能让你有条不紊。
记住,要像做菜一样,先准备好材料,然后再下锅。
3. 记忆口诀的妙用3.1 口诀的魔力那么,如何记住这些涂色的步骤呢?这就要靠我们的记忆口诀了!大家听好,咱们可以用“上红、左蓝、右绿、下白”的口诀来记忆。
这样一来,涂色的时候就不会忘记了,每次看到正方体,就能立刻想起这四个方位的颜色。
是不是觉得这个口诀简直像金子一样珍贵啊?用好了,绝对能让你在涂色题上如鱼得水。
3.2 趣味游戏涂色不光是个脑筋急转弯的游戏,还是个非常有趣的挑战!想象一下,你和朋友们一起玩“涂色大比拼”,谁能在最短的时间内完成涂色,谁就能获得小礼物。
通过这种游戏,不仅能加深记忆,还能增进友谊。
谁说学习就得乏味无聊呢?只要用心,学习也可以像春风化雨,轻松愉快。
4. 总结最后,正方体涂色问题其实并不复杂,只要我们掌握了基本的知识,记住口诀,找到乐趣,学习就能变得轻松自在。
涂色问题的常见解法及策略涂色问题是指在一个图形中,用不同的颜色对其进行填充,使得相邻的区域颜色不同。
这类问题在计算机图形学、图像处理、计算机视觉等领域中都有广泛的应用。
本文将介绍涂色问题的常见解法及策略。
一、暴力枚举法暴力枚举法是最简单的涂色问题解法。
它的思路是从图形的某个点开始,依次尝试所有可能的颜色,直到找到一种合法的颜色为止。
然后再从下一个点开始重复这个过程,直到所有点都被涂色为止。
暴力枚举法的优点是简单易懂,实现起来也比较容易。
但是,它的时间复杂度非常高,随着图形的大小增加,计算时间会呈指数级增长。
因此,对于大规模的图形,暴力枚举法并不适用。
二、贪心算法贪心算法是一种基于局部最优解的算法。
在涂色问题中,贪心算法的思路是从一个点开始,选择一个合法的颜色,然后尽可能地涂满周围的区域。
这样可以保证每个点的颜色都是合法的,并且尽可能地减少颜色的数量。
贪心算法的优点是速度比较快,对于一些简单的图形,可以得到较好的结果。
但是,贪心算法并不能保证得到全局最优解,有时候会出现局部最优解与全局最优解不一致的情况。
三、回溯算法回溯算法是一种基于深度优先搜索的算法。
在涂色问题中,回溯算法的思路是从一个点开始,选择一个合法的颜色,然后递归地尝试涂色。
如果发现无法涂色,则回溯到上一个点,重新选择颜色。
回溯算法的优点是可以保证得到全局最优解,但是它的时间复杂度也比较高。
在实际应用中,需要根据具体情况进行优化,比如使用剪枝等技巧来减少搜索次数。
四、图论算法涂色问题可以转化为图论问题,从而可以使用图论算法来解决。
具体来说,可以将每个点看作图中的一个节点,将相邻的点之间连一条边。
然后,可以使用图着色算法来对图进行着色。
图着色算法有很多种,比如贪心着色算法、回溯着色算法、混合着色算法等。
这些算法都有各自的优缺点,需要根据具体情况进行选择。
总之,涂色问题是一类经典的计算机问题,有很多种解法和策略。
在实际应用中,需要根据具体情况选择合适的算法,并进行优化,以达到最好的效果。
高中数学中涂色问题的解法涂色问题是高中数学中的一类比较复杂而且重要的问题,高考中多次涉及。
这种题目根据条件可分为颜色必须用完和不必用完两种。
根据需要涂色的图形可分为条状结构和环状结构两种。
解决问题的方法也有依次去涂和按所用颜色种数分类讨论两种。
作题时只要弄清条件和图形的结构,再把每种结构下解决问题的方法弄清楚,就可以了。
下面我们就用历年高考题中的涂色问题作为例子。
一、条状结构例1:将3种作物种植在5 块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,共有多少种种植方法?分析:从数学角度上来看,这是一个条状结构且颜色必须用完的问题。
我们先用依次来涂的方法,再用所用颜色种数来讨论的方法。
解1:只管从左到右依次来种。
若三种作物可种完可不种完共有3·2·2·2·2=48 种方法,其中只种两种作物共有C23·2=6种方法,所以共有48-6=42 种方法。
解2:三种作物必须种完,那就不必讨论颜色种数。
(1)把这五块地分为3,1,1三组。
①③⑤必为一组,所以地块分组只有一种方法,再种上三种作物共有A33=6 种方法。
(2)把这五块地分为2,2,1 三组。
①③同组时,②④也可和⑤同组,有两种方法,同理①④同组时也有两种方法,①⑤同组时有1 种方法,①自己一组时有1 种方法,所以地块分组共有6 种方法,再种有6A33种方法。
由(1),(2)知共有42种方法。
可见:条状结构若不按颜色分类,只管依次去涂即可,非常简单,只要考虑清楚颜色必须用完还是可不用完即可。
若按颜色分类,颜色有几种就把图形中的区域分为几组,再往每组涂色即可,结果即是分组的办法数与Amn的积。
其中n 为全部可用颜色种数,m 为实际使用颜色种数。
变式:用5种不同的颜色给图中A,B,C,D 四个区域涂色,规定每个区域只能涂一种颜色,相邻区域颜色不同,求有多少种不同的涂色方法?分析:因为D 区域和其他三区域都相邻,A 和C 又不相邻,所以把D 涂完后,就是条状结构的问题。
25二、高考数学中涂色问题的常见解法及策略 与涂色问题有关的试题新颖有趣 , 近年已经在高考题中出 现,其中包含着丰富的数学思想。
解决涂色问题方法技巧性强 且灵活多变,因而这类问题有利于培养学生的创新思维能力、 分析问题与观察问题的能力,有利于开发学生的智力。
本文拟 总结涂色问题的常见类型及求解方法 一. 区域涂色问题 1、 根据分步计数原理,对各个区域分步涂色,这是处理 染色问题的基本方法。
例1、用 5 种不同的颜色给图中标①、②、③、④的各部分 涂色,每部分只涂一种颜色,相邻部分涂不同颜色, 则不同的涂色方法有多少种?现给地图着色,要求相邻区域不得使用同一颜色,现有 4 种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用 3 种颜色1) 当先用三种颜色时,区域 2与 4必须同色,2) 区域 3与 5必须同色,故有 A 43种;3) 当用四种颜色时,若区域 2与 4同色,4) 则区域 3与 5不同色,有 A 44种;若区域 3与 5同色,则区域 2 与 4 不同色,有 A 44种,故用四种颜色时共 有2A 44 种。
由加法原理可知满足题意的着色方法共有 分析:先给①号区域涂 ③ 法,接着给③号涂色方法有 3 种③,由于④号④与①、②不相邻, 因此④号有 4 种涂法,根②据分步计数原理,不同的涂色方法有 5 4 3 4 240 根据共用了多少种颜色讨论, 分别计算出各种情形的 种数,再用加法原理求出不同的涂色方法种数。
例 2 、四种不同的颜色涂在如图所示的 6 个区域,且相邻 两个区域不能同色。
分析:依题意只能选用 4 种颜色, ②与⑤同色、 ③与⑤同色、 ②与⑤同色、③与⑤同色、 ②与④同色、 2、 5 种方③法,再给② 号涂色有 4 种方 A 43+2 A 44=24+2 24=723、 根据某两个不相邻区域是否同色分类讨论, 从某两个 不相邻区域同色与不同色入手,分别计算出两种情形的 种数,再用加法原理求出不同涂色方法总数。
高中数学涂色问题常用技巧公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-高中数学涂色问题常用技巧王忠全涂色问题是一个复杂而有趣的问题,高考中不时出现,处理涂色问题常用的方法是两个计数原理——分类计数和分步计数原理;常用的数学思想是等价转换,即化归思想;常见问题有:区域涂色、点涂色和线段涂色、面涂色;常考虑的问题是颜色是否要用完。
例1、用四种颜色给如下区域涂色,要求一空涂一色,邻空不同色,有多少种涂法有2种涂法;涂1,2有44A=24例2同色,有多少种涂法法1:1)2)恰用四色:同例1,有24种涂法。
共有24+48=72种涂法。
法2:1有4种涂法;2有3种涂法;3有2种涂法;4有3种涂法;共72种涂法。
评析:由上述解法知,颜色用完和可供选择是两回事,做题时一定要区分。
一、 区域涂色问题(一)、圆形区域涂色:处理圆形区域涂色大致有三种方法:间空涂色法;公式法。
例3、用四种颜色给如下区域涂色,用四种颜色给如下区域涂色,要求一空涂一色,邻空不同色,有多少种涂法一、 间空涂色法;法1、用空分类 选择1,31)1,3同色,则1,3有14C 种方法,2有13C 可能与1,3同色,但可与2同色,分两类:4与2同色,只用了两种颜色,5有2种方法;4与2不同色,则4有2种方法,5有2种涂法,此时,共有72)222(34=⨯+⨯种方法。
2)1,3不同色,则1,3有24A 种方法,2有12C 种方法,4与1同色,5有3种方法;4与2不同色,则4有2种涂法,5有2种涂法,共有)322(212+⨯⨯⨯=168种方法,综上所述,共有72+168=240种涂法。
法2:公式法共有35+3⨯(-1)5=240种方法。
定理:用m 种颜色(可选择)填圆形区域的n 个空,一空涂一色,邻空不同色的涂法有)1()1()1(-⋅-+-m m n n 种。
证明:如图,设有a n 种不同涂法。
不妨把之剪开,化为矩形区域,共有1)1(--n m m 种涂法,但区域1、n 不能涂同色,把1、n 捆绑成一个空,有a n-1种涂法,则其中)1(22-==m m A a m,设1,)1(2-=-=m mb m a b nn n 则 令()r b m r b n n ---=-11,则r=1, 可知,。
涂色问题的常见解法及策略涂色问题是数学中一个常见的问题,涉及到给定一定数量的区域,并使用有限数量的颜色对这些区域进行染色。
在这篇文章中,我将介绍一些常见的解法和策略,以及我对涂色问题的观点和理解。
在解决涂色问题时,最基本的策略之一是使用“回溯法”。
回溯法是一种通过不断尝试不同的选择,并撤销不合适的选择的方法。
在涂色问题中,我们可以从一个区域开始,选择一个颜色将其染色,然后递归地对相邻的区域进行染色。
如果在染色过程中发现无法继续染色,则回溯到上一个选择,并选择另一种颜色。
另一种常见的解法是使用“图论”的方法。
将涂色问题抽象成图论中的图模型,其中图的每个节点代表一个区域,边表示两个相邻区域之间的连接。
然后,我们可以使用图染色算法,如“图的着色问题算法”来解决涂色问题。
这些算法使用一系列的规则和策略来确定每个节点应该染哪种颜色,以确保相邻节点不具有相同的颜色。
除了这些基本的解法之外,还有许多高级的策略可供选择。
例如,“最小割算法”可以将复杂的涂色问题转化为图的最小割问题,并使用最小割算法来解决。
此外,还可以使用“启发式搜索”技术,通过估计每个选择的优先级来指导搜索过程。
这些策略通常需要更多的计算资源和算法知识,但在处理复杂的问题时可能会获得更好的结果。
从简单到复杂,由浅入深的方式来探讨涂色问题,可以帮助我们建立对问题的深刻理解。
我们可以从最基本的回溯法开始,逐渐引入图论的概念和算法。
了解不同解法的优缺点,并能够根据问题的具体情况选择合适的解法,这对于解决涂色问题至关重要。
总结起来,涂色问题是一个常见的数学问题,涉及到给定一定数量的区域,并使用有限数量的颜色对这些区域进行染色。
常见的解法和策略包括回溯法、图论算法、最小割算法和启发式搜索技术。
通过从简单到复杂的方式来探讨涂色问题,我们可以建立对问题的深刻理解,并能够灵活选择适合的解法。
二、高考数学中涂色问题的常见解法及策略与涂色问题有关的试题新颖有趣,近年已经在高考题中出现,其中包含着丰富的数学思想。
解决涂色问题方法技巧性强且灵活多变,因而这类问题有利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。
本文拟总结涂色问题的常见类型及求解方法1、 一.区域涂色问题根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。
例1、 用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240⨯⨯⨯=2、 根据共用了多少种颜色讨论,分别计算出各种情形的种数,再用加法原理求出不同的涂色方法种数。
例2、四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。
分析:依题意只能选用4种颜色,要分四类:(1)②与⑤同色、④与⑥同色,则有44A ;(2)③与⑤同色、④与⑥同色,则有44A ;(3)②与⑤同色、③与⑥同色,则有44A ;(4)③与⑤同色、② 与④同色,则有44A ; (5)②与④同色、③与⑥同色,则有44A ;所以根据加法原理得涂色方法总数为544A =120 例3、如图所示,一个地区分为5个行政区域, 现给地图着色,要求相邻区域不得使用同一颜色, 现有4种颜色可供选择,则不同的着方法共有多少种 分析:依题意至少要用3种颜色1) 当先用三种颜色时,区域2与4必须同色,2) 区域3与5必须同色,故有34A 种;3) 当用四种颜色时,若区域2与4同色,4) 则区域3与5不同色,有44A 种;若区域3与5同色,则区域2与4不同色,有44A 种,故用四种颜色时共有244A 种。
由加法原理可知满足题意的着色方法共有34A +244A =24+2⨯24=723、 根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用加法原理求出不同涂色方法总数。
25二、高考数学中涂色问题的常见解法及策略 与涂色问题有关的试题新颖有趣 , 近年已经在高考题中出 现,其中包含着丰富的数学思想。
解决涂色问题方法技巧性强 且灵活多变,因而这类问题有利于培养学生的创新思维能力、 分析问题与观察问题的能力,有利于开发学生的智力。
本文拟 总结涂色问题的常见类型及求解方法 一. 区域涂色问题 1、 根据分步计数原理,对各个区域分步涂色,这是处理 染色问题的基本方法。
例1、用 5 种不同的颜色给图中标①、②、③、④的各部分 涂色,每部分只涂一种颜色,相邻部分涂不同颜色, 则不同的涂色方法有多少种?现给地图着色,要求相邻区域不得使用同一颜色,现有 4 种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用 3 种颜色1) 当先用三种颜色时,区域 2与 4必须同色,2) 区域 3与 5必须同色,故有 A 43种;3) 当用四种颜色时,若区域 2与 4同色,4) 则区域 3与 5不同色,有 A 44种;若区域 3与 5同色,则区域 2 与 4 不同色,有 A 44种,故用四种颜色时共 有2A 44 种。
由加法原理可知满足题意的着色方法共有 分析:先给①号区域涂 ③ 法,接着给③号涂色方法有 3 种③,由于④号④与①、②不相邻, 因此④号有 4 种涂法,根②据分步计数原理,不同的涂色方法有 5 4 3 4 240 根据共用了多少种颜色讨论, 分别计算出各种情形的 种数,再用加法原理求出不同的涂色方法种数。
例 2 、四种不同的颜色涂在如图所示的 6 个区域,且相邻 两个区域不能同色。
分析:依题意只能选用 4 种颜色, ②与⑤同色、 ③与⑤同色、 ②与⑤同色、③与⑤同色、 ②与④同色、 2、 5 种方③法,再给② 号涂色有 4 种方 A 43+2 A 44=24+2 24=723、 根据某两个不相邻区域是否同色分类讨论, 从某两个 不相邻区域同色与不同色入手,分别计算出两种情形的 种数,再用加法原理求出不同涂色方法总数。
高考中的涂色问题
1、 用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种?
2、四种不同的颜色涂在如图所示的6
个区域,且相邻两个区域不能同色。
3、如图所示,一个地区分为5个行政区域,
现给地图着色,要求相邻区域不得使用同一颜色,
现有4种颜色可供选择,则不同的着方法共有多少种?
3、四棱锥P A B C D -,用
4种不同的颜色涂在四棱锥的各个面上,要求相邻不同色,有多少种涂法?
⇒
① ②③ ④ ⑤ ⑥ B C
4、如图1,用四种不同颜色给图中的A 、B 、C 、D 、E 、F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色。
则不同的涂色方法共有________种.
5、如图,用6种不同颜色给图中的4个格子涂色,每个格子只涂一种颜色,要求最多使用3种颜色且相邻的两个格子的颜色不同,则不同的涂色方法有多少种?
图2F E D C
B A。
涂色问题解题指南文/夏振雄一、区域涂色问题解答区域涂色问题,常采用以下三种方法:一是根据分步计数原理,对各个区域分步涂色;二是根据共用了多少种颜色分类讨论;三是根据相间区域使用颜色的种数分类.以上三种方法有时也会结合起来使用.例1 如图1,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有种.(用数字作答)解析 (解法一)根据相间区域使用颜色的种数分类.(1)当区域1与3同色时,区域1、3有种,区域2、4各有种,共有种;(2)当区域1与3不同色时,区域1、3有种,区域2有种,区域4与区域1相同或区域2相同,于是共有种.综上可知,不同的涂色方法共有150+240=390种.(解法二)根据共用了多少种颜色分类讨论.(1)当用2种颜色时,有种方法.(2)当用3种颜色时,先选颜色,有种;四个区域必有两个同色,区域1与区域3同色,或区域1与区域4同色,或区域2与区域4同色,每一类都有种方法,故用3种颜色时共有种方法.由加法原理可知,不同的涂色方法共有+种.例2 如图2,一环形花坛分成四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为A.96B.84C.60D.48解析根据相间区域使用颜色的种数分类.当A、C同花时,有种;当A、C不同花时,有种.故不同的种法共有36+48=84种.选B.例3 如图3所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?解析据题意可知至少要用3种颜色,根据共用了多少种颜色分类讨论.(1)当先用3种颜色时,区域2与区域4必须同色,区域3与区域5必须同色,故有种方法.(2)当用4种颜色时,若区域2与区域4同色,则区域3与区域5不同色,有种方法;若区域3与区域5同色,则区域2与区域4不同色,有种方法,故用4种颜色时共有2种方法.由加法原理可知,满足题意的着色方法共有+2=24+224=72种.二、点的涂色问题解答点的涂色问题的常用方法有:(1)根据共用了多少种颜色分类讨论;(2)根据相对顶点是否同色分类讨论;(3)空间问题平面化,将点的涂色问题转化为区域涂色问题求解.例4 如图4,在正五边形ABCDE中,若把顶点染上红、黄、绿三种颜色中的一种,使得相邻顶点所染颜色不同,则不同的染色方法共有种.解析 (1)当A与C同色或A与D同色时,有种;(2)当A与C、D都不同色时,有种.故不同的染色方法共有24+6=30种.三、线段涂色问题解答线段涂色问题的主要方法有:(1)根据共用了多少种颜色分类讨论;(2)根据相对线段是否同色分类讨论.例5 用红、黃、蓝、白四种颜色涂矩形ABCD的四条边,每条边只涂一种颜色,且使相邻两边涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?解析 (1)使用四种颜色涂色,共有种方法;(2)使用三种颜色涂色,则必须将一组对边染成同色,共有种方法;(3)使用两种颜色涂色时,则两组对边必须分别同色,共有种方法.故不同的涂色方法共有种.四、面的涂色问题例6 如图5所示,已知四棱锥,从给定的4种不同颜色中选用若干种颜色涂在四棱锥的各个面上,要求相邻不同色,有多少种涂法?解析这种面的涂色问题可转化为区域涂色问题来求解.如图6所示,区域1、2、3、4相当于四个侧面,区域5相当于底面,根据共用多少种颜色进行分类:(1)若只用3种颜色,即1与3同色、2与4同色,则有种方法;(2)若用4种颜色,则1与3、2与4两组中只能有一组同色,此时有种方法.故满足题意的涂色方法数为.【高考预测题】1.如图7,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一种颜色,现有4种颜色可供选择,则不同的着色方法共有种.(用数字作答)2.在如图8所示的四个区域内,每个区域涂一种颜色,相邻两个区域涂不同的颜色,有四种颜色可选,则共有种不同的涂色方法.3.某城市在中心广场建造一个花圃,花圃分为6个部分,如图9所示.现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,则不同的栽种方法有种.(用数字作答)参考答案 1.72 2.84 3.120????????。
解决排列组合中涂色问题的常见方法及策略与涂色问题有关的试题新颖有趣,其中包含着丰富的数学思想。
解决涂色问题方法技巧性强且灵活多变,故这类问题的利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。
本文拟总结涂色问题的常见类型及求解方法。
一、区域涂色问题1、 根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。
例1、 用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种?分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240⨯⨯⨯=2、 根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理求出不同的涂色方法种数。
例2、(2003江苏卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。
分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有44A ; (2)③与⑤同色、④与⑥同色,则有44A ; (3)②与⑤同色、③与⑥同色,则有44A ;(4)③与⑤同色、② 与④同色,则有44A ;(5)②与④同色、③与⑥同色,则有44A ; 所以根据加法原理得涂色方法总数为544A =120例3、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色1) 当先用三种颜色时,区域2与4必须同色, 2) 区域3与5必须同色,故有34A 种; 3) 当用四种颜色时,若区域2与4同色,4) 则区域3与5不同色,有44A 种;若区域3与5同色,则区域2与4不同色,有44A 种,故用四种颜色时共有244A 种。
由加法原理可知满足题意的着色方法共有34A +244A =24+2⨯24=723、 根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用加法原理求出不同涂色方法总数。
三个面都染色的在8个顶点处,三个面都染色的在12条棱的中间段(去掉每条横两头的各一个),一面有色的在各个面的中央,没有着色的在长方体的中在。
对于一个n×n×n的正方体,其涂色情况如下:三面涂色的:8块二面涂色的:(n-2)×12一面涂色的:(n-2)×(n-2)×6对于一个a×b×c的长方体,其涂色情况如下:三面涂色的:8块二面涂色的:[(a-2)+(c-2)]×4一面涂色的:[(a-2)×(b-2)+(a-2)×(c-2)+(b-2)×(c-2)]×2正方体中涂色问题的解题技巧在人教版小学五年级下期教学《长方体和正方体的表面积》后,一位同学拿来了一道题来问我:把一个棱长是6厘米的正方体表面涂成红色,然后把它截成棱长1厘米的小正方体,请观察有二个面涂成红色的正方体有多少个?我觉得本题很有意思,如果运用得好,对学生的动手能力、思维发展能力,对激发学生的学习兴趣会取得很好的效果。
对于这道题,我没有及时给学生讲解方法,而是专门用了一节课的时间,让全班同学一起来探讨这类题的解决方法。
我充分利用学生手中的小正方体(我在上长方体和正方体的认识时,每个学生都做了2个边长1厘米的小正方体),首先让学生用小正方体拼成一个较大的小正方体,用了8个拼成边长2厘米的正方体,然后给它的表面涂色,再截开成8个小正方体,学生很容易观察出一面涂色没有,两面涂色没有,三面涂色8个;再接着拼,用了27个拼成边长3厘米的正方体,涂色,再截开,归类出一面涂色6个,两面涂色12,三面涂色8个,没有涂色27-6-12-8=1个;第三次拼,用了64个拼成边长4厘米的正方体,涂色,截开,观察出一面涂色24个,两面涂色24个,三面涂色8个,没有涂色64-24-24-8=8个;我接着用课件演示125个涂色正方体截成小正方体,然后归类,观察出一面涂色54个,两面涂色36个,三面涂色8个,没有涂色125-54-36-8=27个……在实际解题中,我们的学生如果每种情况都这样去分析,显得太麻烦,我为了充分调动学生的积极性,激发学生的学习兴趣,让学生主动探究出有没有更好的方法或规律来解决这类题型,我出示了课件:把一个涂色的棱长3厘米的正方体截成棱长1厘米的小正方体,你能不能不截开直接观察出涂色的情况?学生通过小组合作探究并与展开激烈的讨论,许多学生碰撞出思维的火花,很快发现:①三面涂色都有8个(8个顶点);②一面涂色的原正方体每个面上有1个,共1×6=6个;③二面涂色的原正方体每条棱上有1个,共1×12=12个;④没有涂色就是最中间的1个。
涂色问题解题技巧介绍如下:
1.确定涂色方案:在解决涂色问题之前,需要明确涂色的方案,
例如每个对象只能染一种颜色或染多种颜色。
2.列出约束条件:在涂色问题中,通常存在一些约束条件,如相
邻的对象不能染相同的颜色等。
列出这些约束条件有助于确定可行的方案。
3.利用图形表示问题:将对象和约束条件用图形表示出来,可以
帮助理解问题,找到规律和解题思路。
4.利用递归算法:对于较为复杂的涂色问题,可以采用递归算法,
逐步将问题分解为简单的子问题,最终得到解决方案。
5.利用数学模型:对于一些涂色问题,可以建立数学模型,如图
论模型、矩阵模型等,通过数学方法解决问题。
6.尝试不同的方案:对于复杂的涂色问题,可能存在多个可行的
方案,需要尝试不同的方案,找到最优解。
总之,解决涂色问题需要综合运用数学、图形、逻辑等多种方法,找到最优的解决方案。
专题6 染色问题例1.如图所示的几何体由三棱锥P ABC -与三棱柱111ABC A B C -组合而成,现用3种不同颜色对这个几何体的表面涂色(底面111A B C 不涂色),要求相邻的面均不同色,则不同的涂色方案共有( )A .6种B .9种C .12种D .36种【解析】 先涂三棱锥P ABC -的三个侧面,有1113216C C C =种情况,然后涂三棱柱的三个侧面,有1112112C C C =种情况,共有6212⨯=种不同的涂法.故选:C .例2.如图,用四种不同的颜色给图中的A ,B ,C ,D ,E ,F ,G 七个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有( )A .192种B .336种C .600种D .624种【解析】由题意,点E ,F ,G 分别有4,3,2种涂法,(1)当A 与F 相同时,A 有1种涂色方法,此时B 有2种涂色方法,①若C 与F 相同,则C 有1种涂色方法,此时D 有3种涂色方法;②若C 与F 不同,则D 有2种涂色方法.故此时共有()432121312240⨯⨯⨯⨯⨯⨯+⨯=种涂色方法.(2)当A 与G 相同时,A 有1种涂色方法,①若C 与F 相同,则C 有1种涂色方法,此时B 有2种涂色方法,D 有2种涂色方法;②若C 与F 不同,则C 有2种涂色方法,此时B 有2种涂色方法,D 有1种涂色方法.故此时共有()4321122221192⨯⨯⨯⨯⨯⨯+⨯⨯=种涂色方法.(3)当A 既不同于F 又不同于G 时,A 有1种涂色方法.①若B 与F 相同,则C 与A 相同时,D 有2种涂色方法,C 与A 不同时,C 和D 均只有1种涂色方法; ②若B 与F 不同,则B 有1种涂色方法,(i )若C 与F 相同,则C 有1种涂色方法,此时D 有2种涂色方法;(ii )若C 与F 不同,则必与A 相同,C 有1种涂色方法,此时D 有2种涂色方法.故此时共有()()43211121111212168⨯⨯⨯⨯⨯⨯+⨯+⨯⨯+⨯=⎡⎤⎣⎦种涂色方法.综上,共有240192168600++=种涂色方法.故选:C.例3.现有6种不同的颜色,给图中的6个区域涂色,要求相邻区域不同色,则不同的涂色方法共有( )A .720种B .1440种C .2880种D .4320种【解析】根据题意分步完成任务:第一步:完成3号区域:从6种颜色中选1种涂色,有6种不同方法;第二步:完成1号区域:从除去3号区域的1种颜色后剩下的5种颜色中选1种涂色,有5种不同方法;第三步:完成4号区域:从除去3、1号区域的2种颜色后剩下的4种颜色中选1种涂色,有4种不同方法;第四步:完成2号区域:从除去3、1、4号区域的3种颜色后剩下的3种颜色中选1种涂色,有3种不同方法;第五步:完成5号区域:从除去1、2号区域的2种颜色后剩下的4种颜色中选1种涂色,有4种不同方法;第六步:完成6号区域:从除去1、2、5号区域的3种颜色后剩下的3种颜色中选1种涂色,有3种不同方法;⨯⨯⨯⨯⨯=种.所以不同的涂色方法:6543434320故选:D.例4.将5种不同的花卉种植在如图所示的四个区域中,每个区域种植一种花卉,且相邻区域花卉不同,则不同的种植方法种数是().A.420 B.180 C.64 D.25【解析】由题意,由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行区域A有5种涂法,B有4种涂法,⨯⨯⨯=种,A,D不同色,D有3种,C有2种涂法,有5432120⨯⨯=种,A,D同色,D有1种涂法,C有3种涂法,有54360共有180种不同的涂色方案.故选:B .例5.用红、黄、蓝、绿、橙五种不同颜色给如图所示的5块区域A 、B 、C 、D 、E 涂色,要求同一区域用同一种颜色,有共公边的区域使用不同颜色,则共有涂色方法( )A .120种B .720种C .840种D .960种【解析】 法一:A 有5种颜色可选,B 有4种颜色可选,D 有3种颜色可选,若CA 同色,E 有4种颜色可选;若CB 同色,E 有4种颜色可选;若C 与A 、B 都不同色,则C 有2种颜色可选,此时E 有4种颜色可选,故共有()5434424960⨯⨯⨯++⨯=种.法二:当使用5种颜色时,有55120A =种涂色方法;当使用4种颜色时,必有两块区域同色,可以是AC ,BC ,AE ,BE ,CE ,共有455600A =种涂色方法;当使用3种颜色时,只能是AC 同色且BE 同色,AE 同色且BC 同色,ACE 同色,BCE 同色,共有354240A =种涂色方法,∴共有120600240960++=种涂色方法.故选:D.例6.如图,某伞厂生产的太阳伞的伞篷是由太阳光的七种颜色组成,七种颜色分别涂在伞篷的八个区域内,且恰有一种颜色涂在相对区域内,则不同颜色图案的此类太阳伞最多有( ).A.40320种B.5040种C.20160种D.2520种【解析】先从7种颜色中任意选择一种,涂在相对的区域内,有177C=种方法,再将剩余的6种颜色全部涂在剩余的6个区域内,共有66A种方法,由于图形是轴对称图形,所以上述方法正好重复一次,所以不同的涂色方法,共有66725202A⨯=种不同的涂法.故选:D.例7.如图所示,将四棱锥S-ABCD的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种色可供使用,则不同的染色方法种数为()A.240 B.360 C.420 D.960【解析】由题设,四棱锥S-ABCD的顶点S、A、B所染的颜色互不相同,它们共有54360⨯⨯=种染色方法.设5种颜色为1,2,3,4,5,当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法,若C染5,则D可染3或4,有2种染法.可见,当S 、A 、B 已染好时,C 、D 还有7种染法,故不同的染色方法有607420⨯=(种). 故选:C例8.如图所示,将3333⨯方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻两个小方格的颜色不同,称他们的公共边为“分割边”,则分割边条数的最小值为( )A .33B .56C .64D .78【解析】 记分隔边的条数为L ,首先将方格按照按图分三个区域,分别染成三种颜色,粗线上均为分隔边,此时共有56条分隔边,即56L =,其次证明:56L ≥,将将方格的行从上至下依次记为1233,,,A A A ,列从左至右依次记为1233,,B B B ,行i A 中方格出现的颜色数记为()i n A ,列i B 中方格出现的颜色个数记为()i n B ,三种颜色分别记为123,,c c c ,对于一种颜色j c ,设()j n c 为含有j c 色方格的行数与列数之和,定义当i A 行含有j c 色方格时,(),1i j A c δ=,否则(),0i j A c δ=,类似的定义(),i j B c δ,所以()()()()()()()3333331111,,i i i ji j j i i i j n A n B A c B c n c δδ====⎫+=+=⎪⎭∑∑∑∑, 由于染j c 色的格有21333633⨯=个,设含有j c 色方格的行有a 个,列有b 个,则j c 色的方格一定再这个a行和b 列的交叉方格中,从而363ab ≥,所以()()3839(1,2,3)j j n c a b n c j =+≥≥>⇒≥=①,由于在行i A 中有()i n A 种颜色的方格,于是至少有()1i n A -条分隔边,类似的,在列i B 中有()i n B 种颜色的方格,于是至少有()1i n B -条分隔边,则()()()()()()()3333113311166i i i i i i i L n A n B n A n B ===≥-+-=+-∑∑∑② ()3166j j n c ==-∑③下面分两种情形讨论,(1)有一行或一列所有方格同色,不妨设有一行均为1c 色,则方格的33列均含有1c 的方格,又1c 色的方格有363个,故至少有11行有1c 色方格,于是()1113344n c ≥+=④由①③④得()()()123664439396656L n c n c n c ≥++-≥++-=,(2)没有一行也没有一列的所有方格同色,则对任意133i ≤≤均有()()2,2i i n A n B ≥≥,从而,由式②知:()()()33166334666656i i i L n A n B =≥+-≥⨯-=>∑,综上,分隔边条数的最小值为56.故选:B.例9.如图给三棱柱ABC DEF -的顶点染色,定义由同一条棱连接的两个顶点叫相邻顶点,规定相邻顶点不得使用同一种颜色,现有4种颜色可供选择,则不同的染色方法有_________________.【解析】首先先给顶点,,A B C 染色,有3424A =种方法,再给顶点D 染色,①若它和点B 染同一种颜色,点E 和点C 染相同颜色,点F 就有2种方法,若点E 和点C 染不同颜色,则点E 有2种方法,点F 也有1种方法,则,,D E F 的染色方法一共有2214+⨯=种方法,②若点D 和点B 染不同颜色,且与点C 颜色不同,则点D 有1种方法,点E 与点C 颜色不同,则点E 有1种方法,则点F 有1种方法,此时有1种方法;若最后E 与C 相同,则F 有2种方法,则共有2种方法;点D 与点C 颜色相同,则点D 有1种方法,则点E 有2种方法,则点F 有2种方法,共有224⨯=种方法,所以点D 和点B 染不同,颜色共有1247++=种方法,所以点,,D E F 的染色方法一共有4711+=种,所以共有2411264⨯=种方法.故答案为:264例10.现用五种不同的颜色,要对如图中的四个部分进行着色,要求公共边的两块不能用同一种颜色,共有__________种不同着色方法【解析】先排I ,有5种方法;然后排II,IV ,最后排III :①当II,IV 相同时,方法有44⨯种,故方法数有54480⨯⨯=种.②当II,IV 不同时,方法有433⨯⨯种,故方法数有5433180⨯⨯⨯=种.综上所述,不同的着色方法数有80180260+=种.故答案为:260例11.如图所示的五个区域中,中心区E 域是一幅图画,现要求在其余四个区域中涂色.........,有四种颜色可供选择.要求每个区域只涂一种颜色且相邻区域所涂颜色不同,则不同的涂色方法种数为______.【解析】分三种情况:(1)用四种颜色涂色,有4424A =种涂法;(2)用三种颜色涂色,有34248A =种涂法;(3)用两种颜色涂色,有2412A =种涂法;所以共有涂色方法24481284++=.故答案为:84例12.从红、黄、蓝、黑四种颜色中选出3种颜色,给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数是________.【解析】从红、黄、蓝、黑四种颜色中选出3种颜色有4种选法.因为每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,分两类:一类是,前三个圆用3种颜色,有336A =种方法,后3个圆也有3种颜色,有11224C C =种方法,此时不同方法有6×4=24方法; 二类是,前3个圆2种颜色,后3个圆2种颜色,共有11326C C =方法.综上可知,所有的涂法共有()4246120⨯+=种方法.故答案为: 120例13.如图一个正方形花圃被分成5份.若给这5个部分种植花,要求相邻两部分种植不同颜色的花,已知现有红、黄、蓝、绿4种颜色不同的花,则不同的种植方法有_________种【解析】先对E 部分种植,有4种不同的种植方法;再对A 部分种植,又3种不同的种植方法;对C 部分种植进行分类:①若与A 相同,D 有2种不同的种植方法,B 有2种不同的种植方法,共有432248⨯⨯⨯=(种), ②若与A 不同,C 有2种不同的种植方法,D 有1种不同的种植方法,B 有1种不同的种植方法, 共有4321124⨯⨯⨯⨯=(种),综上所述,共有72种种植方法.故答案为:72.例14.现有五种不同的颜色,要对图形中的四个部分进行着色,要求有公共边的两块不能用同一种颜色,不同的涂色方法有_______种.【解析】依题意,I、II、III区域有共同边颜色互不相同,按I、II、III、IV顺序着色,则区域I有5种着色方法,区域II有4种着色方法,区域III有3种着色方法,IV只与II、III相邻,因此区域IV有3种着色方法,根据分步乘法计数原理,不同的着色方法种数为5433180⨯⨯⨯=.故答案为:180例15.现将如图所示的5个小正方形涂上红、黄两种颜色,其中3个涂红色,2个涂黄色,若恰有两个相邻的小正方形涂红色,则不同的涂法共有__________种(用数字作答).【解析】当涂红色两个相邻的小正方形在两端时是有12224A A=,当涂红色两个相邻的小正方形在不在两端时是有122A=,则不同的涂法种数共有426+=种.故答案为:6.例16.四色猜想是近代数学难题之一,四色猜想的内容是:“任何一张地图最多用四种颜色就能使具有共同边界的国家着上不同的颜色”,如图,一张地图被分成了五个区域,每个区域只使用一种颜色,现有4种颜色可供选择(四种颜色不一定用完),则满足四色猜想的不同涂色种数为__________【解析】设五个区域分别为,,,,A B C D E ,依题意由公共边的两个区域颜色不同,用四种颜色进行涂色则有两个区域颜色相同,可以是A 与C ,A 与E ,B 与E 同色,有涂色方法44372A =;或用三种颜色涂色,则有2组颜色同色,为A 与C 同色,B 与E 同色,有涂色方法3424A =,根据分类加法原理,共有涂色方法722496+=.故答案为:96.例17.如图,将标号为1,2,3,4,5的五块区域染上红、黄、绿三种颜色中的一种,使得相邻区域(有公共边)的颜色不同,则不同的染色方法有______种.【解析】对于1,有三种颜色可以安排;若2和3颜色相同,有两种安排方法,4有两种安排,5有一种安排,此时共有322112⨯⨯⨯=;若2和3颜色不同,则2有两种,3有一种.当5和2相同时,4有两种;当5和2不同,则4有一种,此时共有()322118⨯⨯+=⎡⎤⎣⎦,综上可知,共有121830+=种染色方法.故答案为:30.例18.某城市在中心广场建造一个花圃,花圃分为6个部分.现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,则不同的栽种方法有______种.(用数字作答)【解析】由题意,6个部分.栽种4种不同颜色的花,必有2组颜色相同的花,若2、5同色,则3、6同色或4、6同色,所以共有44248A =种栽种方法;若2、4同色,则3、6同色,所以共有4424A =种栽种方法;若3、5同色,则2、4同色或4、6同色,所以共有44248A =种栽种方法;所以共有482448120++=种栽种方法.故答案为:120例19.给图中A ,B ,C ,D ,E ,F 六个区域进行染色,每个区域只染一种颜色,且相邻的区域不同色.若有4种颜色可供选择,则共有___种不同的染色方案.【解析】解:要完成给图中A 、B 、C 、D 、E 、F 六个区域进行染色,染色方法可分两类,第一类是仅用三种颜色染色,即AF 同色,BD 同色,CE 同色,则从四种颜色中取三种颜色有344C =种取法,三种颜色染三个区域有336A =种染法,共4624⨯=种染法;第二类是用四种颜色染色,即AF ,BD ,CE 中有一组不同色,则有3种方案(AF 不同色或BD 不同色或CE 不同色),先从四种颜色中取两种染同色区有2412A =种染法,剩余两种染在不同色区有2种染法,共有312272⨯⨯=种染法.∴由分类加法原理得总的染色种数为247296+=种.故答案为:96.20.如图,用4种不同的颜色对图中5个区域涂色( 4种颜色全部使用 ),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色方法有 种.(用数字作答)例21.给如图染色,满足条件每个小方格染一种颜色,有公共边的小方格颜色不能相同,则用4种颜色染色的方案有__种,用5种颜色染色的方案共有__种.【解析】(1)根据题意,若用4种颜色染色时,先对A 、B 区域染色有1143C C 种,再对C 染色:①当C 同B 时,有1122C C 种; ②当C 同A 时,有111322C C C +种;③当C 不同A 、B 时,有111232()C C C +种; 综合①②③共有11111111114322322232[()]252C C C C C C C C C C ++++=种; (2)根据题意,若用5种颜色染色时,先对A 、B 区域染色有1154C C 种,再对C 染色:①当C 同B 时,有1133C C 种;②当C 同A 时,有111433C C C +种;③当C 不同A 、B 时,有11113423()C C C C +种; 综合①②③,共有1111111111154334333423[()]1040C C C C C C C C C C C ++++=种.故答案为:252;1040.例22.如图,用四种不同的颜色给三棱柱ABC A B C '''-的六个顶点涂色,要求每个点涂一种颜色.若每个底面的顶点涂色所使用的颜色不相同,则不同的涂色方法共有________种;若每条棱的两个端点涂不同的颜色,则不同的涂色方法共有________种.【解析】(1)由题得每个底面的顶点涂色所使用的颜色不相同,则不同的涂色方法共有3344576A A =; (2)若B ',A ',A ,C 用四种颜色,则有4424A =;若B ',A ',A ,C 用三种颜色,则有33442222192A A ⨯⨯+⨯⨯=;若B ',A ',A ,C 用两种颜色,则有242248A ⨯⨯=.所以共有2419248++=264种.故答案为:①576;②264.。
高中数学涂色问题常用技巧王忠全涂色问题是一个复杂而有趣的问题,高考中不时出现,处理涂色问题常用的方法是两个计数原理——分类计数和分步计数原理;常用的数学思想是等价转换,即化归思想;常见问题有:区域涂色、点涂色和线段涂色、面涂色;常考虑的问题是颜色是否要用完;例1、 用四种颜色给如下区域涂色,要求一空涂一色,邻空不同色,有多少种涂法解析:按题意,颜色要用完,1有4种涂法;2有3种涂法;3有2种涂法;涂1,2,3只用了三种颜色,4必须涂第四种颜色,有1种涂法,共有44A =24种涂法;例2、给如下区域涂色,有四种颜色供选择,要求一空涂一色,邻空不同色,有多少种涂法解析:颜色可供选择,可理解为颜色可用完和不用完两种,分类处理,至少要用三色涂空,才能满足要求; 法1:1) 恰用三色:212334⨯⨯⨯⨯C =48种涂法; 2) 恰用四色:同例1,有24种涂法; 共有24+48=72种涂法;法2:1有4种涂法;2有3种涂法;3有2种涂法;4有3种涂法;共72种涂法;评析:由上述解法知,颜色用完和可供选择是两回事,做题时一定要区分;一、 区域涂色问题一、圆形区域涂色:处理圆形区域涂色大致有三种方法:间空涂色法;公式法;例3、用四种颜色给如下区域涂色,用四种颜色给如下区域涂色,要求一空涂一色,邻空不同色,有多少种涂法 一、 间空涂色法; 法1、用空分类 选择1,311,3同色,则1,3有14C 种方法,2有13C 种方法,4可能与1,3同色,但可与2同色,分两类:4与2同色,只用了两种颜色,5有2种方法;4与2不同色,则4有2种方法,5有2种涂法,此时,共有72)222(34=⨯+⨯种方法;21,3不同色,则1,3有24A 种方法,2有12C 种方法,4与1同色,5有3种方法;4与2不同色,则4有2种涂法,5有2种涂法,共有)322(212+⨯⨯⨯=168种方法,综上所述,共有72+168=240种涂法; 法2:公式法共有35+3⨯-15=240种方法;定理:用m 种颜色可选择填圆形区域的n 个空,一空涂一色,邻空不同色的涂法有)1()1()1(-⋅-+-m m n n 种; 证明:如图,设有a n 种不同涂法;不妨把之剪开,化为矩形区域,共有1)1(--n m m 种涂法,但区域1、n 不能涂同色,把1、n 捆绑成一个空,有a n-1种涂法,则11)1(----=n n n a m m a1)1(111)1()1()1(11111-+---=-+--=--⋅+-=-----m mm a m m mm a m a m m a a n n n n n n n n n其中)1(22-==m m A a m,设1,)1(2-=-=m mb m a b nn n 则 令()r b m r b n n ---=-11,则r=1, 可知,。
2021高考理科数学必考点解题方式秘籍:涂色问题与涂色问题有关的试题新颖有趣,最近几年已经在高考题中显现,其中包括着丰硕的数学思想。
解决涂色问题方式技术性强且灵活多变,因此这种问题有利于培育学生的创新思维能力、分析问题与观看问题的能力,有利于开发学生的智力。
本文拟总结涂色问题的常见类型及求解方式 一.区域涂色问题依照分步计数原理,对各个区域分步涂色,这是处置染色问题的大体方式。
用5种不同的颜色给图中标①、②、③、④的各部份涂色,每部份只涂一种颜色,相邻部份涂不同颜色,那么不同的涂色方式有多少种?3种,由于④号与①、②不相邻,因此④号有45434240⨯⨯⨯=依照共用了多少种颜色讨论,别离计算出各类出各类情形的种数,再用加法原理求出不同的涂色方式种数。
例二、四种不同的颜色涂在如下图的6个区域,且相邻两个区域不能同色。
分析:依题意只能选用4种颜色,要分四类:(1)②与⑤同色、④与⑥同色,那么有44A ; (2)③与⑤同色、④与⑥同色,那么有44A ; (3)②与⑤同色、③与⑥同色,那么有44A ;(4)③与⑤同色、② 与④同色,那么有44A ;(5)②与④同色、③与⑥同色,那么有44A ; 因此依照加法原理得涂色方式总数为544A =120①②③④ ⑤⑥例3、如下图,一个地域分为5个行政区域, 现给地图着色,要求相邻区域不得利用同一颜色, 现有4种颜色可供选择,那么不同的着方式共有多少种? 分析:依题意至少要用3种颜色 当先用三种颜色时,区域2与4必需同色,区域3与5必需同色,故有34A 种;当用四种颜色时,假设区域2与4同色,那么区域3与5不同色,有44A 种;假设区域3与5同色,那么区域2与4不同色,有44A 种,故用四种颜色时共有244A 种。
由加法原理可知知足题意的着色方式共有34A +244A =24+2 24=72依照某两个不相邻区域是不是同色分类讨论,从某两个不相邻区域同色与不同色入手,别离计算出两种情形的种数,再用加法原理求出不同涂色方式总数。
例4用红、黄、蓝、白、黑五种颜色涂在如下图的四个区域内,每一个区域涂一种颜色,相邻两个区域涂不同的颜色,若是颜色能够反复利用,共有多少种不同的涂色方式? 分析:可把问题分为三类:四格涂不同的颜色,方式种数为45A ;有且仅两个区域相同的颜色, 即只有一组对角小方格涂相 同的颜色,涂法种数为12542C A ;两组对角小方格别离涂相同的颜色,涂法种数为25A ,因此,所求的涂法种数为212255452260A C A A ++=依照相间区利用颜色的种类分类例5如图, 6个扇形区域A 、B 、C 、D 、E 、F ,现给这6个区域着色,要求同一区域涂同一1A 解(1)当相间区域A 、C 、E 着同一种颜色时, 有4种着色方式,现在,B 、D 、F 各有3种着色方式, 现在,B 、D 、F 各有3种着色方式 故有4333108⨯⨯⨯= 种方式。
(2)当相间区域A 、C 、E 着色两不同的颜色时,有2234C A 种着色方式,现在B 、D 、F 有322⨯⨯种着色方式,故共有2234322432C A ⨯⨯⨯=种着色方式。
(3)当相间区域A 、C 、E 着三种不同的颜色时有34A 种着色方式,现在B 、D 、F 各有2种着色方式。
现在共有34222192A ⨯⨯⨯=种方式。
故共计有108+432+192=732种方式。
说明:关于扇形区域区域涂色问题还能够用数列中的递推公来解决。
如:如图,把一个圆分成(2)n n ≥色,要求相邻扇形不同色,有多少种染色方式? 解:设分成n 个扇形时染色方式为na 种(1) 当n=2时1A 、2A 有24A =12种,即2a =12 (2)当分成n 个扇形,如图,1A 与2A 不同色,2A 与3A 不同色,,1n A -与nA 不同色,共有143n -⨯种染色方式, 但由于n A 与1A ⑤邻,因此应排除n A与1A同色的情形;n A与1A同色时,可把n A、1A看成一个扇形,与前2n-个扇形加在一路为1n-个扇形,现在有1n a-种染色法,故有如下递推关系:二.点的涂色问题方式有:(1)可依照共用了多少种颜色分类讨论,(2)依照相对极点是不是同色分类讨论,(3)将空间问题平面化,转化成区域涂色问题。
例六、将一个四棱锥S ABCD-的每一个极点染上一种颜色,并使同一条棱的两头点异色,若是只有5种颜色可供利用,那么不同的染色方式的总数是多少?解法一:知足题设条件的染色至少要用三种颜色。
(1)假设恰用三种颜色,可先从五种颜色中任选一种染极点S,再从余下的四种颜色中任选两种涂A、B、C、D四点,现在只能A与C、B与D别离同色,故有125460C A=种方式。
(2)假设恰用四种颜色染色,能够先从五种颜色中任选一种颜色染极点S,再从余下的四种颜色中任选两种染A与B,由于A、B颜色能够互换,故有24A种染法;再从余下的两种颜色中任选一种染D或C,而D与C,而D与C中另一个只需染与其相对极点同色即可,故有1211 5422240C A C C=种方式。
(3)假设恰用五种颜色染色,有55120A=种染色法综上所知,知足题意的染色方式数为60+240+120=420种。
解法二:假想染色按S—A—B—C—D的顺序进行,对S、A、B染色,有54360⨯⨯=种染色方式。
由于C点的颜色可能与A同色或不同色,这阻碍到D点颜色的选取方式数,故分类讨论:C与A同色时(现在C对颜色的选取方式唯一),D应与A(C)、S不同色,有3种选择;C与A不同色时,C有2种选择的颜色,D也有2种颜色可供选择,从而对C、D染色有13227⨯+⨯=种染色方式。
由乘法原理,总的染色方式是607420⨯=解法三:可把那个问题转化成相邻区域不同色问题:如图,对这五个区域用5种颜色涂色,有多少种不同的涂色方式?二.线段涂色问题对线段涂色问题,要注意对各条线段依次涂色,要紧方式有:依照共用了多少颜色分类讨论依照相对线段是不是同色分类讨论。
例7、用红、黃、蓝、白四种颜色涂矩形ABCD的四条边,每条边只涂一种颜色,且使相邻两边涂不同的颜色,若是颜色能够反复利用,共有多少种不同的涂色方式?解法一:(1)利用四颜色共有44A种;(2)利用三种颜色涂色,那么必需将一组对边染成同色,故有112423C C A种,(3)利用二种颜色时,那么两组对边必需别离同色,有24A种因此,所求的染色方式数为411224423484A C C A A++=种解法二:涂色按AB-BC-CD-DA的顺序进行,对AB、BC涂色有4312⨯=种涂色方式。
由于CD的颜色可能与AB同色或不同色,这阻碍到DA颜色的选取方式数,故分类讨论:当CD与AB同色时,这时CD对颜色的选取方式唯一,那么DA有3种颜色可供选择CD与AB 不同色时,CD有两种可供选择的颜色,DA也有两种可供选择的颜色,从而对CD、DA涂色有13227⨯+⨯=种涂色方式。
由乘法原理,总的涂色方式数为12784⨯=种例八、用六种颜色给正四面体A BCD-的每条棱染色,要求每条棱只染一种颜色且共极点的棱涂不同的颜色,问有多少种不同的涂色方式?解:(1)假设恰用三种颜色涂色,那么每组对棱必需涂同一颜色,而这三组间的颜色不同,故有36A 种方式。
(2)假设恰用四种颜色涂色,那么三组对棱中有二组对棱的组内对棱涂同色,但组与组之间不同色,故有3466C A 种方式。
(3)假设恰用五种颜色涂色,那么三组对棱中有一组对棱涂同一种颜色,故有1536C A 种方式。
(4)假设恰用六种颜色涂色,那么有66A 种不同的方式。
综上,知足题意的总的染色方式数为4080665613462336=+++A A C A C A 种。
三.面涂色问题例九、从给定的六种不同颜色当选用假设干种颜色,将一个正方体的6个面涂色,每两个具有公共棱的面涂成不同的颜色,那么不同的涂色方案共有多少种?分析:显然,至少需要3三种颜色,由于有多种不同情形,仍应考虑利用加法原理分类、乘法原理分步进行讨论解:依照共用多少种不同的颜色分类讨论(1)用了六种颜色,确信某种颜色所涂面为下底面,那么上底颜色可有5种选择,在上、下底已涂好后,再确信其余4种颜色中的某一种所涂面为左侧面,那么其余3个面有3!种涂色方案,依照乘法原理30!351=⨯=n(2)共用五种颜色,选定五种颜色有656=C 种方式,必有两面同色(必为相对面),确信为上、下底面,其颜色可有5种选择,再确信一种颜色为左侧面,现在的方式数取决于右边面的颜色,有3种选择(前后面可通过翻转互换)9035562=⨯⨯=C n ;(3)共用四种颜色,仿上分析可得9024463==C C n ;(4)共用三种颜色,20364==C n例10、四棱锥P ABCD -,用4种不同的颜色涂在四棱锥的各个面上,要求相邻不同色,有多少种涂法?解:这种面的涂色问题可转化为区域涂色问题,如右图,区域一、二、3、4相当于四个侧面,区域5相当于底面;依照共用颜色多少分类:最少要用3种颜色,即1与3同色、2与4同色,现在有34A 种;当用4种颜色时,1与3同色、2与4两组中只能有一组同色,现在有1424C A ;故知足题意总的涂色方式总方式交总数为31442472A C A += 用三种不同的颜色填涂如右图33⨯方格中的9个区域,要求每行、每列的三个区域都不同色,那么不同的填涂方式种数共有( D ) A 、4八、 B 、24 C 、12 D 、6 “立几”中的计数问题求解策略在近几年的高考试题和各地模拟试题中频繁显现以“立几”中的点、线、面的位置关系为背景的计数问题,这种问题题型新颖、解法灵活、多个知识点交织在一路,综合性强,能力要求高,有必然的难度,它不仅考查相关的基础知识,而且注重对数学思想方式和数学能力的考查。
现结合具体例子谈谈这种问题的求解策略。
直接求解例1:从平面α上取6个点,从平面β上取4个点,这10个点最多能够确信多少个三棱锥? 解析: 利用三棱锥的形成将问题分成α平面上有1个点、2个点、3个点三类直接求解共有132231646464194C C C C C C ++=个三棱锥例2: 在四棱锥P-ABCD 中,极点为P ,从其它的极点和各棱的中点中取3个,使它们和点P 在同一平面上,不同的取法有 B. 48 C. 56 D. 62种 解析: 知足题设的取法能够分成三类 在四棱锥的每一个侧面上除P 点外取三点有35440C =种不同取法;ABC 53214在两个对角面上除点P 外任取3点,共有3428C =种不同取法; 过点P 的每一条棱上的3点和与这条棱异面的棱的中点也共面,共有1248C =种不同取法,故共有40+8+8=56种评注:这种问题应依照立体图形的几何特点,选取适当的分类标准,做到分类不重复、不遗漏。